NTCIR10-FS-12

Results for NTCIR10-FS-12

Query

Original Query

NTCIR10-FS-12 Formula Search Query <query> <TeXquery>\qvar{q}_{\qvar{n}}|\qvar{a}_{\qvar{n}}-\qvar{a}|\sim _{{\qvar{n}\to+\infty}}\qvar{q}_{\qvar{n}}|\frac{\qvar{p}_{\qvar{n}}}{\qvar{q}_{\qvar{n}}}-\qvar{a}|</TeXquery> <pquery> <m:math> <m:mrow xml:id="m26.1.18.pmml" xref="m26.1.18"> <m:mrow xml:id="m26.1.18.2.pmml" xref="m26.1.18.2"> <m:msub xml:id="m26.1.18.2.2.pmml" xref="m26.1.18.2.2"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="q"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> <m:mo xml:id="m26.1.18.2.1.pmml" xref="m26.1.18.2.1">⁢</m:mo> <m:mrow xml:id="m26.1.18.2.3.pmml" xref="m26.1.18.2.3"> <m:mo fence="true" xml:id="m26.1.18.2.3a.pmml" xref="m26.1.18.2.3">|</m:mo> <m:mrow xml:id="m26.1.18.2.3.2.pmml" xref="m26.1.18.2.3.2"> <m:msub xml:id="m26.1.18.2.3.2.1.pmml" xref="m26.1.18.2.3.2.1"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="a"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> <m:mo xml:id="m26.1.6.pmml" xref="m26.1.6">-</m:mo> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="a"/> </m:mrow> <m:mo fence="true" xml:id="m26.1.18.2.3b.pmml" xref="m26.1.18.2.3">|</m:mo> </m:mrow> </m:mrow> <m:msub xml:id="m26.1.18.1.pmml" xref="m26.1.18.1"> <m:mo xml:id="m26.1.9.pmml" xref="m26.1.9">∼</m:mo> <m:mrow xml:id="m26.1.10.1.pmml" xref="m26.1.10.1"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> <m:mo xml:id="m26.1.10.1.2.pmml" xref="m26.1.10.1.2">→</m:mo> <m:mrow xml:id="m26.1.10.1.5.pmml" xref="m26.1.10.1.5"> <m:mo xml:id="m26.1.10.1.3.pmml" xref="m26.1.10.1.3">+</m:mo> <m:mi mathvariant="normal" xml:id="m26.1.10.1.4.pmml" xref="m26.1.10.1.4">∞</m:mi> </m:mrow> </m:mrow> </m:msub> <m:mrow xml:id="m26.1.18.3.pmml" xref="m26.1.18.3"> <m:msub xml:id="m26.1.18.3.2.pmml" xref="m26.1.18.3.2"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="q"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> <m:mo xml:id="m26.1.18.3.1.pmml" xref="m26.1.18.3.1">⁢</m:mo> <m:mrow xml:id="m26.1.18.3.3.pmml" xref="m26.1.18.3.3"> <m:mo fence="true" xml:id="m26.1.18.3.3a.pmml" xref="m26.1.18.3.3">|</m:mo> <m:mrow xml:id="m26.1.18.3.3.2.pmml" xref="m26.1.18.3.3.2"> <m:mfrac xml:id="m26.1.14.pmml" xref="m26.1.14"> <m:msub xml:id="m26.1.14.2.pmml" xref="m26.1.14.2"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="p"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> <m:msub xml:id="m26.1.14.3.pmml" xref="m26.1.14.3"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="q"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> </m:mfrac> <m:mo xml:id="m26.1.15.pmml" xref="m26.1.15">-</m:mo> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="a"/> </m:mrow> <m:mo fence="true" xml:id="m26.1.18.3.3b.pmml" xref="m26.1.18.3.3">|</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> </pquery> <cquery> <m:math> <m:apply xml:id="m26.1.18" xref="m26.1.18.pmml"> <m:apply xml:id="m26.1.18.1" xref="m26.1.18.1.pmml"> <m:csymbol cd="ambiguous" xml:id="m26.1.18.1.1">subscript</m:csymbol> <m:csymbol cd="latexml" xml:id="m26.1.9" xref="m26.1.9.pmml">similar-to</m:csymbol> <m:apply xml:id="m26.1.10.1" xref="m26.1.10.1.pmml"> <m:ci xml:id="m26.1.10.1.2" xref="m26.1.10.1.2.pmml">normal-→</m:ci> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> <m:apply xml:id="m26.1.10.1.5" xref="m26.1.10.1.5.pmml"> <m:plus xml:id="m26.1.10.1.3" xref="m26.1.10.1.3.pmml"/> <m:infinity xml:id="m26.1.10.1.4" xref="m26.1.10.1.4.pmml"/> </m:apply> </m:apply> </m:apply> <m:apply xml:id="m26.1.18.2" xref="m26.1.18.2.pmml"> <m:times xml:id="m26.1.18.2.1" xref="m26.1.18.2.1.pmml"/> <m:apply xml:id="m26.1.18.2.2" xref="m26.1.18.2.2.pmml"> <m:csymbol cd="ambiguous" xml:id="m26.1.18.2.2.1">subscript</m:csymbol> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="q"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:apply> <m:apply xml:id="m26.1.18.2.3" xref="m26.1.18.2.3.pmml"> <m:abs xml:id="m26.1.18.2.3.1"/> <m:apply xml:id="m26.1.18.2.3.2" xref="m26.1.18.2.3.2.pmml"> <m:minus xml:id="m26.1.6" xref="m26.1.6.pmml"/> <m:apply xml:id="m26.1.18.2.3.2.1" xref="m26.1.18.2.3.2.1.pmml"> <m:csymbol cd="ambiguous" xml:id="m26.1.18.2.3.2.1.1">subscript</m:csymbol> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="a"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:apply> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="a"/> </m:apply> </m:apply> </m:apply> <m:apply xml:id="m26.1.18.3" xref="m26.1.18.3.pmml"> <m:times xml:id="m26.1.18.3.1" xref="m26.1.18.3.1.pmml"/> <m:apply xml:id="m26.1.18.3.2" xref="m26.1.18.3.2.pmml"> <m:csymbol cd="ambiguous" xml:id="m26.1.18.3.2.1">subscript</m:csymbol> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="q"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:apply> <m:apply xml:id="m26.1.18.3.3" xref="m26.1.18.3.3.pmml"> <m:abs xml:id="m26.1.18.3.3.1"/> <m:apply xml:id="m26.1.18.3.3.2" xref="m26.1.18.3.3.2.pmml"> <m:minus xml:id="m26.1.15" xref="m26.1.15.pmml"/> <m:apply xml:id="m26.1.14" xref="m26.1.14.pmml"> <m:divide xml:id="m26.1.14.1"/> <m:apply xml:id="m26.1.14.2" xref="m26.1.14.2.pmml"> <m:csymbol cd="ambiguous" xml:id="m26.1.14.2.3">subscript</m:csymbol> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="p"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:apply> <m:apply xml:id="m26.1.14.3" xref="m26.1.14.3.pmml"> <m:csymbol cd="ambiguous" xml:id="m26.1.14.3.3">subscript</m:csymbol> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="q"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:apply> </m:apply> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="a"/> </m:apply> </m:apply> </m:apply> </m:apply> </m:math> </cquery> </query> <relevance> </relevance> </topic> </blockcode></div> <h3>Compiled by FSE</h3> <h4>Token-Filter</h4> <ul><li>TeXFilter:<code>[to, +, sim, \ x 4, _ x 6, | x 4, infty, frac, - x 2]</code></li><li>Presentation-MathML:<code>[∞, +, ∼, →, | x 4, - x 2]</code></li></ul> <h4>MathML-Filter</h4> <blockcode linenumbers="off" title="compressed Presentation-MathML regular expression"> mrow[mrow[msub[(.*?);(.*?)];mrow[mo[|];mrow[msub[(.*?);2];mo[-];3];mo[|]]];msub[mo[∼];mrow[2;mo[→];mrow[mo[+];mi[∞]]]];mrow[msub[1;2];mrow[mo[|];mrow[mfrac[msub[(.*?);2];msub[1;2]];mo[-];3];mo[|]]]]</blockcode> <blockcode linenumbers="off" title="compressed Content-MathML regular expression"> apply[apply[csymbol[subscript];csymbol[similar-to];apply[ci[normal-→];(.*);apply[plus;infinity]]];apply[times;apply[csymbol[subscript];(.*);1];apply[abs;apply[minus;apply[csymbol[subscript];(.*);1];3]]];apply[times;apply[csymbol[subscript];2;1];apply[abs;apply[minus;apply[divide;apply[csymbol[subscript];(.*);1];apply[csymbol[subscript];2;1]];3]]]]</blockcode> <h4>Word filter</h4> No words found specifified. Rendered Presentation-MathML: <m:math> <m:mrow xml:id="m26.1.18.pmml" xref="m26.1.18"> <m:mrow xml:id="m26.1.18.2.pmml" xref="m26.1.18.2"> <m:msub xml:id="m26.1.18.2.2.pmml" xref="m26.1.18.2.2"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="q"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> <m:mo xml:id="m26.1.18.2.1.pmml" xref="m26.1.18.2.1">⁢</m:mo> <m:mrow xml:id="m26.1.18.2.3.pmml" xref="m26.1.18.2.3"> <m:mo fence="true" xml:id="m26.1.18.2.3a.pmml" xref="m26.1.18.2.3">|</m:mo> <m:mrow xml:id="m26.1.18.2.3.2.pmml" xref="m26.1.18.2.3.2"> <m:msub xml:id="m26.1.18.2.3.2.1.pmml" xref="m26.1.18.2.3.2.1"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="a"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> <m:mo xml:id="m26.1.6.pmml" xref="m26.1.6">-</m:mo> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="a"/> </m:mrow> <m:mo fence="true" xml:id="m26.1.18.2.3b.pmml" xref="m26.1.18.2.3">|</m:mo> </m:mrow> </m:mrow> <m:msub xml:id="m26.1.18.1.pmml" xref="m26.1.18.1"> <m:mo xml:id="m26.1.9.pmml" xref="m26.1.9">∼</m:mo> <m:mrow xml:id="m26.1.10.1.pmml" xref="m26.1.10.1"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> <m:mo xml:id="m26.1.10.1.2.pmml" xref="m26.1.10.1.2">→</m:mo> <m:mrow xml:id="m26.1.10.1.5.pmml" xref="m26.1.10.1.5"> <m:mo xml:id="m26.1.10.1.3.pmml" xref="m26.1.10.1.3">+</m:mo> <m:mi mathvariant="normal" xml:id="m26.1.10.1.4.pmml" xref="m26.1.10.1.4">∞</m:mi> </m:mrow> </m:mrow> </m:msub> <m:mrow xml:id="m26.1.18.3.pmml" xref="m26.1.18.3"> <m:msub xml:id="m26.1.18.3.2.pmml" xref="m26.1.18.3.2"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="q"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> <m:mo xml:id="m26.1.18.3.1.pmml" xref="m26.1.18.3.1">⁢</m:mo> <m:mrow xml:id="m26.1.18.3.3.pmml" xref="m26.1.18.3.3"> <m:mo fence="true" xml:id="m26.1.18.3.3a.pmml" xref="m26.1.18.3.3">|</m:mo> <m:mrow xml:id="m26.1.18.3.3.2.pmml" xref="m26.1.18.3.3.2"> <m:mfrac xml:id="m26.1.14.pmml" xref="m26.1.14"> <m:msub xml:id="m26.1.14.2.pmml" xref="m26.1.14.2"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="p"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> <m:msub xml:id="m26.1.14.3.pmml" xref="m26.1.14.3"> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="q"/> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="n"/> </m:msub> </m:mfrac> <m:mo xml:id="m26.1.15.pmml" xref="m26.1.15">-</m:mo> <mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns" name="a"/> </m:mrow> <m:mo fence="true" xml:id="m26.1.18.3.3b.pmml" xref="m26.1.18.3.3">|</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <h2>Results<h2> <h3>Summary<h3> <h4>Reviewer score 2</h4><ul> <li>Items reviewd: 26</li> <li>Accumulated score: 85994</li> <li>Formulasearchengine found: 8</li> </ul><h4>Reviewer score 0</h4><ul> <li>Items reviewd: 74</li> <li>Accumulated score: 0</li> <li>Formulasearchengine found: 0</li> </ul><table><tr><th></th><th>++</th><th>+</th><th>o</th><th>∑</th></tr><tr><th>200000+</th><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><th>5000-200000</th><td>0</td><td>8</td><td>0</td><td>8</td></tr><tr><th><5000</th><td>0</td><td>18</td><td>74</td><td>92</td></tr><tr><th>∑</th><td>0</td><td>26</td><td>74</td>.<td>100</td></tr></table>50000000:0 200000:0 10000:8 5000:8 <div id="graph-info" style="height:20px;overflow:auto;"></div> <div id="graph" style="width: 90%"></div> <div id="graph-results"></div> <script type="text/javascript"> g = new Dygraph( document.getElementById("graph"),"fse,rating_cum,rating,score,id\n1,2\n2,2\n3,2\n4,2\n5,2\n6,2\n7,2\n8,2\n9,2\n10,2\n11,2\n12,2\n13,2\n14,2\n15,2\n16,2\n17,2\n18,2\n19,2\n20,2\n21,2\n22,2\n23,2\n24,2\n25,2\n26,2\n27,0\n28,0\n29,0\n30,0\n31,0\n32,0\n33,0\n34,0\n35,0\n36,0\n37,0\n38,0\n39,0\n40,0\n41,0\n42,0\n43,0\n44,0\n45,0\n46,0\n47,0\n48,0\n49,0\n50,0\n51,0\n52,0\n53,0\n54,0\n55,0\n56,0\n57,0\n58,0\n59,0\n60,0\n61,0\n62,0\n63,0\n64,0\n65,0\n66,0\n67,0\n68,0\n69,0\n70,0\n71,0\n72,0\n73,0\n74,0\n75,0\n76,0\n77,0\n78,0\n79,0\n80,0\n81,0\n82,0\n83,0\n84,0\n85,0\n86,0\n87,0\n88,0\n89,0\n90,0\n91,0\n92,0\n93,0\n94,0\n95,0\n96,0\n97,0\n98,0\n99,0\n100,0\n",{showLabelsOnHighlight: false,valueRange:[-.5,null] ,xlabel: "Rank", ylabel: "Relevance score",title: "Relevance distribution",drawPoints: true,pointSize : 3, strokeWidth: 0.0,highlightCallback: function(e, x, pts,row,seriesName) { document.getElementById("graph-info").innerHTML = hitinfo[x]; }, pointClickCallback: function(e, p) { var strHtml="<h3>Results for selected point "+p.xval+"<h3>"; document.getElementById("graph-results").innerHTML =strHtml; document.getElementById("graph-results").innerHTML +=document.getElementById(hitids[p.xval]).innerHTML; }, underlayCallback: function(canvas, area, g) { var bottom_left = g.toDomCoords(1, -5000); var top_right = g.toDomCoords(9, +5000); var left = bottom_left[0]; var right = top_right[0]; canvas.fillStyle = "rgba(255, 255, 102, .3)"; canvas.fillRect(left, area.y, right - left, area.h); } }); var hitids=new Array(); var hitinfo=new Array(); hitids[1] = "id96559"; hitids[2] = "idp2146784"; hitids[3] = "idp34691856"; hitids[4] = "idp30619760"; hitids[5] = "idp5875648"; hitids[6] = "idp75663312"; hitids[7] = "idp72217968"; hitids[8] = "idp6210752"; hitids[9] = "id101872"; hitids[10] = "id102216"; hitids[11] = "id102486"; hitids[12] = "id106616"; hitids[13] = "id58173"; hitids[14] = "id70353"; hitids[15] = "id78980"; hitids[16] = "id81259"; hitids[17] = "id82718"; hitids[18] = "id93817"; hitids[19] = "id94120"; hitids[20] = "id95200"; hitids[21] = "id98739"; hitids[22] = "idp3157072"; hitids[23] = "idp3262768"; hitids[24] = "idp3371280"; hitids[25] = "idp5802448"; hitids[26] = "idp5857744"; hitids[27] = "id135258"; hitids[28] = "id186995"; hitids[29] = "id55972"; hitids[30] = "id56333"; hitids[31] = "id57729"; hitids[32] = "id58041"; hitids[33] = "id58368"; hitids[34] = "id58551"; hitids[35] = "id58853"; hitids[36] = "id58890"; hitids[37] = "id59626"; hitids[38] = "id60335"; hitids[39] = "id60672"; hitids[40] = "id61430"; hitids[41] = "id62532"; hitids[42] = "id63690"; hitids[43] = "id63814"; hitids[44] = "id65351"; hitids[45] = "id65594"; hitids[46] = "id66067"; hitids[47] = "id66972"; hitids[48] = "id72884"; hitids[49] = "id73324"; hitids[50] = "id73427"; hitids[51] = "id74290"; hitids[52] = "id75261"; hitids[53] = "id78453"; hitids[54] = "id78763"; hitids[55] = "id79054"; hitids[56] = "id91601"; hitids[57] = "id91795"; hitids[58] = "idm21520"; hitids[59] = "idp10997296"; hitids[60] = "idp13022544"; hitids[61] = "idp13039728"; hitids[62] = "idp20217392"; hitids[63] = "idp20798128"; hitids[64] = "idp21432672"; hitids[65] = "idp2156720"; hitids[66] = "idp21834720"; hitids[67] = "idp22036064"; hitids[68] = "idp22689584"; hitids[69] = "idp22777168"; hitids[70] = "idp22855536"; hitids[71] = "idp23027200"; hitids[72] = "idp23205440"; hitids[73] = "idp23399600"; hitids[74] = "idp23406880"; hitids[75] = "idp23557456"; hitids[76] = "idp23754880"; hitids[77] = "idp24447632"; hitids[78] = "idp25117504"; hitids[79] = "idp25510016"; hitids[80] = "idp26237216"; hitids[81] = "idp26265392"; hitids[82] = "idp27443856"; hitids[83] = "idp27648192"; hitids[84] = "idp27942288"; hitids[85] = "idp28025216"; hitids[86] = "idp2862304"; hitids[87] = "idp29097248"; hitids[88] = "idp29248304"; hitids[89] = "idp2954816"; hitids[90] = "idp30248128"; hitids[91] = "idp30267712"; hitids[92] = "idp30493824"; hitids[93] = "idp30562944"; hitids[94] = "idp31369360"; hitids[95] = "idp36128624"; hitids[96] = "idp37918752"; hitids[97] = "idp4009568"; hitids[98] = "idp42813584"; hitids[99] = "idp500272"; hitids[100] = "idp542960"; hitinfo[1] =" id: id96559, Relevance: 2internal score: 10839";hitinfo[2] =" id: idp2146784, Relevance: 2internal score: 10787";hitinfo[3] =" id: idp34691856, Relevance: 2internal score: 10778";hitinfo[4] =" id: idp30619760, Relevance: 2internal score: 10725";hitinfo[5] =" id: idp5875648, Relevance: 2internal score: 10725";hitinfo[6] =" id: idp75663312, Relevance: 2internal score: 10721";hitinfo[7] =" id: idp72217968, Relevance: 2internal score: 10715";hitinfo[8] =" id: idp6210752, Relevance: 2internal score: 10704";hitinfo[9] =" id: id101872, Relevance: 2internal score: 0";hitinfo[10] =" id: id102216, Relevance: 2internal score: 0";hitinfo[11] =" id: id102486, Relevance: 2internal score: 0";hitinfo[12] =" id: id106616, Relevance: 2internal score: 0";hitinfo[13] =" id: id58173, Relevance: 2internal score: 0";hitinfo[14] =" id: id70353, Relevance: 2internal score: 0";hitinfo[15] =" id: id78980, Relevance: 2internal score: 0";hitinfo[16] =" id: id81259, Relevance: 2internal score: 0";hitinfo[17] =" id: id82718, Relevance: 2internal score: 0";hitinfo[18] =" id: id93817, Relevance: 2internal score: 0";hitinfo[19] =" id: id94120, Relevance: 2internal score: 0";hitinfo[20] =" id: id95200, Relevance: 2internal score: 0";hitinfo[21] =" id: id98739, Relevance: 2internal score: 0";hitinfo[22] =" id: idp3157072, Relevance: 2internal score: 0";hitinfo[23] =" id: idp3262768, Relevance: 2internal score: 0";hitinfo[24] =" id: idp3371280, Relevance: 2internal score: 0";hitinfo[25] =" id: idp5802448, Relevance: 2internal score: 0";hitinfo[26] =" id: idp5857744, Relevance: 2internal score: 0";hitinfo[27] =" id: id135258, Relevance: 0internal score: 0";hitinfo[28] =" id: id186995, Relevance: 0internal score: 0";hitinfo[29] =" id: id55972, Relevance: 0internal score: 0";hitinfo[30] =" id: id56333, Relevance: 0internal score: 0";hitinfo[31] =" id: id57729, Relevance: 0internal score: 0";hitinfo[32] =" id: id58041, Relevance: 0internal score: 0";hitinfo[33] =" id: id58368, Relevance: 0internal score: 0";hitinfo[34] =" id: id58551, Relevance: 0internal score: 0";hitinfo[35] =" id: id58853, Relevance: 0internal score: 0";hitinfo[36] =" id: id58890, Relevance: 0internal score: 0";hitinfo[37] =" id: id59626, Relevance: 0internal score: 0";hitinfo[38] =" id: id60335, Relevance: 0internal score: 0";hitinfo[39] =" id: id60672, Relevance: 0internal score: 0";hitinfo[40] =" id: id61430, Relevance: 0internal score: 0";hitinfo[41] =" id: id62532, Relevance: 0internal score: 0";hitinfo[42] =" id: id63690, Relevance: 0internal score: 0";hitinfo[43] =" id: id63814, Relevance: 0internal score: 0";hitinfo[44] =" id: id65351, Relevance: 0internal score: 0";hitinfo[45] =" id: id65594, Relevance: 0internal score: 0";hitinfo[46] =" id: id66067, Relevance: 0internal score: 0";hitinfo[47] =" id: id66972, Relevance: 0internal score: 0";hitinfo[48] =" id: id72884, Relevance: 0internal score: 0";hitinfo[49] =" id: id73324, Relevance: 0internal score: 0";hitinfo[50] =" id: id73427, Relevance: 0internal score: 0";hitinfo[51] =" id: id74290, Relevance: 0internal score: 0";hitinfo[52] =" id: id75261, Relevance: 0internal score: 0";hitinfo[53] =" id: id78453, Relevance: 0internal score: 0";hitinfo[54] =" id: id78763, Relevance: 0internal score: 0";hitinfo[55] =" id: id79054, Relevance: 0internal score: 0";hitinfo[56] =" id: id91601, Relevance: 0internal score: 0";hitinfo[57] =" id: id91795, Relevance: 0internal score: 0";hitinfo[58] =" id: idm21520, Relevance: 0internal score: 0";hitinfo[59] =" id: idp10997296, Relevance: 0internal score: 0";hitinfo[60] =" id: idp13022544, Relevance: 0internal score: 0";hitinfo[61] =" id: idp13039728, Relevance: 0internal score: 0";hitinfo[62] =" id: idp20217392, Relevance: 0internal score: 0";hitinfo[63] =" id: idp20798128, Relevance: 0internal score: 0";hitinfo[64] =" id: idp21432672, Relevance: 0internal score: 0";hitinfo[65] =" id: idp2156720, Relevance: 0internal score: 0";hitinfo[66] =" id: idp21834720, Relevance: 0internal score: 0";hitinfo[67] =" id: idp22036064, Relevance: 0internal score: 0";hitinfo[68] =" id: idp22689584, Relevance: 0internal score: 0";hitinfo[69] =" id: idp22777168, Relevance: 0internal score: 0";hitinfo[70] =" id: idp22855536, Relevance: 0internal score: 0";hitinfo[71] =" id: idp23027200, Relevance: 0internal score: 0";hitinfo[72] =" id: idp23205440, Relevance: 0internal score: 0";hitinfo[73] =" id: idp23399600, Relevance: 0internal score: 0";hitinfo[74] =" id: idp23406880, Relevance: 0internal score: 0";hitinfo[75] =" id: idp23557456, Relevance: 0internal score: 0";hitinfo[76] =" id: idp23754880, Relevance: 0internal score: 0";hitinfo[77] =" id: idp24447632, Relevance: 0internal score: 0";hitinfo[78] =" id: idp25117504, Relevance: 0internal score: 0";hitinfo[79] =" id: idp25510016, Relevance: 0internal score: 0";hitinfo[80] =" id: idp26237216, Relevance: 0internal score: 0";hitinfo[81] =" id: idp26265392, Relevance: 0internal score: 0";hitinfo[82] =" id: idp27443856, Relevance: 0internal score: 0";hitinfo[83] =" id: idp27648192, Relevance: 0internal score: 0";hitinfo[84] =" id: idp27942288, Relevance: 0internal score: 0";hitinfo[85] =" id: idp28025216, Relevance: 0internal score: 0";hitinfo[86] =" id: idp2862304, Relevance: 0internal score: 0";hitinfo[87] =" id: idp29097248, Relevance: 0internal score: 0";hitinfo[88] =" id: idp29248304, Relevance: 0internal score: 0";hitinfo[89] =" id: idp2954816, Relevance: 0internal score: 0";hitinfo[90] =" id: idp30248128, Relevance: 0internal score: 0";hitinfo[91] =" id: idp30267712, Relevance: 0internal score: 0";hitinfo[92] =" id: idp30493824, Relevance: 0internal score: 0";hitinfo[93] =" id: idp30562944, Relevance: 0internal score: 0";hitinfo[94] =" id: idp31369360, Relevance: 0internal score: 0";hitinfo[95] =" id: idp36128624, Relevance: 0internal score: 0";hitinfo[96] =" id: idp37918752, Relevance: 0internal score: 0";hitinfo[97] =" id: idp4009568, Relevance: 0internal score: 0";hitinfo[98] =" id: idp42813584, Relevance: 0internal score: 0";hitinfo[99] =" id: idp500272, Relevance: 0internal score: 0";hitinfo[100] =" id: idp542960, Relevance: 0internal score: 0";</script> <h3>Short result list</h3> <h3>Detailed results for reviewer score 2</h3> <div id="id96559"><h4>Hit id96559</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 1</li> <li>Formulasearchengine score: 10839</li> <li>Reference to collection: _PREFIX_/226/f090263.xhtml#id96559</li> </ul><blockcode linenumbers="off" title="justification"> found all required tokens in TeX $h_{{n_{1},0,0}}\sim _{{n_{1}\to-\infty}}\frac{K^{-}}{|n_{1}|}e^{{-|n_{1}|/\lambda _{-}}},$ at pos:665506(91%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[to] + 1.0 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[sim] + 1.96875 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[|] + 1.5 * TOKEN_SCORE[infty] + 1.5 * TOKEN_SCORE[frac] + 1.9375 * TOKEN_SCORE[-] =+100.0+0.0+1.5*2.52168261581791+1.0*0.0160883895861106+1.5*2.49253940800079+1.96875*5.92879328325965E-4+1.9921875*0.00257082788077282+1.9375*0.0975909302497933+1.5*0.382802832581921+1.5*0.0366287198730455+1.9375*0.0154682311502303 = 10839.190968155553' final score ~ 10839 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id96559" alttext="h_{{n_{1},0,0}}\sim _{{n_{1}\to-\infty}}\frac{K^{-}}{|n_{1}|}e^{{-|n_{1}|/\lambda _{-}}}," display="block"><m:semantics id="id96565"><m:mrow id="id96566"><m:msub id="id96567"><m:mi id="id96568">h</m:mi><m:mrow id="id96570"><m:msub id="id96571"><m:mi id="id96572">n</m:mi><m:mn id="id96574">1</m:mn></m:msub><m:mo id="id96577">,</m:mo><m:mn id="id96579">0</m:mn><m:mo id="id96581">,</m:mo><m:mn id="id96583">0</m:mn></m:mrow></m:msub><m:msub id="id96585"><m:mo id="id96586">∼</m:mo><m:mrow id="id96589"><m:msub id="id96590"><m:mi id="id96591">n</m:mi><m:mn id="id96593">1</m:mn></m:msub><m:mo id="id96595">→</m:mo><m:mrow id="id96597"><m:mo id="id96598">-</m:mo><m:mi id="id96601" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:msub><m:mfrac id="id96605"><m:msup id="id96606"><m:mi id="id96607">K</m:mi><m:mo id="id96610">-</m:mo></m:msup><m:mfenced id="id96612" open="|" close="|"><m:msub id="id96617"><m:mi id="id96618">n</m:mi><m:mn id="id96620">1</m:mn></m:msub></m:mfenced></m:mfrac><m:msup id="id96622"><m:mi id="id96623">e</m:mi><m:mrow id="id96625"><m:mo id="id96626">-</m:mo><m:mrow id="id96628"><m:mfenced id="id96630" open="|" close="|"><m:msub id="id96635"><m:mi id="id96636">n</m:mi><m:mn id="id96638">1</m:mn></m:msub></m:mfenced><m:mo id="id96640">/</m:mo><m:msub id="id96642"><m:mi id="id96643">λ</m:mi><m:mo id="id96646">-</m:mo></m:msub></m:mrow></m:mrow></m:msup><m:mo id="id96648">,</m:mo></m:mrow><m:annotation-xml id="id96650" encoding="MathML-Content"><m:apply id="id96653"><m:csymbol id="id96654" cd="ambiguous">subscript</m:csymbol><m:ci id="id96659">h</m:ci><m:apply id="id96661"><m:list id="id96662"/><m:apply id="id96663"><m:csymbol id="id96664" cd="ambiguous">subscript</m:csymbol><m:ci id="id96669">n</m:ci><m:cn id="id96671" type="integer">1</m:cn></m:apply><m:cn id="id96675" type="integer">0</m:cn><m:cn id="id96680" type="integer">0</m:cn></m:apply></m:apply></m:annotation-xml><m:annotation id="id96684" encoding="application/x-tex">h_{{n_{1},0,0}}\sim _{{n_{1}\to-\infty}}\frac{K^{-}}{|n_{1}|}e^{{-|n_{1}|/\lambda _{-}}},</m:annotation></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="idp2146784"><h4>Hit idp2146784</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 2</li> <li>Formulasearchengine score: 10787</li> <li>Reference to collection: _PREFIX_/128/f051085.xhtml#idp2146784</li> </ul><blockcode linenumbers="off" title="justification"> found all required tokens in TeX $\frac{\ell _{{\Lambda}}}{\log|\Lambda|}\operatornamewithlimits{\to}_{{|\Lambda|\to+\infty}}+\infty\quad\text{ and }\quad\ell _{{\Lambda}}\leq|\Lambda|^{{1/d}}.$ at pos:260062(44%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[to] + 1.75 * TOKEN_SCORE[+] + 1.0 * TOKEN_SCORE[sim] + 1.9999961853027344 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] + 1.984375 * TOKEN_SCORE[|] + 1.75 * TOKEN_SCORE[infty] + 1.5 * TOKEN_SCORE[frac] + 1.0 * TOKEN_SCORE[-] =+100.0+0.0+1.75*2.52168261581791+1.75*0.0160883895861106+1.0*2.49253940800079+1.9999961853027344*5.92879328325965E-4+1.875*0.00257082788077282+1.984375*0.0975909302497933+1.75*0.382802832581921+1.5*0.0366287198730455+1.0*0.0154682311502303 = 10787.361799632186' final score ~ 10787 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp2146784" alttext="\frac{\ell _{{\Lambda}}}{\log|\Lambda|}\operatornamewithlimits{\to}_{{|\Lambda|\to+\infty}}+\infty\quad\text{ and }\quad\ell _{{\Lambda}}\leq|\Lambda|^{{1/d}}." display="block"><semantics id="idp2147680"><mrow id="idp2147808"><mrow id="idp2147936"><mrow id="idp2148064"><mrow id="idp2148192"><mrow id="idp2148320"><mfrac id="idp2148448"><msub id="idp2148576"><mi id="idp2148704" mathvariant="normal">ℓ</mi><mi id="idp2149200" mathvariant="normal">Λ</mi></msub><mrow id="idp2149760"><mi id="idp2149888">log</mi><mo id="idp2150144">⁡</mo><mrow id="idp2150432"><mo id="idp2150560" fence="true">|</mo><mi id="idp2151088" mathvariant="normal">Λ</mi><mo id="idp2151648" fence="true">|</mo></mrow></mrow></mfrac><mo id="idp2152176">⁢</mo><munder id="idp2152464"><mo id="idp2152592" movablelimits="false">→</mo><mrow id="idp2153152"><mrow id="idp2153280"><mo id="idp2153408" fence="true">|</mo><mi id="idp2153936" mathvariant="normal">Λ</mi><mo id="idp2154496" fence="true">|</mo></mrow><mo id="idp2155024">→</mo><mrow id="idp2155312"><mo id="idp2155440">+</mo><mi id="idp2155696" mathvariant="normal">∞</mi></mrow></mrow></munder></mrow><mo id="idp2156256">+</mo><mi id="idp2156512" mathvariant="normal">∞</mi></mrow><mo id="idp2157072" separator="true"> </mo><mtext id="idp2157632"> and </mtext><mo id="idp2157920" separator="true"> </mo><msub id="idp2158480"><mi id="idp2158608" mathvariant="normal">ℓ</mi><mi id="idp2159168" mathvariant="normal">Λ</mi></msub></mrow><mo id="idp2159728">≤</mo><msup id="idp2160016"><mrow id="idp2160144"><mo id="idp2160272" fence="true">|</mo><mi id="idp2160800" mathvariant="normal">Λ</mi><mo id="idp2161360" fence="true">|</mo></mrow><mrow id="idp2161888"><mn id="idp2162016">1</mn><mo id="idp2162272">/</mo><mi id="idp2162528">d</mi></mrow></msup></mrow><mo id="idp2162784">.</mo></mrow><annotation-xml id="idp2163040" encoding="MathML-Content"><apply id="idp2163440"><leq id="idp2163568"/><apply id="idp2163696"><list id="idp2163824"/><apply id="idp2163952"><plus id="idp2164080"/><apply id="idp2164208"><times id="idp2164336"/><apply id="idp2164464"><divide id="idp2164592"/><apply id="idp2164720"><csymbol id="idp2164848" cd="ambiguous">subscript</csymbol><ci id="idp2165408">ℓ</ci><ci id="idp2165696">Λ</ci></apply><apply id="idp2165984"><log id="idp2166112"/><apply id="idp2166240"><abs id="idp2166368"/><ci id="idp2166496">Λ</ci></apply></apply></apply><apply id="idp2166784"><csymbol id="idp2166912" cd="ambiguous">subscript</csymbol><ci id="idp2167472">→</ci><apply id="idp2167760"><ci id="idp2167888">→</ci><apply id="idp2168176"><abs id="idp2168304"/><ci id="idp2168432">Λ</ci></apply><apply id="idp2168720"><plus id="idp2168848"/><infinity id="idp2168976"/></apply></apply></apply></apply><infinity id="idp2169104"/></apply><mtext id="idp2169232"> and </mtext><apply id="idp2169520"><csymbol id="idp2169648" cd="ambiguous">subscript</csymbol><ci id="idp2170208">ℓ</ci><ci id="idp2170496">Λ</ci></apply></apply><apply id="idp2170784"><csymbol id="idp2170912" cd="ambiguous">superscript</csymbol><apply id="idp2171472"><abs id="idp2171600"/><ci id="idp2171728">Λ</ci></apply><apply id="idp2172016"><divide id="idp2172144"/><cn id="idp2172272" type="integer">1</cn><ci id="idp2172800">d</ci></apply></apply></apply></annotation-xml><annotation id="idp2173056" encoding="application/x-tex">\frac{\ell _{{\Lambda}}}{\log|\Lambda|}\operatornamewithlimits{\to}_{{|\Lambda|\to+\infty}}+\infty\quad\text{ and }\quad\ell _{{\Lambda}}\leq|\Lambda|^{{1/d}}.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp34691856"><h4>Hit idp34691856</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 3</li> <li>Formulasearchengine score: 10778</li> <li>Reference to collection: _PREFIX_/17/f006403.xhtml#idp34691856</li> </ul><blockcode linenumbers="off" title="justification"> found all required tokens in TeX $\hbox{ either }\left|x_{{i,\alpha}}-x_{\alpha}\right|\leq R_{0}\mu _{{i,\alpha}}\hbox{ or }\frac{\left|x_{{i,\alpha}}-x_{\alpha}\right|}{\mu _{{i,\alpha}}}\to+\infty\hbox{ as }\alpha\to+\infty .$ at pos:1950180(26%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[to] + 1.75 * TOKEN_SCORE[+] + 1.0 * TOKEN_SCORE[sim] + 1.999999761581421 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[|] + 1.5 * TOKEN_SCORE[infty] + 1.5 * TOKEN_SCORE[frac] + 1.75 * TOKEN_SCORE[-] =+100.0+0.0+1.75*2.52168261581791+1.75*0.0160883895861106+1.0*2.49253940800079+1.999999761581421*5.92879328325965E-4+1.9921875*0.00257082788077282+1.9375*0.0975909302497933+1.5*0.382802832581921+1.5*0.0366287198730455+1.75*0.0154682311502303 = 10778.524515769619' final score ~ 10778 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp34691856" alttext="\hbox{ either }\left|x_{{i,\alpha}}-x_{\alpha}\right|\leq R_{0}\mu _{{i,\alpha}}\hbox{ or }\frac{\left|x_{{i,\alpha}}-x_{\alpha}\right|}{\mu _{{i,\alpha}}}\to+\infty\hbox{ as }\alpha\to+\infty ." display="block"><semantics id="idp34691632"><mrow id="idp34692784"><mrow id="idp34692912"><mrow id="idp34693040"><mtext id="idp34693168"> either </mtext><mo id="idp34693424">⁢</mo><mrow id="idp34693680"><mo id="idp34693808" fence="true">|</mo><mrow id="idp34694304"><msub id="idp34694432"><mi id="idp34694560">x</mi><mrow id="idp34694816"><mi id="idp34694944">i</mi><mo id="idp34695200">,</mo><mi id="idp34695456">α</mi></mrow></msub><mo id="idp34695712">-</mo><msub id="idp34695968"><mi id="idp34696096">x</mi><mi id="idp34696352">α</mi></msub></mrow><mo id="idp34696608" fence="true">|</mo></mrow></mrow><mo id="idp34697136">≤</mo><mrow id="idp34697424"><msub id="idp34697552"><mi id="idp34697680">R</mi><mn id="idp34697936">0</mn></msub><mo id="idp34698192">⁢</mo><msub id="idp34698480"><mi id="idp34698608">μ</mi><mrow id="idp34698896"><mi id="idp34699024">i</mi><mo id="idp34699280">,</mo><mi id="idp34699536">α</mi></mrow></msub><mo id="idp34699824">⁢</mo><mtext id="idp34700112"> or </mtext><mo id="idp34700400">⁢</mo><mfrac id="idp34700688"><mrow id="idp34700816"><mo id="idp34700944" fence="true">|</mo><mrow id="idp34701472"><msub id="idp34701600"><mi id="idp34701728">x</mi><mrow id="idp34701984"><mi id="idp34702112">i</mi><mo id="idp34702368">,</mo><mi id="idp34702624">α</mi></mrow></msub><mo id="idp34702912">-</mo><msub id="idp34703168"><mi id="idp34703296">x</mi><mi id="idp34703552">α</mi></msub></mrow><mo id="idp34703840" fence="true">|</mo></mrow><msub id="idp34704368"><mi id="idp34704496">μ</mi><mrow id="idp34704784"><mi id="idp34704912">i</mi><mo id="idp34705168">,</mo><mi id="idp34705424">α</mi></mrow></msub></mfrac></mrow><mo id="idp34705712">→</mo><mrow id="idp34706000"><mo id="idp34706128">+</mo><mrow id="idp34706384"><mi id="idp34706512" mathvariant="normal">∞</mi><mo id="idp34707072">⁢</mo><mtext id="idp34707360"> as </mtext><mo id="idp34707648">⁢</mo><mi id="idp34707936">α</mi></mrow></mrow><mo id="idp34708224">→</mo><mrow id="idp34708512"><mo id="idp34708640">+</mo><mrow id="idp34708896"><mi id="idp34709024" mathvariant="normal">∞</mi><mo id="idp34709584">⁢</mo><mi id="idp34709872" mathvariant="normal"> </mi></mrow></mrow></mrow><mo id="idp34710432">.</mo></mrow><annotation-xml id="idp34710688" encoding="MathML-Content"><apply id="idp34711088"><and id="idp34711216"/><apply id="idp34711344"><leq id="idp34711472"/><apply id="idp34711600"><times id="idp34711728"/><mtext id="idp34711856"> either </mtext><apply id="idp34712144"><abs id="idp34712272"/><apply id="idp34712400"><minus id="idp34712528"/><apply id="idp34712656"><csymbol id="idp34712784" cd="ambiguous">subscript</csymbol><ci id="idp34713344">x</ci><apply id="idp34713600"><list id="idp34713728"/><ci id="idp34713856">i</ci><ci id="idp34714112">α</ci></apply></apply><apply id="idp34714400"><csymbol id="idp34714528" cd="ambiguous">subscript</csymbol><ci id="idp34715088">x</ci><ci id="idp34715344">α</ci></apply></apply></apply></apply><apply id="S6.E20.m1.sh1ak.cmml"><times id="S6.E20.m1.sh1.cmml"/><apply id="S6.E20.m1.sh1d.cmml"><csymbol cd="ambiguous" id="S6.E20.m1.sh1a.cmml">subscript</csymbol><ci id="S6.E20.m1.sh1b.cmml">R</ci><cn type="integer" id="S6.E20.m1.sh1c.cmml">0</cn></apply><apply id="S6.E20.m1.sh1k.cmml"><csymbol cd="ambiguous" id="S6.E20.m1.sh1e.cmml">subscript</csymbol><ci id="S6.E20.m1.sh1f.cmml">μ</ci><apply id="S6.E20.m1.sh1j.cmml"><list id="S6.E20.m1.sh1g.cmml"/><ci id="S6.E20.m1.sh1h.cmml">i</ci><ci id="S6.E20.m1.sh1i.cmml">α</ci></apply></apply><mtext id="S6.E20.m1.sh1l.cmml"> or </mtext><apply id="S6.E20.m1.sh1aj.cmml"><divide id="S6.E20.m1.sh1m.cmml"/><apply id="S6.E20.m1.sh1ab.cmml"><abs id="S6.E20.m1.sh1n.cmml"/><apply id="S6.E20.m1.sh1aa.cmml"><minus id="S6.E20.m1.sh1o.cmml"/><apply id="S6.E20.m1.sh1v.cmml"><csymbol cd="ambiguous" id="S6.E20.m1.sh1p.cmml">subscript</csymbol><ci id="S6.E20.m1.sh1q.cmml">x</ci><apply id="S6.E20.m1.sh1u.cmml"><list id="S6.E20.m1.sh1r.cmml"/><ci id="S6.E20.m1.sh1s.cmml">i</ci><ci id="S6.E20.m1.sh1t.cmml">α</ci></apply></apply><apply id="S6.E20.m1.sh1z.cmml"><csymbol cd="ambiguous" id="S6.E20.m1.sh1w.cmml">subscript</csymbol><ci id="S6.E20.m1.sh1x.cmml">x</ci><ci id="S6.E20.m1.sh1y.cmml">α</ci></apply></apply></apply><apply id="S6.E20.m1.sh1ai.cmml"><csymbol cd="ambiguous" id="S6.E20.m1.sh1ac.cmml">subscript</csymbol><ci id="S6.E20.m1.sh1ad.cmml">μ</ci><apply id="S6.E20.m1.sh1ah.cmml"><list id="S6.E20.m1.sh1ae.cmml"/><ci id="S6.E20.m1.sh1af.cmml">i</ci><ci id="S6.E20.m1.sh1ag.cmml">α</ci></apply></apply></apply></apply></apply><apply id="idp34735280"><ci id="idp34735408">→</ci><share id="idp34735696" href="#S6.E20.m1.sh1.cmml"/><apply id="S6.E20.m1.sh2f.cmml"><plus id="S6.E20.m1.sh2.cmml"/><apply id="S6.E20.m1.sh2e.cmml"><times id="S6.E20.m1.sh2a.cmml"/><infinity id="S6.E20.m1.sh2b.cmml"/><mtext id="S6.E20.m1.sh2c.cmml"> as </mtext><ci id="S6.E20.m1.sh2d.cmml">α</ci></apply></apply></apply><apply id="idp34739216"><ci id="idp34739344">→</ci><share id="idp34739632" href="#S6.E20.m1.sh2.cmml"/><apply id="S6.E20.m1.sh3e.cmml"><plus id="S6.E20.m1.sh3.cmml"/><apply id="S6.E20.m1.sh3d.cmml"><times id="S6.E20.m1.sh3a.cmml"/><infinity id="S6.E20.m1.sh3b.cmml"/><ci id="S6.E20.m1.sh3c.cmml"> </ci></apply></apply></apply></apply></annotation-xml><annotation id="idp34742592" encoding="application/x-tex">\hbox{ either }\left|x_{{i,\alpha}}-x_{\alpha}\right|\leq R_{0}\mu _{{i,\alpha}}\hbox{ or }\frac{\left|x_{{i,\alpha}}-x_{\alpha}\right|}{\mu _{{i,\alpha}}}\to+\infty\hbox{ as }\alpha\to+\infty .</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp30619760"><h4>Hit idp30619760</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 4</li> <li>Formulasearchengine score: 10725</li> <li>Reference to collection: _PREFIX_/206/f082197.xhtml#idp30619760</li> </ul><blockcode linenumbers="off" title="justification"> found all required tokens in TeX $\lim _{{k\to+\infty}}\left(\left|\ln\frac{N_{k}}{M_{k}}\right|+N_{k}^{2}|t_{k}-s_{k}|+N_{k}|x_{k}-y_{k}|\right)=+\infty.$ at pos:1407967(35%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[to] + 1.9375 * TOKEN_SCORE[+] + 1.0 * TOKEN_SCORE[sim] + 1.9990234375 * TOKEN_SCORE[\] + 1.998046875 * TOKEN_SCORE[_] + 1.984375 * TOKEN_SCORE[|] + 1.75 * TOKEN_SCORE[infty] + 1.5 * TOKEN_SCORE[frac] + 1.75 * TOKEN_SCORE[-] =+100.0+0.0+1.5*2.52168261581791+1.9375*0.0160883895861106+1.0*2.49253940800079+1.9990234375*5.92879328325965E-4+1.998046875*0.00257082788077282+1.984375*0.0975909302497933+1.75*0.382802832581921+1.5*0.0366287198730455+1.75*0.0154682311502303 = 10725.813084439229' final score ~ 10725 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp30619760" alttext="\lim _{{k\to+\infty}}\left(\left|\ln\frac{N_{k}}{M_{k}}\right|+N_{k}^{2}|t_{k}-s_{k}|+N_{k}|x_{k}-y_{k}|\right)=+\infty." display="block"><semantics id="idp30620624"><mrow id="idp30620752"><mrow id="idp30620880"><mrow id="idp30621008"><munder id="idp30621136"><mo id="idp30621264" movablelimits="false">lim</mo><mrow id="idp30621760"><mi id="idp30621888">k</mi><mo id="idp30622144">→</mo><mrow id="idp30622400"><mo id="idp30622528">+</mo><mi id="idp30622784" mathvariant="normal">∞</mi></mrow></mrow></munder><mo id="idp30623344">⁡</mo><mrow id="idp30623632"><mo id="idp30623760">(</mo><mrow id="idp30624016"><mrow id="idp30624144"><mo id="idp30624272" fence="true">|</mo><mrow id="idp30624800"><mrow id="idp30624928"><mi id="idp30625056">ln</mi><mo id="idp30625312">⁡</mo><mrow id="idp30625600"><mfrac id="idp30625728"><msub id="idp30625856"><mi id="idp30625984">N</mi><mi id="idp30626240">k</mi></msub><msub id="idp30626496"><mi id="idp30626624">M</mi><mi id="idp30626880">k</mi></msub></mfrac><mo id="idp30627136">⁢</mo><mrow id="idp30627424"><mo id="idp30627552" fence="true">|</mo><mrow id="idp30628080"><mo id="idp30628208">+</mo><msubsup id="idp30628464"><mi id="idp30628592">N</mi><mi id="idp30628848">k</mi><mn id="idp30629104">2</mn></msubsup></mrow><mo id="idp30629360" fence="true">|</mo></mrow><mo id="idp30629888">⁢</mo><msub id="idp30630176"><mi id="idp30630304">t</mi><mi id="idp30630560">k</mi></msub></mrow></mrow><mo id="idp30630816">-</mo><msub id="idp30631072"><mi id="idp30631200">s</mi><mi id="idp30631456">k</mi></msub></mrow><mo id="idp30631712" fence="true">|</mo></mrow><mo id="idp30632240">+</mo><mrow id="idp30632496"><msub id="idp30632624"><mi id="idp30632752">N</mi><mi id="idp30633008">k</mi></msub><mo id="idp30633264">⁢</mo><mrow id="idp30633552"><mo id="idp30633680" fence="true">|</mo><mrow id="idp30634208"><msub id="idp30634336"><mi id="idp30634464">x</mi><mi id="idp30634720">k</mi></msub><mo id="idp30634976">-</mo><msub id="idp30635232"><mi id="idp30635360">y</mi><mi id="idp30635616">k</mi></msub></mrow><mo id="idp30635872" fence="true">|</mo></mrow></mrow></mrow><mo id="idp30636400">)</mo></mrow></mrow><mo id="idp30636656">=</mo><mrow id="idp30636912"><mo id="idp30637040">+</mo><mi id="idp30637296" mathvariant="normal">∞</mi></mrow></mrow><mo id="idp30637856">.</mo></mrow><annotation-xml id="idp30638112" encoding="MathML-Content"><apply id="idp30638512"><eq id="idp30638640"/><apply id="idp30638768"><apply id="idp30638896"><csymbol id="idp30639024" cd="ambiguous">subscript</csymbol><limit id="idp30639584"/><apply id="idp30639712"><ci id="idp30639840">→</ci><ci id="idp30640128">k</ci><apply id="idp30640384"><plus id="idp30640512"/><infinity id="idp30640640"/></apply></apply></apply><apply id="idp30640768"><plus id="idp30640896"/><apply id="idp30641024"><abs id="idp30641152"/><apply id="idp30641280"><minus id="idp30641408"/><apply id="idp30641536"><ln id="idp30641664"/><apply id="idp30641792"><times id="idp30641920"/><apply id="idp30642048"><divide id="idp30642176"/><apply id="idp30642304"><csymbol id="idp30642432" cd="ambiguous">subscript</csymbol><ci id="idp30642992">N</ci><ci id="idp30643248">k</ci></apply><apply id="idp30643504"><csymbol id="idp30643632" cd="ambiguous">subscript</csymbol><ci id="idp30644192">M</ci><ci id="idp30644448">k</ci></apply></apply><apply id="idp30644704"><abs id="idp30644832"/><apply id="idp30644960"><plus id="idp30645088"/><apply id="idp30645216"><csymbol id="idp30645344" cd="ambiguous">superscript</csymbol><apply id="idp30645904"><csymbol id="idp30646032" cd="ambiguous">subscript</csymbol><ci id="idp30646592">N</ci><ci id="idp30646848">k</ci></apply><cn id="idp30647104" type="integer">2</cn></apply></apply></apply><apply id="idp30647632"><csymbol id="idp30647760" cd="ambiguous">subscript</csymbol><ci id="idp30648320">t</ci><ci id="idp30648576">k</ci></apply></apply></apply><apply id="idp30648832"><csymbol id="idp30648960" cd="ambiguous">subscript</csymbol><ci id="idp30649520">s</ci><ci id="idp30649776">k</ci></apply></apply></apply><apply id="idp30650032"><times id="idp30650160"/><apply id="idp30650288"><csymbol id="idp30650416" cd="ambiguous">subscript</csymbol><ci id="idp30650976">N</ci><ci id="idp30651232">k</ci></apply><apply id="idp30651488"><abs id="idp30651616"/><apply id="idp30651744"><minus id="idp30651872"/><apply id="idp30652000"><csymbol id="idp30652128" cd="ambiguous">subscript</csymbol><ci id="idp30652688">x</ci><ci id="idp30652944">k</ci></apply><apply id="idp30653200"><csymbol id="idp30653328" cd="ambiguous">subscript</csymbol><ci id="idp30653888">y</ci><ci id="idp30654144">k</ci></apply></apply></apply></apply></apply></apply><apply id="idp30654400"><plus id="idp30654528"/><infinity id="idp30654656"/></apply></apply></annotation-xml><annotation id="idp30654784" encoding="application/x-tex">\lim _{{k\to+\infty}}\left(\left|\ln\frac{N_{k}}{M_{k}}\right|+N_{k}^{2}|t_{k}-s_{k}|+N_{k}|x_{k}-y_{k}|\right)=+\infty.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp5875648"><h4>Hit idp5875648</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 5</li> <li>Formulasearchengine score: 10725</li> <li>Reference to collection: _PREFIX_/64/f025214.xhtml#idp5875648</li> </ul><blockcode linenumbers="off" title="justification"> found all required tokens in TeX $\lim _{{k\to+\infty}}\left(\left|\ln\frac{N_{k}}{M_{k}}\right|+N_{k}^{2}|t_{k}-s_{k}|+N_{k}|x_{k}-y_{k}|\right)=+\infty.$ at pos:714198(44%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[to] + 1.9375 * TOKEN_SCORE[+] + 1.0 * TOKEN_SCORE[sim] + 1.9990234375 * TOKEN_SCORE[\] + 1.998046875 * TOKEN_SCORE[_] + 1.984375 * TOKEN_SCORE[|] + 1.75 * TOKEN_SCORE[infty] + 1.5 * TOKEN_SCORE[frac] + 1.75 * TOKEN_SCORE[-] =+100.0+0.0+1.5*2.52168261581791+1.9375*0.0160883895861106+1.0*2.49253940800079+1.9990234375*5.92879328325965E-4+1.998046875*0.00257082788077282+1.984375*0.0975909302497933+1.75*0.382802832581921+1.5*0.0366287198730455+1.75*0.0154682311502303 = 10725.813084439229' final score ~ 10725 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp5875648" alttext="\lim _{{k\to+\infty}}\left(\left|\ln\frac{N_{k}}{M_{k}}\right|+N_{k}^{2}|t_{k}-s_{k}|+N_{k}|x_{k}-y_{k}|\right)=+\infty." display="block"><semantics id="idp5876512"><mrow id="idp5876640"><mrow id="idp5876768"><mrow id="idp5876896"><munder id="idp5877024"><mo id="idp5877152" movablelimits="false">lim</mo><mrow id="idp5877648"><mi id="idp5877776">k</mi><mo id="idp5878032">→</mo><mrow id="idp5878288"><mo id="idp5878416">+</mo><mi id="idp5878672" mathvariant="normal">∞</mi></mrow></mrow></munder><mo id="idp5879232">⁡</mo><mrow id="idp5879520"><mo id="idp5879648">(</mo><mrow id="idp5879904"><mrow id="idp5880032"><mo id="idp5880160" fence="true">|</mo><mrow id="idp5880688"><mrow id="idp5880816"><mi id="idp5880944">ln</mi><mo id="idp5881200">⁡</mo><mrow id="idp5881488"><mfrac id="idp5881616"><msub id="idp5881744"><mi id="idp5881872">N</mi><mi id="idp5882128">k</mi></msub><msub id="idp5882384"><mi id="idp5882512">M</mi><mi id="idp5882768">k</mi></msub></mfrac><mo id="idp5883024">⁢</mo><mrow id="idp5883312"><mo id="idp5883440" fence="true">|</mo><mrow id="idp5883968"><mo id="idp5884096">+</mo><msubsup id="idp5884352"><mi id="idp5884480">N</mi><mi id="idp5884736">k</mi><mn id="idp5884992">2</mn></msubsup></mrow><mo id="idp5885248" fence="true">|</mo></mrow><mo id="idp5885776">⁢</mo><msub id="idp5886064"><mi id="idp5886192">t</mi><mi id="idp5886448">k</mi></msub></mrow></mrow><mo id="idp5886704">-</mo><msub id="idp5886960"><mi id="idp5887088">s</mi><mi id="idp5887344">k</mi></msub></mrow><mo id="idp5887600" fence="true">|</mo></mrow><mo id="idp5888128">+</mo><mrow id="idp5888384"><msub id="idp5888512"><mi id="idp5888640">N</mi><mi id="idp5888896">k</mi></msub><mo id="idp5889152">⁢</mo><mrow id="idp5889408"><mo id="idp5889536" fence="true">|</mo><mrow id="idp5890032"><msub id="idp5890160"><mi id="idp5890288">x</mi><mi id="idp5890544">k</mi></msub><mo id="idp5890800">-</mo><msub id="idp5891056"><mi id="idp5891184">y</mi><mi id="idp5891440">k</mi></msub></mrow><mo id="idp5891696" fence="true">|</mo></mrow></mrow></mrow><mo id="idp5892192">)</mo></mrow></mrow><mo id="idp5892448">=</mo><mrow id="idp5892704"><mo id="idp5892832">+</mo><mi id="idp5893088" mathvariant="normal">∞</mi></mrow></mrow><mo id="idp5893648">.</mo></mrow><annotation-xml id="idp5893904" encoding="MathML-Content"><apply id="idp5894304"><eq id="idp5894432"/><apply id="idp5894560"><apply id="idp5894688"><csymbol id="idp5894816" cd="ambiguous">subscript</csymbol><limit id="idp5895376"/><apply id="idp5895504"><ci id="idp5895632">→</ci><ci id="idp5895920">k</ci><apply id="idp5896176"><plus id="idp5896304"/><infinity id="idp5896432"/></apply></apply></apply><apply id="idp5896560"><plus id="idp5896688"/><apply id="idp5896816"><abs id="idp5896944"/><apply id="idp5897072"><minus id="idp5897200"/><apply id="idp5897328"><ln id="idp5897456"/><apply id="idp5897584"><times id="idp5897712"/><apply id="idp5897840"><divide id="idp5897968"/><apply id="idp5898096"><csymbol id="idp5898224" cd="ambiguous">subscript</csymbol><ci id="idp5898784">N</ci><ci id="idp5899040">k</ci></apply><apply id="idp5899296"><csymbol id="idp5899424" cd="ambiguous">subscript</csymbol><ci id="idp5899984">M</ci><ci id="idp5900240">k</ci></apply></apply><apply id="idp5900496"><abs id="idp5900624"/><apply id="idp5900752"><plus id="idp5900880"/><apply id="idp5901008"><csymbol id="idp5901136" cd="ambiguous">superscript</csymbol><apply id="idp5901696"><csymbol id="idp5901824" cd="ambiguous">subscript</csymbol><ci id="idp5902384">N</ci><ci id="idp5902640">k</ci></apply><cn id="idp5902896" type="integer">2</cn></apply></apply></apply><apply id="idp5903424"><csymbol id="idp5903552" cd="ambiguous">subscript</csymbol><ci id="idp5904112">t</ci><ci id="idp5904368">k</ci></apply></apply></apply><apply id="idp5904624"><csymbol id="idp5904752" cd="ambiguous">subscript</csymbol><ci id="idp5905312">s</ci><ci id="idp5905568">k</ci></apply></apply></apply><apply id="idp5905824"><times id="idp5905952"/><apply id="idp5906080"><csymbol id="idp5906208" cd="ambiguous">subscript</csymbol><ci id="idp5906768">N</ci><ci id="idp5907024">k</ci></apply><apply id="idp5907280"><abs id="idp5907408"/><apply id="idp5907536"><minus id="idp5907664"/><apply id="idp5907792"><csymbol id="idp5907920" cd="ambiguous">subscript</csymbol><ci id="idp5908480">x</ci><ci id="idp5908736">k</ci></apply><apply id="idp5908992"><csymbol id="idp5909120" cd="ambiguous">subscript</csymbol><ci id="idp5909680">y</ci><ci id="idp5909936">k</ci></apply></apply></apply></apply></apply></apply><apply id="idp5910192"><plus id="idp5910320"/><infinity id="idp5910448"/></apply></apply></annotation-xml><annotation id="idp5910576" encoding="application/x-tex">\lim _{{k\to+\infty}}\left(\left|\ln\frac{N_{k}}{M_{k}}\right|+N_{k}^{2}|t_{k}-s_{k}|+N_{k}|x_{k}-y_{k}|\right)=+\infty.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp75663312"><h4>Hit idp75663312</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 6</li> <li>Formulasearchengine score: 10721</li> <li>Reference to collection: _PREFIX_/17/f006403.xhtml#idp75663312</li> </ul><blockcode linenumbers="off" title="justification"> found all required tokens in TeX $\lim _{{\alpha\to+\infty}}\mu _{{\alpha}}^{{-1}}|y_{\alpha}-x_{\alpha}|=+\infty$ at pos:7305121(99%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[to] + 1.75 * TOKEN_SCORE[+] + 1.0 * TOKEN_SCORE[sim] + 1.998046875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[|] + 1.75 * TOKEN_SCORE[infty] + 1.0 * TOKEN_SCORE[frac] + 1.75 * TOKEN_SCORE[-] =+100.0+0.0+1.5*2.52168261581791+1.75*0.0160883895861106+1.0*2.49253940800079+1.998046875*5.92879328325965E-4+1.9375*0.00257082788077282+1.75*0.0975909302497933+1.75*0.382802832581921+1.0*0.0366287198730455+1.75*0.0154682311502303 = 10721.3770802553' final score ~ 10721 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp75663312" alttext="\lim _{{\alpha\to+\infty}}\mu _{{\alpha}}^{{-1}}|y_{\alpha}-x_{\alpha}|=+\infty" display="inline"><semantics id="idp75664032"><mrow id="idp75664160"><mrow id="idp75664288"><msub id="idp75664416"><mo id="idp75664544">lim</mo><mrow id="idp75664800"><mi id="idp75664928">α</mi><mo id="idp75665184">→</mo><mrow id="idp75665440"><mo id="idp75665568">+</mo><mi id="idp75665824" mathvariant="normal">∞</mi></mrow></mrow></msub><mo id="idp75666384">⁡</mo><mrow id="idp75666672"><msubsup id="idp75666800"><mi id="idp75666928">μ</mi><mi id="idp75667216">α</mi><mrow id="idp75667504"><mo id="idp75667632">-</mo><mn id="idp75667888">1</mn></mrow></msubsup><mo id="idp75668144">⁢</mo><mrow id="idp75668432"><mo id="idp75668560" fence="true">|</mo><mrow id="idp75669088"><msub id="idp75669216"><mi id="idp75669344">y</mi><mi id="idp75669600">α</mi></msub><mo id="idp75669888">-</mo><msub id="idp75670144"><mi id="idp75670272">x</mi><mi id="idp75670528">α</mi></msub></mrow><mo id="idp75670816" fence="true">|</mo></mrow></mrow></mrow><mo id="idp75671344">=</mo><mrow id="idp75671600"><mo id="idp75671728">+</mo><mi id="idp75671984" mathvariant="normal">∞</mi></mrow></mrow><annotation-xml id="idp75672544" encoding="MathML-Content"><apply id="idp75672944"><eq id="idp75673072"/><apply id="idp75673200"><apply id="idp75673328"><csymbol id="idp75673456" cd="ambiguous">subscript</csymbol><limit id="idp75674016"/><apply id="idp75674144"><ci id="idp75674272">→</ci><ci id="idp75674560">α</ci><apply id="idp75674848"><plus id="idp75674976"/><infinity id="idp75675104"/></apply></apply></apply><apply id="idp75675232"><times id="idp75675360"/><apply id="idp75675488"><csymbol id="idp75675616" cd="ambiguous">superscript</csymbol><apply id="idp75676176"><csymbol id="idp75676304" cd="ambiguous">subscript</csymbol><ci id="idp75676864">μ</ci><ci id="idp75677152">α</ci></apply><apply id="idp75677440"><minus id="idp75677568"/><cn id="idp75677696" type="integer">1</cn></apply></apply><apply id="idp75678224"><abs id="idp75678352"/><apply id="idp75678480"><minus id="idp75678608"/><apply id="idp75678736"><csymbol id="idp75678864" cd="ambiguous">subscript</csymbol><ci id="idp75679424">y</ci><ci id="idp75679680">α</ci></apply><apply id="idp75679968"><csymbol id="idp75680096" cd="ambiguous">subscript</csymbol><ci id="idp75680656">x</ci><ci id="idp75680912">α</ci></apply></apply></apply></apply></apply><apply id="idp75681200"><plus id="idp75681328"/><infinity id="idp75681456"/></apply></apply></annotation-xml><annotation id="idp75681584" encoding="application/x-tex">\lim _{{\alpha\to+\infty}}\mu _{{\alpha}}^{{-1}}|y_{\alpha}-x_{\alpha}|=+\infty</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp72217968"><h4>Hit idp72217968</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 7</li> <li>Formulasearchengine score: 10715</li> <li>Reference to collection: _PREFIX_/17/f006403.xhtml#idp72217968</li> </ul><blockcode linenumbers="off" title="justification"> found all required tokens in TeX $\lim _{{\alpha\to+\infty}}|y_{\alpha}-x_{\alpha}|^{{n-1}}|\nabla _{y}G(x_{\alpha},y_{\alpha})|=\frac{1}{\omega _{{n-1}}},$ at pos:6851721(93%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[to] + 1.5 * TOKEN_SCORE[+] + 1.0 * TOKEN_SCORE[sim] + 1.99951171875 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[|] + 1.5 * TOKEN_SCORE[infty] + 1.5 * TOKEN_SCORE[frac] + 1.875 * TOKEN_SCORE[-] =+100.0+0.0+1.5*2.52168261581791+1.5*0.0160883895861106+1.0*2.49253940800079+1.99951171875*5.92879328325965E-4+1.9921875*0.00257082788077282+1.9375*0.0975909302497933+1.5*0.382802832581921+1.5*0.0366287198730455+1.875*0.0154682311502303 = 10715.273564588846' final score ~ 10715 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp72217968" alttext="\lim _{{\alpha\to+\infty}}|y_{\alpha}-x_{\alpha}|^{{n-1}}|\nabla _{y}G(x_{\alpha},y_{\alpha})|=\frac{1}{\omega _{{n-1}}}," display="block"><semantics id="idp72218832"><mrow id="idp72218960"><mrow id="idp72219088"><mrow id="idp72219216"><munder id="idp72219344"><mo id="idp72219472" movablelimits="false">lim</mo><mrow id="idp72219968"><mi id="idp72220096">α</mi><mo id="idp72220352">→</mo><mrow id="idp72220640"><mo id="idp72220768">+</mo><mi id="idp72221024" mathvariant="normal">∞</mi></mrow></mrow></munder><mo id="idp72221584">⁡</mo><mrow id="idp72221872"><msup id="idp72222000"><mrow id="idp72222128"><mo id="idp72222256" fence="true">|</mo><mrow id="idp72222784"><msub id="idp72222912"><mi id="idp72223040">y</mi><mi id="idp72223296">α</mi></msub><mo id="idp72223584">-</mo><msub id="idp72223840"><mi id="idp72223968">x</mi><mi id="idp72224224">α</mi></msub></mrow><mo id="idp72224512" fence="true">|</mo></mrow><mrow id="idp72225040"><mi id="idp72225168">n</mi><mo id="idp72225424">-</mo><mn id="idp72225680">1</mn></mrow></msup><mo id="idp72225936">⁢</mo><mrow id="idp72226224"><mo id="idp72226352" fence="true">|</mo><mrow id="idp72226880"><mrow id="idp72227008"><msub id="idp72227136"><mo id="idp72227264">∇</mo><mi id="idp72227552">y</mi></msub><mo id="idp72227808">⁡</mo><mi id="idp72228096">G</mi></mrow><mo id="idp72228352">⁢</mo><mrow id="idp72228640"><mo id="idp72228768">(</mo><mrow id="idp72229024"><msub id="idp72229152"><mi id="idp72229280">x</mi><mi id="idp72229536">α</mi></msub><mo id="idp72229824">,</mo><msub id="idp72230080"><mi id="idp72230208">y</mi><mi id="idp72230464">α</mi></msub></mrow><mo id="idp72230752">)</mo></mrow></mrow><mo id="idp72231008" fence="true">|</mo></mrow></mrow></mrow><mo id="idp72231536">=</mo><mfrac id="idp72231792"><mn id="idp72231920">1</mn><msub id="idp72232176"><mi id="idp72232304">ω</mi><mrow id="idp72232592"><mi id="idp72232720">n</mi><mo id="idp72232976">-</mo><mn id="idp72233232">1</mn></mrow></msub></mfrac></mrow><mo id="idp72233488">,</mo></mrow><annotation-xml id="idp72233744" encoding="MathML-Content"><apply id="idp72234144"><eq id="idp72234272"/><apply id="idp72234400"><apply id="idp72234528"><csymbol id="idp72234656" cd="ambiguous">subscript</csymbol><limit id="idp72235216"/><apply id="idp72235344"><ci id="idp72235472">→</ci><ci id="idp72235760">α</ci><apply id="idp72236048"><plus id="idp72236176"/><infinity id="idp72236304"/></apply></apply></apply><apply id="idp72236432"><times id="idp72236560"/><apply id="idp72236688"><csymbol id="idp72236816" cd="ambiguous">superscript</csymbol><apply id="idp72237376"><abs id="idp72237504"/><apply id="idp72237632"><minus id="idp72237760"/><apply id="idp72237888"><csymbol id="idp72238016" cd="ambiguous">subscript</csymbol><ci id="idp72238576">y</ci><ci id="idp72238832">α</ci></apply><apply id="idp72239120"><csymbol id="idp72239248" cd="ambiguous">subscript</csymbol><ci id="idp72239808">x</ci><ci id="idp72240064">α</ci></apply></apply></apply><apply id="idp72240352"><minus id="idp72240480"/><ci id="idp72240608">n</ci><cn id="idp72240864" type="integer">1</cn></apply></apply><apply id="idp72241392"><abs id="idp72241520"/><apply id="idp72241648"><times id="idp72241776"/><apply id="idp72241904"><apply id="idp72242032"><csymbol id="idp72242160" cd="ambiguous">subscript</csymbol><ci id="idp72242720">∇</ci><ci id="idp72243008">y</ci></apply><ci id="idp72243264">G</ci></apply><apply id="idp72243520"><interval id="idp72243648" closure="open"/><apply id="idp72244048"><csymbol id="idp72244176" cd="ambiguous">subscript</csymbol><ci id="idp72244736">x</ci><ci id="idp72244992">α</ci></apply><apply id="idp72245280"><csymbol id="idp72245408" cd="ambiguous">subscript</csymbol><ci id="idp72245968">y</ci><ci id="idp72246224">α</ci></apply></apply></apply></apply></apply></apply><apply id="idp72246512"><divide id="idp72246640"/><cn id="idp72246768" type="integer">1</cn><apply id="idp72247296"><csymbol id="idp72247424" cd="ambiguous">subscript</csymbol><ci id="idp72247984">ω</ci><apply id="idp72248272"><minus id="idp72248400"/><ci id="idp72248528">n</ci><cn id="idp72248784" type="integer">1</cn></apply></apply></apply></apply></annotation-xml><annotation id="idp72249312" encoding="application/x-tex">\lim _{{\alpha\to+\infty}}|y_{\alpha}-x_{\alpha}|^{{n-1}}|\nabla _{y}G(x_{\alpha},y_{\alpha})|=\frac{1}{\omega _{{n-1}}},</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp6210752"><h4>Hit idp6210752</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 8</li> <li>Formulasearchengine score: 10704</li> <li>Reference to collection: _PREFIX_/15/f005616.xhtml#idp6210752</li> </ul><blockcode linenumbers="off" title="justification"> found all required tokens in TeX $\lim _{{\tau\to\infty}}-\dfrac{\omega _{0}/(\rho _{0}\tau)}{\left(\omega _{0}^{2}-c_{{\gamma}}^{2}k^{2}\right)^{2}+\omega _{0}^{2}/\tau^{2}}=-\dfrac{\pi}{2\rho _{0}\omega _{0}c_{{\gamma}}}\left[\delta\left(\dfrac{\omega _{0}}{c_{{\gamma}}}-k\right)+\delta\left(\dfrac{\omega _{0}}{c_{{\gamma}}}+k\right)\right]$ at pos:794707(56%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[to] + 1.875 * TOKEN_SCORE[+] + 1.0 * TOKEN_SCORE[sim] + 1.9999999998835847 * TOKEN_SCORE[\] + 1.9998779296875 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[|] + 1.5 * TOKEN_SCORE[infty] + 1.0 * TOKEN_SCORE[frac] + 1.9375 * TOKEN_SCORE[-] =+100.0+0.0+1.5*2.52168261581791+1.875*0.0160883895861106+1.0*2.49253940800079+1.9999999998835847*5.92879328325965E-4+1.9998779296875*0.00257082788077282+1.0*0.0975909302497933+1.5*0.382802832581921+1.0*0.0366287198730455+1.9375*0.0154682311502303 = 10704.99497596473' final score ~ 10704 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp6210752" alttext="\lim _{{\tau\to\infty}}-\dfrac{\omega _{0}/(\rho _{0}\tau)}{\left(\omega _{0}^{2}-c_{{\gamma}}^{2}k^{2}\right)^{2}+\omega _{0}^{2}/\tau^{2}}=-\dfrac{\pi}{2\rho _{0}\omega _{0}c_{{\gamma}}}\left[\delta\left(\dfrac{\omega _{0}}{c_{{\gamma}}}-k\right)+\delta\left(\dfrac{\omega _{0}}{c_{{\gamma}}}+k\right)\right]" display="block"><semantics id="idp6211792"><mrow id="idp6211920"><mrow id="idp6212048"><munder id="idp6212176"><mo id="idp6212304" movablelimits="false">lim</mo><mrow id="idp6212800"><mi id="idp6212928">τ</mi><mo id="idp6213184">→</mo><mi id="idp6213472" mathvariant="normal">∞</mi></mrow></munder><mo id="idp6214032">-</mo><mfrac id="idp6214288"><mrow id="idp6214416"><msub id="idp6214544"><mi id="idp6214672">ω</mi><mn id="idp6214960">0</mn></msub><mo id="idp6215216">/</mo><mrow id="idp6215472"><mo id="idp6215600">(</mo><mrow id="idp6215856"><msub id="idp6215984"><mi id="idp6216112">ρ</mi><mn id="idp6216400">0</mn></msub><mo id="idp6216656">⁢</mo><mi id="idp6216944">τ</mi></mrow><mo id="idp6217232">)</mo></mrow></mrow><mrow id="idp6217488"><msup id="idp6217616"><mrow id="idp6217744"><mo id="idp6217872">(</mo><mrow id="idp6218128"><msubsup id="idp6218256"><mi id="idp6218384">ω</mi><mn id="idp6218672">0</mn><mn id="idp6218928">2</mn></msubsup><mo id="idp6219184">-</mo><mrow id="idp6219440"><msubsup id="idp6219568"><mi id="idp6219696">c</mi><mi id="idp6219952">γ</mi><mn id="idp6220240">2</mn></msubsup><mo id="idp6220496">⁢</mo><msup id="idp6220784"><mi id="idp6220912">k</mi><mn id="idp6221168">2</mn></msup></mrow></mrow><mo id="idp6221424">)</mo></mrow><mn id="idp6221680">2</mn></msup><mo id="idp6221936">+</mo><mrow id="idp6222192"><msubsup id="idp6222320"><mi id="idp6222448">ω</mi><mn id="idp6222736">0</mn><mn id="idp6222992">2</mn></msubsup><mo id="idp6223248">/</mo><msup id="idp6223504"><mi id="idp6223632">τ</mi><mn id="idp6223920">2</mn></msup></mrow></mrow></mfrac></mrow><mo id="idp6224176">=</mo><mrow id="idp6224432"><mo id="idp6224560">-</mo><mrow id="idp6224816"><mfrac id="idp6224944"><mi id="idp6225072">π</mi><mrow id="idp6225360"><mn id="idp6225488">2</mn><mo id="idp6225744">⁢</mo><msub id="idp6226032"><mi id="idp6226160">ρ</mi><mn id="idp6226448">0</mn></msub><mo id="idp6226704">⁢</mo><msub id="idp6226992"><mi id="idp6227120">ω</mi><mn id="idp6227408">0</mn></msub><mo id="idp6227664">⁢</mo><msub id="idp6227952"><mi id="idp6228080">c</mi><mi id="idp6228336">γ</mi></msub></mrow></mfrac><mo id="idp6228624">⁢</mo><mrow id="idp6228912"><mo id="idp6229040">[</mo><mrow id="idp6229296"><mrow id="idp6229424"><mi id="idp6229552">δ</mi><mo id="idp6229840">⁢</mo><mrow id="idp6230128"><mo id="idp6230256">(</mo><mrow id="idp6230512"><mfrac id="idp6230640"><msub id="idp6230768"><mi id="idp6230896">ω</mi><mn id="idp6231184">0</mn></msub><msub id="idp6231440"><mi id="idp6231568">c</mi><mi id="idp6231824">γ</mi></msub></mfrac><mo id="idp6232112">-</mo><mi id="idp6232368">k</mi></mrow><mo id="idp6232624">)</mo></mrow></mrow><mo id="idp6232880">+</mo><mrow id="idp6233136"><mi id="idp6233264">δ</mi><mo id="idp6233552">⁢</mo><mrow id="idp6233840"><mo id="idp6233968">(</mo><mrow id="idp6234224"><mfrac id="idp6234352"><msub id="idp6234480"><mi id="idp6234608">ω</mi><mn id="idp6234896">0</mn></msub><msub id="idp6235152"><mi id="idp6235280">c</mi><mi id="idp6235536">γ</mi></msub></mfrac><mo id="idp6235824">+</mo><mi id="idp6236080">k</mi></mrow><mo id="idp6236336">)</mo></mrow></mrow></mrow><mo id="idp6236592">]</mo></mrow></mrow></mrow></mrow><annotation-xml id="idp6236848" encoding="MathML-Content"><apply id="idp6237248"><eq id="idp6237376"/><apply id="idp6237504"><minus id="idp6237632"/><apply id="idp6237760"><csymbol id="idp6237888" cd="ambiguous">subscript</csymbol><limit id="idp6238448"/><apply id="idp6238576"><ci id="idp6238704">→</ci><ci id="idp6238992">τ</ci><infinity id="idp6239280"/></apply></apply><apply id="idp6239408"><divide id="idp6239536"/><apply id="idp6239664"><divide id="idp6239792"/><apply id="idp6239920"><csymbol id="idp6240048" cd="ambiguous">subscript</csymbol><ci id="idp6240608">ω</ci><cn id="idp6240896" type="integer">0</cn></apply><apply id="idp6241424"><times id="idp6241552"/><apply id="idp6241680"><csymbol id="idp6241808" cd="ambiguous">subscript</csymbol><ci id="idp6242368">ρ</ci><cn id="idp6242656" type="integer">0</cn></apply><ci id="idp6243184">τ</ci></apply></apply><apply id="idp6243472"><plus id="idp6243600"/><apply id="idp6243728"><csymbol id="idp6243856" cd="ambiguous">superscript</csymbol><apply id="idp6244416"><minus id="idp6244544"/><apply id="idp6244672"><csymbol id="idp6244800" cd="ambiguous">superscript</csymbol><apply id="idp6245360"><csymbol id="idp6245488" cd="ambiguous">subscript</csymbol><ci id="idp6246048">ω</ci><cn id="idp6246336" type="integer">0</cn></apply><cn id="idp6246864" type="integer">2</cn></apply><apply id="idp6247392"><times id="idp6247520"/><apply id="idp6247648"><csymbol id="idp6247776" cd="ambiguous">superscript</csymbol><apply id="idp6248336"><csymbol id="idp6248464" cd="ambiguous">subscript</csymbol><ci id="idp6249024">c</ci><ci id="idp6249280">γ</ci></apply><cn id="idp6249568" type="integer">2</cn></apply><apply id="idp6250096"><csymbol id="idp6250224" cd="ambiguous">superscript</csymbol><ci id="idp6250784">k</ci><cn id="idp6251040" type="integer">2</cn></apply></apply></apply><cn id="idp6251568" type="integer">2</cn></apply><apply id="idp6252096"><divide id="idp6252224"/><apply id="idp6252352"><csymbol id="idp6252480" cd="ambiguous">superscript</csymbol><apply id="idp6253040"><csymbol id="idp6253168" cd="ambiguous">subscript</csymbol><ci id="idp6253728">ω</ci><cn id="idp6254016" type="integer">0</cn></apply><cn id="idp6254544" type="integer">2</cn></apply><apply id="idp6255072"><csymbol id="idp6255200" cd="ambiguous">superscript</csymbol><ci id="idp6255760">τ</ci><cn id="idp6256048" type="integer">2</cn></apply></apply></apply></apply></apply><apply id="idp6256576"><minus id="idp6256704"/><apply id="idp6256832"><times id="idp6256960"/><apply id="idp6257088"><divide id="idp6257216"/><ci id="idp6257344">π</ci><apply id="idp6257632"><times id="idp6257760"/><cn id="idp6257888" type="integer">2</cn><apply id="idp6258416"><csymbol id="idp6258544" cd="ambiguous">subscript</csymbol><ci id="idp6259104">ρ</ci><cn id="idp6259392" type="integer">0</cn></apply><apply id="idp6259920"><csymbol id="idp6260048" cd="ambiguous">subscript</csymbol><ci id="idp6260608">ω</ci><cn id="idp6260896" type="integer">0</cn></apply><apply id="idp6261424"><csymbol id="idp6261552" cd="ambiguous">subscript</csymbol><ci id="idp6262112">c</ci><ci id="idp6262368">γ</ci></apply></apply></apply><apply id="idp6262656"><plus id="idp6262784"/><apply id="idp6262912"><times id="idp6263040"/><ci id="idp6263168">δ</ci><apply id="idp6263456"><minus id="idp6263584"/><apply id="idp6263712"><divide id="idp6263840"/><apply id="idp6263968"><csymbol id="idp6264096" cd="ambiguous">subscript</csymbol><ci id="idp6264656">ω</ci><cn id="idp6264944" type="integer">0</cn></apply><apply id="idp6265472"><csymbol id="idp6265600" cd="ambiguous">subscript</csymbol><ci id="idp6266160">c</ci><ci id="idp6266416">γ</ci></apply></apply><ci id="idp6266704">k</ci></apply></apply><apply id="idp6266960"><times id="idp6267088"/><ci id="idp6267216">δ</ci><apply id="idp6267504"><plus id="idp6267632"/><apply id="idp6267760"><divide id="idp6267888"/><apply id="idp6268016"><csymbol id="idp6268144" cd="ambiguous">subscript</csymbol><ci id="idp6268704">ω</ci><cn id="idp6268992" type="integer">0</cn></apply><apply id="idp6269520"><csymbol id="idp6269648" cd="ambiguous">subscript</csymbol><ci id="idp6270208">c</ci><ci id="idp6270464">γ</ci></apply></apply><ci id="idp6270752">k</ci></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp6271008" encoding="application/x-tex">\lim _{{\tau\to\infty}}-\dfrac{\omega _{0}/(\rho _{0}\tau)}{\left(\omega _{0}^{2}-c_{{\gamma}}^{2}k^{2}\right)^{2}+\omega _{0}^{2}/\tau^{2}}=-\dfrac{\pi}{2\rho _{0}\omega _{0}c_{{\gamma}}}\left[\delta\left(\dfrac{\omega _{0}}{c_{{\gamma}}}-k\right)+\delta\left(\dfrac{\omega _{0}}{c_{{\gamma}}}+k\right)\right]</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="id101872"><h4>Hit id101872</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 9</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/105/f041996.xhtml#id101872</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:726171(000048%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id101872" display="inline"><m:semantics id="id101875"><m:mrow id="id101876"><m:mrow id="id101877"><m:mrow id="id101878"><m:msub id="id101880"><m:mi id="id101881">P</m:mi><m:mrow id="id101883"><m:mi id="id101884" mathvariant="normal">Δ</m:mi><m:mo id="id101888">⁢</m:mo><m:mi id="id101891">e</m:mi></m:mrow></m:msub><m:mo id="id101893">⁢</m:mo><m:mfenced id="id101895" open="(" close=")"><m:mrow id="id101900"><m:mrow id="id101902"><m:mi id="id101903" mathvariant="normal">Δ</m:mi><m:mo id="id101907">⁢</m:mo><m:mi id="id101910">E</m:mi></m:mrow><m:mo id="id101912">,</m:mo><m:mi id="id101914">t</m:mi></m:mrow></m:mfenced></m:mrow><m:mover id="id101916"><m:mo id="id101917" movablelimits="false">∼</m:mo><m:mrow id="id101922"><m:mi id="id101923">t</m:mi><m:mo id="id101925">→</m:mo><m:mrow id="id101927"><m:mo id="id101928">+</m:mo><m:mi id="id101931" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:mover><m:mrow id="id101935"><m:mstyle id="id101936" displaystyle="true"><m:mfrac id="id101940"><m:mn id="id101941">1</m:mn><m:mn id="id101943">2</m:mn></m:mfrac></m:mstyle><m:mo id="id101945">⁢</m:mo><m:mrow id="id101947"><m:mi id="id101948">exp</m:mi><m:mo id="id101951">⁡</m:mo><m:mfenced id="id101953" open="(" close=")"><m:mrow id="id101958"><m:mo id="id101959">-</m:mo><m:mfenced id="id101961" open="|" close="|"><m:mrow id="id101966"><m:mi id="id101967" mathvariant="normal">Δ</m:mi><m:mo id="id101972">⁢</m:mo><m:mi id="id101974">E</m:mi></m:mrow></m:mfenced></m:mrow></m:mfenced></m:mrow></m:mrow></m:mrow><m:mo id="id101977">,</m:mo></m:mrow><m:annotation-xml id="id101979" encoding="MathML-Content"><m:apply id="id101982"><m:apply id="id101983"><m:csymbol id="id101984" cd="ambiguous">superscript</m:csymbol><m:ci id="id101989">∼</m:ci><m:apply id="id101991"><m:ci id="id101992">→</m:ci><m:ci id="id101995">t</m:ci><m:apply id="id101997"><m:plus id="id101998"/><m:infinity id="id101999"/></m:apply></m:apply></m:apply><m:apply id="id102000"><m:times id="id102001"/><m:apply id="id102002"><m:csymbol id="id102003" cd="ambiguous">subscript</m:csymbol><m:ci id="id102008">P</m:ci><m:apply id="id102010"><m:times id="id102011"/><m:ci id="id102012">Δ</m:ci><m:ci id="id102015">e</m:ci></m:apply></m:apply><m:apply id="id102017"><m:interval id="id102018" closure="open"/><m:apply id="id102021"><m:times id="id102022"/><m:ci id="id102023">Δ</m:ci><m:ci id="id102026">E</m:ci></m:apply><m:ci id="id102028">t</m:ci></m:apply></m:apply><m:apply id="id102030"><m:times id="id102031"/><m:apply id="id102032"><m:divide id="id102033"/><m:cn id="id102034">1</m:cn><m:cn id="id102036">2</m:cn></m:apply><m:apply id="id102038"><m:exp id="id102040"/><m:apply id="id102041"><m:minus id="id102042"/><m:apply id="id102043"><m:abs id="id102044"/><m:apply id="id102045"><m:times id="id102046"/><m:ci id="id102047">Δ</m:ci><m:ci id="id102049">E</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id102216"><h4>Hit id102216</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 10</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/235/f093853.xhtml#id102216</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:733590(000087%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id102216" display="block"><m:semantics id="id102219"><m:mrow id="id102220"><m:mrow id="id102221"><m:mrow id="id102222"><m:msub id="id102223"><m:mi id="id102224">ψ</m:mi><m:mover id="id102227"><m:mrow id="id102228"><m:mi id="id102229">q</m:mi><m:mo id="id102231" movablelimits="false">→</m:mo><m:mrow id="id102236"><m:mo id="id102237" movablelimits="false">-</m:mo><m:mi id="id102241" mathvariant="normal">∞</m:mi></m:mrow></m:mrow><m:mo id="id102246">∼</m:mo></m:mover></m:msub><m:mo id="id102248">⁢</m:mo><m:msub id="id102251"><m:mi id="id102252">b</m:mi><m:mo id="id102254">-</m:mo></m:msub><m:mo id="id102256">⁢</m:mo><m:msup id="id102258"><m:mi id="id102260">e</m:mi><m:mrow id="id102262"><m:mo id="id102263">-</m:mo><m:mrow id="id102265"><m:msub id="id102266"><m:mi id="id102267">P</m:mi><m:mo id="id102269">-</m:mo></m:msub><m:mo id="id102271">⁢</m:mo><m:mi id="id102274">q</m:mi></m:mrow></m:mrow></m:msup></m:mrow><m:mo id="id102276">,</m:mo><m:mrow id="id102278"><m:msub id="id102279"><m:mi id="id102280">ψ</m:mi><m:mover id="id102282"><m:mrow id="id102284"><m:mi id="id102285">q</m:mi><m:mo id="id102287" movablelimits="false">→</m:mo><m:mrow id="id102291"><m:mo id="id102292" movablelimits="false">+</m:mo><m:mi id="id102297" mathvariant="normal">∞</m:mi></m:mrow></m:mrow><m:mo id="id102302">∼</m:mo></m:mover></m:msub><m:mo id="id102304">⁢</m:mo><m:msub id="id102306"><m:mi id="id102307">b</m:mi><m:mo id="id102310">+</m:mo></m:msub><m:mo id="id102312">⁢</m:mo><m:msup id="id102314"><m:mi id="id102315">e</m:mi><m:mrow id="id102317"><m:mo id="id102318">-</m:mo><m:mrow id="id102320"><m:msub id="id102322"><m:mi id="id102323">P</m:mi><m:mo id="id102325">+</m:mo></m:msub><m:mo id="id102327">⁢</m:mo><m:mi id="id102329">q</m:mi></m:mrow></m:mrow></m:msup></m:mrow></m:mrow><m:mo id="id102331">,</m:mo></m:mrow><m:annotation-xml id="id102334" encoding="MathML-Content"><m:apply id="id102337"><m:list id="id102338"/><m:apply id="id102339"><m:times id="id102340"/><m:apply id="id102341"><m:csymbol id="id102342" cd="ambiguous">subscript</m:csymbol><m:ci id="id102347">ψ</m:ci><m:apply id="id102349"><m:csymbol id="id102350" cd="ambiguous">superscript</m:csymbol><m:apply id="id102355"><m:ci id="id102356">→</m:ci><m:ci id="id102358">q</m:ci><m:apply id="id102361"><m:minus id="id102362"/><m:infinity id="id102363"/></m:apply></m:apply><m:ci id="id102364">∼</m:ci></m:apply></m:apply><m:apply id="id102366"><m:csymbol id="id102367" cd="ambiguous">subscript</m:csymbol><m:ci id="id102372">b</m:ci><m:minus id="id102374"/></m:apply><m:apply id="id102375"><m:csymbol id="id102376" cd="ambiguous">superscript</m:csymbol><m:ci id="id102381">e</m:ci><m:apply id="id102383"><m:minus id="id102384"/><m:apply id="id102385"><m:times id="id102386"/><m:apply id="id102387"><m:csymbol id="id102388" cd="ambiguous">subscript</m:csymbol><m:ci id="id102393">P</m:ci><m:minus id="id102395"/></m:apply><m:ci id="id102396">q</m:ci></m:apply></m:apply></m:apply></m:apply><m:apply id="id102398"><m:times id="id102399"/><m:apply id="id102400"><m:csymbol id="id102402" cd="ambiguous">subscript</m:csymbol><m:ci id="id102406">ψ</m:ci><m:apply id="id102409"><m:csymbol id="id102410" cd="ambiguous">superscript</m:csymbol><m:apply id="id102414"><m:ci id="id102415">→</m:ci><m:ci id="id102418">q</m:ci><m:apply id="id102420"><m:plus id="id102421"/><m:infinity id="id102422"/></m:apply></m:apply><m:ci id="id102423">∼</m:ci></m:apply></m:apply><m:apply id="id102426"><m:csymbol id="id102427" cd="ambiguous">subscript</m:csymbol><m:ci id="id102431">b</m:ci><m:plus id="id102433"/></m:apply><m:apply id="id102434"><m:csymbol id="id102436" cd="ambiguous">superscript</m:csymbol><m:ci id="id102440">e</m:ci><m:apply id="id102442"><m:minus id="id102443"/><m:apply id="id102444"><m:times id="id102446"/><m:apply id="id102447"><m:csymbol id="id102448" cd="ambiguous">subscript</m:csymbol><m:ci id="id102452">P</m:ci><m:plus id="id102454"/></m:apply><m:ci id="id102456">q</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id102486"><h4>Hit id102486</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 11</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/105/f041996.xhtml#id102486</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:735651(000049%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id102486" display="inline"><m:semantics id="id102490"><m:mrow id="id102491"><m:mrow id="id102492"><m:msub id="id102493"><m:mi id="id102494">P</m:mi><m:mi id="id102496">w</m:mi></m:msub><m:mo id="id102498">⁢</m:mo><m:mfenced id="id102501" open="(" close=")"><m:mrow id="id102506"><m:mi id="id102507">W</m:mi><m:mo id="id102509">,</m:mo><m:mi id="id102511">t</m:mi></m:mrow></m:mfenced></m:mrow><m:mover id="id102513"><m:mo id="id102514" movablelimits="false">∼</m:mo><m:mrow id="id102519"><m:mi id="id102520">t</m:mi><m:mo id="id102522">→</m:mo><m:mrow id="id102524"><m:mo id="id102526">+</m:mo><m:mi id="id102528" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:mover><m:mrow id="id102532"><m:mstyle id="id102533" displaystyle="true"><m:mfrac id="id102537"><m:mn id="id102538">1</m:mn><m:msqrt id="id102540"><m:mrow id="id102541"><m:mn id="id102542">4</m:mn><m:mo id="id102544">⁢</m:mo><m:mi id="id102547">π</m:mi><m:mo id="id102549">⁢</m:mo><m:msub id="id102551"><m:mover id="id102552" accent="true"><m:mi id="id102556">W</m:mi><m:mo id="id102558">¯</m:mo></m:mover><m:mi id="id102560">t</m:mi></m:msub></m:mrow></m:msqrt></m:mfrac></m:mstyle><m:mo id="id102562">⁢</m:mo><m:mrow id="id102565"><m:mi id="id102566">exp</m:mi><m:mo id="id102568">⁡</m:mo><m:mfenced id="id102570" open="[" close="]"><m:mrow id="id102576"><m:mo id="id102577">-</m:mo><m:mstyle id="id102579" displaystyle="true"><m:mfrac id="id102582"><m:msup id="id102583"><m:mfenced id="id102584" open="(" close=")"><m:mrow id="id102589"><m:mi id="id102590">W</m:mi><m:mo id="id102592">-</m:mo><m:msub id="id102595"><m:mover id="id102596" accent="true"><m:mi id="id102599">W</m:mi><m:mo id="id102601">¯</m:mo></m:mover><m:mi id="id102604">t</m:mi></m:msub></m:mrow></m:mfenced><m:mn id="id102606">2</m:mn></m:msup><m:mrow id="id102608"><m:mn id="id102609">4</m:mn><m:mo id="id102611">⁢</m:mo><m:msub id="id102613"><m:mover id="id102614" accent="true"><m:mi id="id102618">W</m:mi><m:mo id="id102620">¯</m:mo></m:mover><m:mi id="id102622">t</m:mi></m:msub></m:mrow></m:mfrac></m:mstyle></m:mrow></m:mfenced></m:mrow></m:mrow></m:mrow><m:annotation-xml id="id102624" encoding="MathML-Content"><m:apply id="id102628"><m:apply id="id102629"><m:csymbol id="id102630" cd="ambiguous">superscript</m:csymbol><m:ci id="id102635">∼</m:ci><m:apply id="id102637"><m:ci id="id102638">→</m:ci><m:ci id="id102640">t</m:ci><m:apply id="id102643"><m:plus id="id102644"/><m:infinity id="id102645"/></m:apply></m:apply></m:apply><m:apply id="id102646"><m:times id="id102647"/><m:apply id="id102648"><m:csymbol id="id102649" cd="ambiguous">subscript</m:csymbol><m:ci id="id102654">P</m:ci><m:ci id="id102656">w</m:ci></m:apply><m:apply id="id102658"><m:interval id="id102659" closure="open"/><m:ci id="id102662">W</m:ci><m:ci id="id102664">t</m:ci></m:apply></m:apply><m:apply id="id102667"><m:times id="id102668"/><m:apply id="id102669"><m:divide id="id102670"/><m:cn id="id102671">1</m:cn><m:apply id="id102673"><m:ci id="id102674"/><m:apply id="id102675"><m:times id="id102676"/><m:cn id="id102677">4</m:cn><m:ci id="id102679">π</m:ci><m:apply id="id102682"><m:csymbol id="id102683" cd="ambiguous">subscript</m:csymbol><m:apply id="id102688"><m:ci id="id102689">¯</m:ci><m:ci id="id102691">W</m:ci></m:apply><m:ci id="id102693">t</m:ci></m:apply></m:apply></m:apply></m:apply><m:apply id="id102695"><m:exp id="id102696"/><m:apply id="id102697"><m:minus id="id102698"/><m:apply id="id102700"><m:divide id="id102701"/><m:apply id="id102702"><m:csymbol id="id102703" cd="ambiguous">superscript</m:csymbol><m:apply id="id102707"><m:minus id="id102708"/><m:ci id="id102710">W</m:ci><m:apply id="id102712"><m:csymbol id="id102713" cd="ambiguous">subscript</m:csymbol><m:apply id="id102717"><m:ci id="id102718">¯</m:ci><m:ci id="id102721">W</m:ci></m:apply><m:ci id="id102723">t</m:ci></m:apply></m:apply><m:cn id="id102725">2</m:cn></m:apply><m:apply id="id102727"><m:times id="id102728"/><m:cn id="id102729">4</m:cn><m:apply id="id102732"><m:csymbol id="id102733" cd="ambiguous">subscript</m:csymbol><m:apply id="id102737"><m:ci id="id102738">¯</m:ci><m:ci id="id102741">W</m:ci></m:apply><m:ci id="id102743">t</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id106616"><h4>Hit id106616</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 12</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/198/f079072.xhtml#id106616</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:799579(000045%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id106616" display="block"><m:semantics id="id106619"><m:mrow id="id106620"><m:mrow id="id106621"><m:mrow id="id106622"><m:msub id="id106623"><m:mi id="id106624">F</m:mi><m:mo id="id106627">+</m:mo></m:msub><m:mo id="id106629">:=</m:mo><m:mrow id="id106631"><m:munder id="id106632"><m:mo id="id106633" movablelimits="false">lim</m:mo><m:mrow id="id106637"><m:mi id="id106638">x</m:mi><m:mo id="id106641">→</m:mo><m:mrow id="id106643"><m:mo id="id106644">+</m:mo><m:mi id="id106646" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:munder><m:mo id="id106651">⁡</m:mo><m:mrow id="id106653"><m:msub id="id106654"><m:mi id="id106655">f</m:mi><m:mn id="id106658">1</m:mn></m:msub><m:mo id="id106660">⁢</m:mo><m:mfenced id="id106662" open="(" close=")"><m:mi id="id106667">x</m:mi></m:mfenced></m:mrow></m:mrow></m:mrow><m:mo id="id106669">,</m:mo><m:mrow id="id106671"><m:mrow id="id106672"><m:msub id="id106674"><m:mi id="id106675">F</m:mi><m:mo id="id106677">-</m:mo></m:msub><m:mo id="id106679">:=</m:mo><m:mrow id="id106681"><m:munder id="id106682"><m:mo id="id106683" movablelimits="false">lim</m:mo><m:mrow id="id106688"><m:mi id="id106689">x</m:mi><m:mo id="id106691">→</m:mo><m:mrow id="id106693"><m:mo id="id106694">-</m:mo><m:mi id="id106696" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:munder><m:mo id="id106701">⁡</m:mo><m:mrow id="id106703"><m:msub id="id106704"><m:mi id="id106706">f</m:mi><m:mn id="id106708">1</m:mn></m:msub><m:mo id="id106710">⁢</m:mo><m:mfenced id="id106712" open="(" close=")"><m:mi id="id106717">x</m:mi></m:mfenced></m:mrow></m:mrow></m:mrow><m:mo id="id106719">,</m:mo><m:mrow id="id106722"><m:msub id="id106723"><m:mi id="id106724">F</m:mi><m:mi id="id106726" mathvariant="normal">∞</m:mi></m:msub><m:mo id="id106730">:=</m:mo><m:mrow id="id106733"><m:mfrac id="id106734"><m:mn id="id106735">1</m:mn><m:mn id="id106737">2</m:mn></m:mfrac><m:mo id="id106739">⁢</m:mo><m:mfenced id="id106741" open="(" close=")"><m:mrow id="id106746"><m:msub id="id106748"><m:mi id="id106749">F</m:mi><m:mo id="id106751">+</m:mo></m:msub><m:mo id="id106753">+</m:mo><m:msub id="id106755"><m:mi id="id106756">F</m:mi><m:mo id="id106758">-</m:mo></m:msub></m:mrow></m:mfenced></m:mrow></m:mrow></m:mrow></m:mrow><m:mo id="id106760">.</m:mo></m:mrow><m:annotation-xml id="id106762" encoding="MathML-Content"><m:apply id="id106766"><m:ci id="id106767"/><m:apply id="id106768"><m:ci id="id106769">:=</m:ci><m:apply id="id106771"><m:csymbol id="id106772" cd="ambiguous">subscript</m:csymbol><m:ci id="id106777">F</m:ci><m:plus id="id106779"/></m:apply><m:apply id="id106780"><m:apply id="id106781"><m:csymbol id="id106782" cd="ambiguous">subscript</m:csymbol><m:limit id="id106787"/><m:apply id="id106788"><m:ci id="id106789">→</m:ci><m:ci id="id106792">x</m:ci><m:apply id="id106794"><m:plus id="id106795"/><m:infinity id="id106796"/></m:apply></m:apply></m:apply><m:apply id="id106797"><m:times id="id106798"/><m:apply id="id106799"><m:csymbol id="id106800" cd="ambiguous">subscript</m:csymbol><m:ci id="id106805">f</m:ci><m:cn id="id106807">1</m:cn></m:apply><m:ci id="id106809">x</m:ci></m:apply></m:apply></m:apply><m:apply id="id106811"><m:ci id="id106812"/><m:apply id="id106814"><m:ci id="id106815">:=</m:ci><m:apply id="id106817"><m:csymbol id="id106818" cd="ambiguous">subscript</m:csymbol><m:ci id="id106822">F</m:ci><m:minus id="id106825"/></m:apply><m:apply id="id106826"><m:apply id="id106827"><m:csymbol id="id106828" cd="ambiguous">subscript</m:csymbol><m:limit id="id106832"/><m:apply id="id106834"><m:ci id="id106835">→</m:ci><m:ci id="id106837">x</m:ci><m:apply id="id106839"><m:minus id="id106840"/><m:infinity id="id106841"/></m:apply></m:apply></m:apply><m:apply id="id106842"><m:times id="id106843"/><m:apply id="id106844"><m:csymbol id="id106846" cd="ambiguous">subscript</m:csymbol><m:ci id="id106850">f</m:ci><m:cn id="id106852">1</m:cn></m:apply><m:ci id="id106854">x</m:ci></m:apply></m:apply></m:apply><m:apply id="id106857"><m:ci id="id106858">:=</m:ci><m:apply id="id106860"><m:csymbol id="id106861" cd="ambiguous">subscript</m:csymbol><m:ci id="id106866">F</m:ci><m:infinity id="id106868"/></m:apply><m:apply id="id106869"><m:times id="id106870"/><m:apply id="id106871"><m:divide id="id106872"/><m:cn id="id106873">1</m:cn><m:cn id="id106875">2</m:cn></m:apply><m:apply id="id106877"><m:plus id="id106878"/><m:apply id="id106879"><m:csymbol id="id106880" cd="ambiguous">subscript</m:csymbol><m:ci id="id106885">F</m:ci><m:plus id="id106887"/></m:apply><m:apply id="id106888"><m:csymbol id="id106889" cd="ambiguous">subscript</m:csymbol><m:ci id="id106894">F</m:ci><m:minus id="id106896"/></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id58173"><h4>Hit id58173</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 13</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/87/f034459.xhtml#id58173</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:70356(000020%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id58173" display="block"><m:semantics id="id58176"><m:mrow id="id58178"><m:mrow id="id58179"><m:mrow id="id58180"><m:mrow id="id58181"><m:msub id="id58182"><m:mi id="id58183">φ</m:mi><m:mi id="id58185" mathvariant="bold">k</m:mi></m:msub><m:mo id="id58190">⁢</m:mo><m:mfenced id="id58192" open="(" close=")"><m:mi id="id58197">t</m:mi></m:mfenced></m:mrow><m:mover id="id58200"><m:mo id="id58201" movablelimits="false">⟶</m:mo><m:mrow id="id58205"><m:mi id="id58206">t</m:mi><m:mo id="id58209">→</m:mo><m:mrow id="id58211"><m:mo id="id58212">-</m:mo><m:mi id="id58214" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:mover><m:mrow id="id58219"><m:msub id="id58220"><m:mi id="id58221">a</m:mi><m:mi id="id58223" mathvariant="bold">k</m:mi></m:msub><m:mo id="id58228">⁢</m:mo><m:msup id="id58230"><m:mi id="id58231" mathvariant="normal">e</m:mi><m:mrow id="id58235"><m:mi id="id58236">i</m:mi><m:mo id="id58239">⁢</m:mo><m:msub id="id58241"><m:mi id="id58242">ω</m:mi><m:mi id="id58244" mathvariant="bold">k</m:mi></m:msub><m:mo id="id58249">⁢</m:mo><m:mi id="id58251">t</m:mi></m:mrow></m:msup></m:mrow></m:mrow><m:mo id="id58253">,</m:mo><m:mrow id="id58256"><m:mrow id="id58257"><m:msub id="id58258"><m:mi id="id58259">φ</m:mi><m:mi id="id58261" mathvariant="bold">k</m:mi></m:msub><m:mo id="id58266">⁢</m:mo><m:mfenced id="id58268" open="(" close=")"><m:mi id="id58273">t</m:mi></m:mfenced></m:mrow><m:mover id="id58275"><m:mo id="id58276" movablelimits="false">⟶</m:mo><m:mrow id="id58281"><m:mi id="id58282">t</m:mi><m:mo id="id58284">→</m:mo><m:mrow id="id58286"><m:mo id="id58288">+</m:mo><m:mi id="id58290" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:mover><m:mrow id="id58294"><m:mrow id="id58295"><m:mfrac id="id58296"><m:msubsup id="id58298"><m:mi id="id58299">β</m:mi><m:mi id="id58301" mathvariant="bold">k</m:mi><m:mo id="id58305">*</m:mo></m:msubsup><m:msqrt id="id58308"><m:mrow id="id58309"><m:mn id="id58310">2</m:mn><m:mo id="id58312">⁢</m:mo><m:msub id="id58314"><m:mi id="id58315">ω</m:mi><m:mi id="id58318" mathvariant="bold">k</m:mi></m:msub></m:mrow></m:msqrt></m:mfrac><m:mo id="id58322">⁢</m:mo><m:msup id="id58324"><m:mi id="id58326" mathvariant="normal">e</m:mi><m:mrow id="id58330"><m:mi id="id58331">i</m:mi><m:mo id="id58333">⁢</m:mo><m:msub id="id58336"><m:mi id="id58337">ω</m:mi><m:mi id="id58339" mathvariant="bold">k</m:mi></m:msub><m:mo id="id58343">⁢</m:mo><m:mi id="id58346">t</m:mi></m:mrow></m:msup></m:mrow><m:mo id="id58348">+</m:mo><m:mrow id="id58350"><m:msub id="id58351"><m:mi id="id58352">c</m:mi><m:mi id="id58354" mathvariant="bold">k</m:mi></m:msub><m:mo id="id58359">⁢</m:mo><m:msup id="id58361"><m:mi id="id58362" mathvariant="normal">e</m:mi><m:mrow id="id58367"><m:mo id="id58368">-</m:mo><m:mrow id="id58370"><m:mi id="id58371">i</m:mi><m:mo id="id58373">⁢</m:mo><m:msub id="id58375"><m:mi id="id58376">ω</m:mi><m:mi id="id58379" mathvariant="bold">k</m:mi></m:msub><m:mo id="id58383">⁢</m:mo><m:mi id="id58386">t</m:mi></m:mrow></m:mrow></m:msup></m:mrow></m:mrow></m:mrow></m:mrow><m:mo id="id58388">,</m:mo></m:mrow><m:annotation-xml id="id58390" encoding="MathML-Content"><m:apply id="id58393"><m:ci id="id58394"/><m:apply id="id58395"><m:apply id="id58396"><m:csymbol id="id58398" cd="ambiguous">superscript</m:csymbol><m:ci id="id58402">⟶</m:ci><m:apply id="id58405"><m:ci id="id58406">→</m:ci><m:ci id="id58408">t</m:ci><m:apply id="id58410"><m:minus id="id58411"/><m:infinity id="id58412"/></m:apply></m:apply></m:apply><m:apply id="id58413"><m:times id="id58414"/><m:apply id="id58416"><m:csymbol id="id58417" cd="ambiguous">subscript</m:csymbol><m:ci id="id58421">φ</m:ci><m:ci id="id58424">k</m:ci></m:apply><m:ci id="id58426">t</m:ci></m:apply><m:apply id="id58428"><m:times id="id58429"/><m:apply id="id58430"><m:csymbol id="id58431" cd="ambiguous">subscript</m:csymbol><m:ci id="id58436">a</m:ci><m:ci id="id58438">k</m:ci></m:apply><m:apply id="id58440"><m:csymbol id="id58441" cd="ambiguous">superscript</m:csymbol><m:ci id="id58446">e</m:ci><m:apply id="id58448"><m:times id="id58449"/><m:ci id="id58450">i</m:ci><m:apply id="id58452"><m:csymbol id="id58453" cd="ambiguous">subscript</m:csymbol><m:ci id="id58458">ω</m:ci><m:ci id="id58460">k</m:ci></m:apply><m:ci id="id58462">t</m:ci></m:apply></m:apply></m:apply></m:apply><m:apply id="id58465"><m:apply id="id58466"><m:csymbol id="id58467" cd="ambiguous">superscript</m:csymbol><m:ci id="id58471">⟶</m:ci><m:apply id="id58474"><m:ci id="id58475">→</m:ci><m:ci id="id58477">t</m:ci><m:apply id="id58479"><m:plus id="id58480"/><m:infinity id="id58482"/></m:apply></m:apply></m:apply><m:apply id="id58483"><m:times id="id58484"/><m:apply id="id58485"><m:csymbol id="id58486" cd="ambiguous">subscript</m:csymbol><m:ci id="id58490">φ</m:ci><m:ci id="id58493">k</m:ci></m:apply><m:ci id="id58495">t</m:ci></m:apply><m:apply id="id58497"><m:plus id="id58498"/><m:apply id="id58499"><m:times id="id58500"/><m:apply id="id58501"><m:divide id="id58502"/><m:apply id="id58504"><m:csymbol id="id58505" cd="ambiguous">superscript</m:csymbol><m:apply id="id58509"><m:csymbol id="id58510" cd="ambiguous">subscript</m:csymbol><m:ci id="id58515">β</m:ci><m:ci id="id58517">k</m:ci></m:apply><m:times id="id58520"/></m:apply><m:apply id="id58521"><m:ci id="id58522"/><m:apply id="id58523"><m:times id="id58524"/><m:cn id="id58525">2</m:cn><m:apply id="id58527"><m:csymbol id="id58528" cd="ambiguous">subscript</m:csymbol><m:ci id="id58533">ω</m:ci><m:ci id="id58535">k</m:ci></m:apply></m:apply></m:apply></m:apply><m:apply id="id58537"><m:csymbol id="id58538" cd="ambiguous">superscript</m:csymbol><m:ci id="id58543">e</m:ci><m:apply id="id58545"><m:times id="id58546"/><m:ci id="id58547">i</m:ci><m:apply id="id58549"><m:csymbol id="id58550" cd="ambiguous">subscript</m:csymbol><m:ci id="id58555">ω</m:ci><m:ci id="id58558">k</m:ci></m:apply><m:ci id="id58560">t</m:ci></m:apply></m:apply></m:apply><m:apply id="id58562"><m:times id="id58563"/><m:apply id="id58564"><m:csymbol id="id58565" cd="ambiguous">subscript</m:csymbol><m:ci id="id58570">c</m:ci><m:ci id="id58572">k</m:ci></m:apply><m:apply id="id58574"><m:csymbol id="id58575" cd="ambiguous">superscript</m:csymbol><m:ci id="id58580">e</m:ci><m:apply id="id58582"><m:minus id="id58583"/><m:apply id="id58584"><m:times id="id58585"/><m:ci id="id58586">i</m:ci><m:apply id="id58588"><m:csymbol id="id58589" cd="ambiguous">subscript</m:csymbol><m:ci id="id58594">ω</m:ci><m:ci id="id58596">k</m:ci></m:apply><m:ci id="id58598">t</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id70353"><h4>Hit id70353</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 14</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/43/f016936.xhtml#id70353</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:254936(000069%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id70353" display="block"><m:semantics id="id70356"><m:mrow id="id70358"><m:mrow id="id70359"><m:mrow id="id70360"><m:mi id="id70361">m</m:mi><m:mo id="id70363">⁢</m:mo><m:munder id="id70365" accent="true"><m:mo id="id70369">∼</m:mo><m:mrow id="id70371"><m:mi id="id70372">r</m:mi><m:mo id="id70374">→</m:mo><m:mrow id="id70377"><m:mo id="id70378">+</m:mo><m:mi id="id70380" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:munder><m:mo id="id70384">⁢</m:mo><m:mi id="id70387">r</m:mi></m:mrow><m:mo id="id70389">-</m:mo><m:mfrac id="id70391"><m:mi id="id70392">r</m:mi><m:mrow id="id70394"><m:mn id="id70395">1</m:mn><m:mo id="id70398">+</m:mo><m:mrow id="id70400"><m:mn id="id70401">2</m:mn><m:mo id="id70403">⁢</m:mo><m:mfrac id="id70405"><m:mi id="id70406">M</m:mi><m:mi id="id70408">r</m:mi></m:mfrac></m:mrow><m:mo id="id70411">-</m:mo><m:mfrac id="id70413"><m:msup id="id70414"><m:mi id="id70415">Q</m:mi><m:mn id="id70417">2</m:mn></m:msup><m:msup id="id70419"><m:mi id="id70420">r</m:mi><m:mn id="id70422">2</m:mn></m:msup></m:mfrac><m:mo id="id70424">-</m:mo><m:mfrac id="id70427"><m:mrow id="id70428"><m:mi id="id70429">v</m:mi><m:mo id="id70431">⁢</m:mo><m:msub id="id70433"><m:mi id="id70434">K</m:mi><m:mn id="id70436">2</m:mn></m:msub><m:mo id="id70439">⁢</m:mo><m:mrow id="id70441"><m:mi id="id70442">exp</m:mi><m:mo id="id70444">⁡</m:mo><m:mfenced id="id70447" open="[" close="]"><m:msub id="id70452"><m:mi id="id70453">K</m:mi><m:mn id="id70455">1</m:mn></m:msub></m:mfenced></m:mrow></m:mrow><m:mrow id="id70457"><m:mn id="id70458">2</m:mn><m:mo id="id70460">⁢</m:mo><m:msup id="id70463"><m:mi id="id70464">r</m:mi><m:mn id="id70466">2</m:mn></m:msup></m:mrow></m:mfrac></m:mrow></m:mfrac></m:mrow><m:mo id="id70468">≥</m:mo><m:mn id="id70470">0</m:mn></m:mrow><m:annotation-xml id="id70472" encoding="MathML-Content"><m:apply id="id70476"><m:geq id="id70477"/><m:apply id="id70478"><m:minus id="id70479"/><m:apply id="id70480"><m:times id="id70481"/><m:ci id="id70482">m</m:ci><m:apply id="id70484"><m:apply id="id70485"><m:ci id="id70486">→</m:ci><m:ci id="id70489">r</m:ci><m:apply id="id70491"><m:plus id="id70492"/><m:infinity id="id70493"/></m:apply></m:apply><m:ci id="id70494">∼</m:ci></m:apply><m:ci id="id70497">r</m:ci></m:apply><m:apply id="id70499"><m:divide id="id70500"/><m:ci id="id70501">r</m:ci><m:apply id="id70503"><m:minus id="id70504"/><m:apply id="id70505"><m:plus id="id70506"/><m:cn id="id70507">1</m:cn><m:apply id="id70509"><m:times id="id70510"/><m:cn id="id70512">2</m:cn><m:apply id="id70514"><m:divide id="id70515"/><m:ci id="id70516">M</m:ci><m:ci id="id70518">r</m:ci></m:apply></m:apply></m:apply><m:apply id="id70520"><m:divide id="id70521"/><m:apply id="id70522"><m:csymbol id="id70523" cd="ambiguous">superscript</m:csymbol><m:ci id="id70528">Q</m:ci><m:cn id="id70530">2</m:cn></m:apply><m:apply id="id70532"><m:csymbol id="id70533" cd="ambiguous">superscript</m:csymbol><m:ci id="id70538">r</m:ci><m:cn id="id70540">2</m:cn></m:apply></m:apply><m:apply id="id70542"><m:divide id="id70543"/><m:apply id="id70544"><m:times id="id70545"/><m:ci id="id70546">v</m:ci><m:apply id="id70549"><m:csymbol id="id70550" cd="ambiguous">subscript</m:csymbol><m:ci id="id70554">K</m:ci><m:cn id="id70556">2</m:cn></m:apply><m:apply id="id70559"><m:exp id="id70560"/><m:apply id="id70561"><m:csymbol id="id70562" cd="ambiguous">subscript</m:csymbol><m:ci id="id70566">K</m:ci><m:cn id="id70569">1</m:cn></m:apply></m:apply></m:apply><m:apply id="id70571"><m:times id="id70572"/><m:cn id="id70573">2</m:cn><m:apply id="id70575"><m:csymbol id="id70576" cd="ambiguous">superscript</m:csymbol><m:ci id="id70581">r</m:ci><m:cn id="id70583">2</m:cn></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply><m:cn id="id70585">0</m:cn></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id78980"><h4>Hit id78980</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 15</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/41/f016215.xhtml#id78980</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:387996(000082%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id78980" display="inline"><m:semantics id="id78983"><m:mrow id="id78984"><m:mfenced id="id78985" open="(" close=")"><m:mrow id="id78990"><m:mi id="id78992">λ</m:mi><m:mo id="id78994">+</m:mo><m:msub id="id78996"><m:mo id="id78997">∂</m:mo><m:mo id="id79000">-</m:mo></m:msub><m:mo id="id79002">-</m:mo><m:msub id="id79004"><m:mo id="id79005">∂</m:mo><m:mo id="id79007">+</m:mo></m:msub></m:mrow></m:mfenced><m:mo id="id79009">⁢</m:mo><m:msub id="id79012"><m:mfenced id="id79013" open="[" close="]"><m:mrow id="id79018"><m:mrow id="id79019"><m:mstyle id="id79020" displaystyle="true"><m:mfrac id="id79023"><m:mi id="id79024">κ</m:mi><m:mn id="id79027">2</m:mn></m:mfrac></m:mstyle><m:mo id="id79029">⁢</m:mo><m:mi id="id79031">ψ</m:mi></m:mrow><m:mo id="id79034">+</m:mo><m:mrow id="id79036"><m:msup id="id79037"><m:mi id="id79038">e</m:mi><m:mrow id="id79040"><m:mi id="id79041">λ</m:mi><m:mo id="id79044">⁢</m:mo><m:mfenced id="id79046" open="(" close=")"><m:mrow id="id79051"><m:msub id="id79052"><m:mi id="id79053">y</m:mi><m:mo id="id79055">+</m:mo></m:msub><m:mo id="id79058">-</m:mo><m:msub id="id79060"><m:mi id="id79061">y</m:mi><m:mo id="id79063">-</m:mo></m:msub></m:mrow></m:mfenced></m:mrow></m:msup><m:mo id="id79065">⁢</m:mo><m:mfenced id="id79067" open="(" close=")"><m:mrow id="id79072"><m:msup id="id79074"><m:mi id="id79075">e</m:mi><m:mrow id="id79077"><m:mo id="id79078">-</m:mo><m:mrow id="id79080"><m:mn id="id79081">2</m:mn><m:mo id="id79083">⁢</m:mo><m:mi id="id79086">ψ</m:mi></m:mrow></m:mrow></m:msup><m:mo id="id79088">-</m:mo><m:mn id="id79090">1</m:mn></m:mrow></m:mfenced></m:mrow></m:mrow></m:mfenced><m:mrow id="id79092"><m:msup id="id79093"><m:mi id="id79094">y</m:mi><m:mo id="id79096">+</m:mo></m:msup><m:mo id="id79099">→</m:mo><m:mrow id="id79101"><m:mo id="id79102">+</m:mo><m:mi id="id79104" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:msub></m:mrow><m:annotation-xml id="id79109" encoding="MathML-Content"><m:apply id="id79112"><m:times id="id79113"/><m:apply id="id79114"><m:minus id="id79115"/><m:apply id="id79116"><m:plus id="id79118"/><m:ci id="id79119">λ</m:ci><m:apply id="id79121"><m:csymbol id="id79122" cd="ambiguous">subscript</m:csymbol><m:partialdiff id="id79127"/><m:minus id="id79128"/></m:apply></m:apply><m:apply id="id79129"><m:csymbol id="id79130" cd="ambiguous">subscript</m:csymbol><m:partialdiff id="id79135"/><m:plus id="id79136"/></m:apply></m:apply><m:apply id="id79137"><m:csymbol id="id79138" cd="ambiguous">subscript</m:csymbol><m:apply id="id79142"><m:plus id="id79144"/><m:apply id="id79145"><m:times id="id79146"/><m:apply id="id79147"><m:divide id="id79148"/><m:ci id="id79149">κ</m:ci><m:cn id="id79151">2</m:cn></m:apply><m:ci id="id79153">ψ</m:ci></m:apply><m:apply id="id79156"><m:times id="id79157"/><m:apply id="id79158"><m:csymbol id="id79159" cd="ambiguous">superscript</m:csymbol><m:ci id="id79164">e</m:ci><m:apply id="id79166"><m:times id="id79167"/><m:ci id="id79168">λ</m:ci><m:apply id="id79170"><m:minus id="id79171"/><m:apply id="id79172"><m:csymbol id="id79174" cd="ambiguous">subscript</m:csymbol><m:ci id="id79178">y</m:ci><m:plus id="id79180"/></m:apply><m:apply id="id79181"><m:csymbol id="id79182" cd="ambiguous">subscript</m:csymbol><m:ci id="id79187">y</m:ci><m:minus id="id79189"/></m:apply></m:apply></m:apply></m:apply><m:apply id="id79190"><m:minus id="id79191"/><m:apply id="id79192"><m:csymbol id="id79194" cd="ambiguous">superscript</m:csymbol><m:ci id="id79198">e</m:ci><m:apply id="id79200"><m:minus id="id79201"/><m:apply id="id79202"><m:times id="id79204"/><m:cn id="id79205">2</m:cn><m:ci id="id79207">ψ</m:ci></m:apply></m:apply></m:apply><m:cn id="id79209">1</m:cn></m:apply></m:apply></m:apply><m:apply id="id79211"><m:ci id="id79212">→</m:ci><m:apply id="id79215"><m:csymbol id="id79216" cd="ambiguous">superscript</m:csymbol><m:ci id="id79220">y</m:ci><m:plus id="id79223"/></m:apply><m:apply id="id79224"><m:plus id="id79225"/><m:infinity id="id79226"/></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id81259"><h4>Hit id81259</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 16</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/227/f090736.xhtml#id81259</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:419378(000090%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id81259" display="inline"><m:semantics id="id81262"><m:mrow id="id81263"><m:mrow id="id81264"><m:mrow id="id81265"><m:msub id="id81266"><m:mfenced id="id81268" open="" close="|"><m:msub id="id81273"><m:mi id="id81274">G</m:mi><m:mn id="id81276">11</m:mn></m:msub></m:mfenced><m:mrow id="id81278"><m:mi id="id81279">r</m:mi><m:mo id="id81281">→</m:mo><m:mi id="id81284" mathvariant="normal">∞</m:mi></m:mrow></m:msub><m:mo id="id81288">∼</m:mo><m:mrow id="id81291"><m:mo id="id81292">-</m:mo><m:mn id="id81294">1</m:mn><m:mo id="id81296">+</m:mo><m:mstyle id="id81298" displaystyle="true"><m:mfrac id="id81301"><m:mrow id="id81302"><m:mn id="id81304">2</m:mn><m:mo id="id81306">⁢</m:mo><m:msub id="id81308"><m:mi id="id81309">m</m:mi><m:mn id="id81311">11</m:mn></m:msub></m:mrow><m:mi id="id81313">r</m:mi></m:mfrac></m:mstyle></m:mrow></m:mrow><m:mo id="id81316">,</m:mo><m:mrow id="id81318"><m:mrow id="id81319"><m:msub id="id81320"><m:mfenced id="id81321" open="" close="|"><m:msub id="id81326"><m:mi id="id81327">G</m:mi><m:mn id="id81329">12</m:mn></m:msub></m:mfenced><m:mrow id="id81331"><m:mi id="id81332">r</m:mi><m:mo id="id81334">→</m:mo><m:mi id="id81337" mathvariant="normal">∞</m:mi></m:mrow></m:msub><m:mo id="id81342">∼</m:mo><m:mrow id="id81344"><m:mo id="id81345">-</m:mo><m:mstyle id="id81347" displaystyle="true"><m:mfrac id="id81350"><m:msub id="id81352"><m:mi id="id81353">m</m:mi><m:mn id="id81355">12</m:mn></m:msub><m:mi id="id81357">r</m:mi></m:mfrac></m:mstyle></m:mrow></m:mrow><m:mo id="id81359">,</m:mo><m:mrow id="id81361"><m:msub id="id81362"><m:mfenced id="id81363" open="" close="|"><m:msub id="id81368"><m:mi id="id81369">G</m:mi><m:mn id="id81372">22</m:mn></m:msub></m:mfenced><m:mrow id="id81374"><m:mi id="id81375">r</m:mi><m:mo id="id81377">→</m:mo><m:mi id="id81379" mathvariant="normal">∞</m:mi></m:mrow></m:msub><m:mo id="id81384">∼</m:mo><m:mrow id="id81386"><m:mn id="id81387">1</m:mn><m:mo id="id81390">-</m:mo><m:mstyle id="id81392" displaystyle="true"><m:mfrac id="id81395"><m:mrow id="id81396"><m:mn id="id81397">2</m:mn><m:mo id="id81399">⁢</m:mo><m:msub id="id81402"><m:mi id="id81403">m</m:mi><m:mn id="id81405">22</m:mn></m:msub></m:mrow><m:mi id="id81407">r</m:mi></m:mfrac></m:mstyle></m:mrow></m:mrow></m:mrow></m:mrow><m:mo id="id81409">,</m:mo></m:mrow><m:annotation-xml id="id81411" encoding="MathML-Content"><m:apply id="id81415"><m:ci id="id81416"/><m:apply id="id81417"><m:ci id="id81418">∼</m:ci><m:apply id="id81420"><m:ci id="id81421"/><m:apply id="id81422"><m:csymbol id="id81423" cd="ambiguous">subscript</m:csymbol><m:ci id="id81428">G</m:ci><m:cn id="id81430">11</m:cn></m:apply><m:apply id="id81432"><m:ci id="id81433">→</m:ci><m:ci id="id81436">r</m:ci><m:infinity id="id81438"/></m:apply></m:apply><m:apply id="id81439"><m:plus id="id81440"/><m:apply id="id81441"><m:minus id="id81442"/><m:cn id="id81443">1</m:cn></m:apply><m:apply id="id81445"><m:divide id="id81446"/><m:apply id="id81448"><m:times id="id81449"/><m:cn id="id81450">2</m:cn><m:apply id="id81452"><m:csymbol id="id81453" cd="ambiguous">subscript</m:csymbol><m:ci id="id81458">m</m:ci><m:cn id="id81460">11</m:cn></m:apply></m:apply><m:ci id="id81462">r</m:ci></m:apply></m:apply></m:apply><m:apply id="id81464"><m:ci id="id81465"/><m:apply id="id81466"><m:ci id="id81467">∼</m:ci><m:apply id="id81470"><m:ci id="id81471"/><m:apply id="id81472"><m:csymbol id="id81473" cd="ambiguous">subscript</m:csymbol><m:ci id="id81477">G</m:ci><m:cn id="id81480">12</m:cn></m:apply><m:apply id="id81482"><m:ci id="id81483">→</m:ci><m:ci id="id81485">r</m:ci><m:infinity id="id81487"/></m:apply></m:apply><m:apply id="id81488"><m:minus id="id81489"/><m:apply id="id81490"><m:divide id="id81492"/><m:apply id="id81493"><m:csymbol id="id81494" cd="ambiguous">subscript</m:csymbol><m:ci id="id81498">m</m:ci><m:cn id="id81500">12</m:cn></m:apply><m:ci id="id81503">r</m:ci></m:apply></m:apply></m:apply><m:apply id="id81505"><m:ci id="id81506">∼</m:ci><m:apply id="id81508"><m:ci id="id81509"/><m:apply id="id81510"><m:csymbol id="id81511" cd="ambiguous">subscript</m:csymbol><m:ci id="id81516">G</m:ci><m:cn id="id81518">22</m:cn></m:apply><m:apply id="id81520"><m:ci id="id81521">→</m:ci><m:ci id="id81524">r</m:ci><m:infinity id="id81526"/></m:apply></m:apply><m:apply id="id81527"><m:minus id="id81528"/><m:cn id="id81529">1</m:cn><m:apply id="id81531"><m:divide id="id81532"/><m:apply id="id81533"><m:times id="id81534"/><m:cn id="id81536">2</m:cn><m:apply id="id81538"><m:csymbol id="id81539" cd="ambiguous">subscript</m:csymbol><m:ci id="id81543">m</m:ci><m:cn id="id81546">22</m:cn></m:apply></m:apply><m:ci id="id81548">r</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id82718"><h4>Hit id82718</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 17</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/108/f043018.xhtml#id82718</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:446571(000078%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id82718" display="inline"><m:semantics id="id82721"><m:mrow id="id82722"><m:mrow id="id82723"><m:mstyle id="id82724" displaystyle="true"><m:mfrac id="id82728"><m:mrow id="id82729"><m:mfenced id="id82731" open="<" close="|"><m:msubsup id="id82736"><m:mi id="id82737">ϕ</m:mi><m:mi id="id82740" mathvariant="bold">p</m:mi><m:mtext id="id82743">f</m:mtext></m:msubsup></m:mfenced><m:mo id="id82745">⁡</m:mo><m:mrow id="id82748"><m:mrow id="id82749"><m:msub id="id82750"><m:mi id="id82751">G</m:mi><m:mtext id="id82753">stat</m:mtext></m:msub><m:mo id="id82755">⁢</m:mo><m:mfenced id="id82758" open="(" close=")"><m:mi id="id82763">z</m:mi></m:mfenced></m:mrow><m:mo id="id82765">⁡</m:mo><m:mfenced id="id82768" open="|" close=">"><m:mrow id="id82774"><m:msub id="id82775"><m:mi id="id82776">ϕ</m:mi><m:mtext id="id82778">res</m:mtext></m:msub><m:mo id="id82780">,</m:mo><m:mtext id="id82782">cl</m:mtext></m:mrow></m:mfenced></m:mrow></m:mrow><m:mrow id="id82784"><m:msub id="id82786"><m:mi id="id82787">g</m:mi><m:mtext id="id82789">stat</m:mtext></m:msub><m:mo id="id82791">⁢</m:mo><m:mfenced id="id82794" open="(" close=")"><m:mi id="id82798">z</m:mi></m:mfenced></m:mrow></m:mfrac></m:mstyle><m:mo id="id82800">⁢</m:mo><m:munder id="id82802" accent="true"><m:mo id="id82806">∼</m:mo><m:mrow id="id82808"><m:msub id="id82809"><m:mi id="id82810">t</m:mi><m:mtext id="id82812">f</m:mtext></m:msub><m:mo id="id82814">→</m:mo><m:mrow id="id82817"><m:mo id="id82818">+</m:mo><m:mi id="id82820" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:munder><m:mo id="id82825">⁢</m:mo><m:mstyle id="id82827" displaystyle="true"><m:mfrac id="id82830"><m:mrow id="id82831"><m:mfenced id="id82833" open="<" close="|"><m:msubsup id="id82839"><m:mi id="id82840">ϕ</m:mi><m:mi id="id82842" mathvariant="bold">p</m:mi><m:mfenced id="id82846" open="(" close=")"><m:mo id="id82851">+</m:mo></m:mfenced></m:msubsup></m:mfenced><m:mo id="id82853">⁡</m:mo><m:mrow id="id82855"><m:mi id="id82856">W</m:mi><m:mo id="id82858">⁡</m:mo><m:mfenced id="id82862" open="|" close=">"><m:msub id="id82867"><m:mi id="id82868">ϕ</m:mi><m:mtext id="id82871">res</m:mtext></m:msub></m:mfenced></m:mrow></m:mrow><m:mrow id="id82873"><m:mi id="id82874">z</m:mi><m:mo id="id82876">-</m:mo><m:mrow id="id82878"><m:msup id="id82879"><m:mi id="id82880">p</m:mi><m:mn id="id82882">2</m:mn></m:msup><m:mo id="id82884">/</m:mo><m:mi id="id82887">m</m:mi></m:mrow></m:mrow></m:mfrac></m:mstyle></m:mrow><m:mo id="id82889">.</m:mo></m:mrow><m:annotation-xml id="id82891" encoding="MathML-Content"><m:apply id="id82893"><m:times id="id82894"/><m:apply id="id82895"><m:divide id="id82896"/><m:apply id="id82898"><m:ci id="id82899">⁡</m:ci><m:apply id="id82901"><m:ci id="id82902"/><m:apply id="id82903"><m:csymbol id="id82904" cd="ambiguous">superscript</m:csymbol><m:apply id="id82909"><m:csymbol id="id82910" cd="ambiguous">subscript</m:csymbol><m:ci id="id82915">ϕ</m:ci><m:ci id="id82917">p</m:ci></m:apply><m:mtext id="id82919">f</m:mtext></m:apply></m:apply><m:apply id="id82921"><m:apply id="id82922"><m:times id="id82923"/><m:apply id="id82924"><m:csymbol id="id82926" cd="ambiguous">subscript</m:csymbol><m:ci id="id82930">G</m:ci><m:mtext id="id82932">stat</m:mtext></m:apply><m:ci id="id82935">z</m:ci></m:apply><m:apply id="id82937"><m:ci id="id82938"/><m:apply id="id82939"><m:list id="id82940"/><m:apply id="id82941"><m:csymbol id="id82942" cd="ambiguous">subscript</m:csymbol><m:ci id="id82947">ϕ</m:ci><m:mtext id="id82949">res</m:mtext></m:apply><m:mtext id="id82951">cl</m:mtext></m:apply></m:apply></m:apply></m:apply><m:apply id="id82954"><m:times id="id82955"/><m:apply id="id82956"><m:csymbol id="id82957" cd="ambiguous">subscript</m:csymbol><m:ci id="id82961">g</m:ci><m:mtext id="id82964">stat</m:mtext></m:apply><m:ci id="id82966">z</m:ci></m:apply></m:apply><m:apply id="id82968"><m:apply id="id82969"><m:ci id="id82970">→</m:ci><m:apply id="id82973"><m:csymbol id="id82974" cd="ambiguous">subscript</m:csymbol><m:ci id="id82978">t</m:ci><m:mtext id="id82980">f</m:mtext></m:apply><m:apply id="id82983"><m:plus id="id82984"/><m:infinity id="id82985"/></m:apply></m:apply><m:ci id="id82986">∼</m:ci></m:apply><m:apply id="id82988"><m:divide id="id82989"/><m:apply id="id82990"><m:ci id="id82991">⁡</m:ci><m:apply id="id82994"><m:ci id="id82995"/><m:apply id="id82996"><m:csymbol id="id82997" cd="ambiguous">superscript</m:csymbol><m:apply id="id83002"><m:csymbol id="id83003" cd="ambiguous">subscript</m:csymbol><m:ci id="id83007">ϕ</m:ci><m:ci id="id83010">p</m:ci></m:apply><m:plus id="id83012"/></m:apply></m:apply><m:apply id="id83013"><m:ci id="id83014">W</m:ci><m:apply id="id83016"><m:ci id="id83017"/><m:apply id="id83018"><m:csymbol id="id83019" cd="ambiguous">subscript</m:csymbol><m:ci id="id83024">ϕ</m:ci><m:mtext id="id83026">res</m:mtext></m:apply></m:apply></m:apply></m:apply><m:apply id="id83029"><m:minus id="id83030"/><m:ci id="id83031">z</m:ci><m:apply id="id83033"><m:divide id="id83034"/><m:apply id="id83035"><m:csymbol id="id83036" cd="ambiguous">superscript</m:csymbol><m:ci id="id83041">p</m:ci><m:cn id="id83043">2</m:cn></m:apply><m:ci id="id83045">m</m:ci></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id93817"><h4>Hit id93817</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 18</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/117/f046773.xhtml#id93817</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:604892(000063%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id93817" display="inline"><m:semantics id="id93820"><m:mrow id="id93822"><m:mrow id="id93823"><m:none id="id93824"/><m:mover id="id93825"><m:mo id="id93826" movablelimits="false">⟶</m:mo><m:mrow id="id93830"><m:mi id="id93832">R</m:mi><m:mo id="id93834">→</m:mo><m:mrow id="id93836"><m:mo id="id93837">+</m:mo><m:mi id="id93839" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:mover><m:mrow id="id93844"><m:mrow id="id93845"><m:msub id="id93846"><m:mi id="id93847">S</m:mi><m:mn id="id93849">0</m:mn></m:msub><m:mo id="id93851">⁢</m:mo><m:mfenced id="id93854" open="(" close=")"><m:mstyle id="id93859" displaystyle="true"><m:mfrac id="id93862"><m:mi id="id93863">m</m:mi><m:mn id="id93865">2</m:mn></m:mfrac></m:mstyle></m:mfenced></m:mrow><m:mo id="id93868">⊕</m:mo><m:mrow id="id93870"><m:msub id="id93871"><m:mi id="id93872">S</m:mi><m:mn id="id93874">0</m:mn></m:msub><m:mo id="id93876">⁢</m:mo><m:mfenced id="id93879" open="(" close=")"><m:mstyle id="id93884" displaystyle="true"><m:mfrac id="id93887"><m:mi id="id93888">m</m:mi><m:mn id="id93890">2</m:mn></m:mfrac></m:mstyle></m:mfenced></m:mrow></m:mrow></m:mrow><m:mo id="id93892">,</m:mo></m:mrow><m:annotation-xml id="id93895" encoding="MathML-Content"><m:apply id="id93898"><m:apply id="id93899"><m:csymbol id="id93900" cd="ambiguous">superscript</m:csymbol><m:ci id="id93905">⟶</m:ci><m:apply id="id93907"><m:ci id="id93908">→</m:ci><m:ci id="id93911">R</m:ci><m:apply id="id93913"><m:plus id="id93914"/><m:infinity id="id93915"/></m:apply></m:apply></m:apply><m:ci id="id93916"/><m:apply id="id93917"><m:ci id="id93918">⊕</m:ci><m:apply id="id93920"><m:times id="id93922"/><m:apply id="id93923"><m:csymbol id="id93924" cd="ambiguous">subscript</m:csymbol><m:ci id="id93928">S</m:ci><m:cn id="id93930">0</m:cn></m:apply><m:apply id="id93933"><m:divide id="id93934"/><m:ci id="id93935">m</m:ci><m:cn id="id93937">2</m:cn></m:apply></m:apply><m:apply id="id93939"><m:times id="id93940"/><m:apply id="id93941"><m:csymbol id="id93942" cd="ambiguous">subscript</m:csymbol><m:ci id="id93947">S</m:ci><m:cn id="id93949">0</m:cn></m:apply><m:apply id="id93951"><m:divide id="id93952"/><m:ci id="id93953">m</m:ci><m:cn id="id93955">2</m:cn></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id94120"><h4>Hit id94120</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 19</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/117/f046773.xhtml#id94120</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:609456(000064%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id94120" display="inline"><m:semantics id="id94123"><m:mrow id="id94124"><m:mrow id="id94125"><m:none id="id94126"/><m:mover id="id94127"><m:mo id="id94128" movablelimits="false">⟶</m:mo><m:mrow id="id94133"><m:mi id="id94134">R</m:mi><m:mo id="id94136">→</m:mo><m:mrow id="id94139"><m:mo id="id94140">+</m:mo><m:mi id="id94142" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:mover><m:mrow id="id94146"><m:mrow id="id94148"><m:msub id="id94149"><m:mi id="id94150">S</m:mi><m:mn id="id94152">2</m:mn></m:msub><m:mo id="id94154">⁢</m:mo><m:mfenced id="id94156" open="(" close=")"><m:mstyle id="id94161" displaystyle="true"><m:mfrac id="id94165"><m:mi id="id94166">m</m:mi><m:mn id="id94168">2</m:mn></m:mfrac></m:mstyle></m:mfenced></m:mrow><m:mo id="id94170">⊕</m:mo><m:mrow id="id94172"><m:msub id="id94174"><m:mi id="id94175">S</m:mi><m:mn id="id94177">2</m:mn></m:msub><m:mo id="id94179">⁢</m:mo><m:mfenced id="id94181" open="(" close=")"><m:mstyle id="id94186" displaystyle="true"><m:mfrac id="id94190"><m:mi id="id94191">m</m:mi><m:mn id="id94193">2</m:mn></m:mfrac></m:mstyle></m:mfenced></m:mrow></m:mrow></m:mrow><m:mo id="id94195">.</m:mo></m:mrow><m:annotation-xml id="id94197" encoding="MathML-Content"><m:apply id="id94200"><m:apply id="id94202"><m:csymbol id="id94203" cd="ambiguous">superscript</m:csymbol><m:ci id="id94207">⟶</m:ci><m:apply id="id94210"><m:ci id="id94211">→</m:ci><m:ci id="id94213">R</m:ci><m:apply id="id94215"><m:plus id="id94216"/><m:infinity id="id94217"/></m:apply></m:apply></m:apply><m:ci id="id94218"/><m:apply id="id94220"><m:ci id="id94221">⊕</m:ci><m:apply id="id94223"><m:times id="id94224"/><m:apply id="id94225"><m:csymbol id="id94226" cd="ambiguous">subscript</m:csymbol><m:ci id="id94231">S</m:ci><m:cn id="id94233">2</m:cn></m:apply><m:apply id="id94235"><m:divide id="id94236"/><m:ci id="id94237">m</m:ci><m:cn id="id94239">2</m:cn></m:apply></m:apply><m:apply id="id94242"><m:times id="id94243"/><m:apply id="id94244"><m:csymbol id="id94245" cd="ambiguous">subscript</m:csymbol><m:ci id="id94249">S</m:ci><m:cn id="id94252">2</m:cn></m:apply><m:apply id="id94254"><m:divide id="id94255"/><m:ci id="id94256">m</m:ci><m:cn id="id94258">2</m:cn></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id95200"><h4>Hit id95200</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 20</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/235/f093853.xhtml#id95200</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:622899(000074%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id95200" display="block"><m:semantics id="id95203"><m:mrow id="id95204"><m:mrow id="id95205"><m:mrow id="id95206"><m:mi id="id95207">ψ</m:mi><m:mo id="id95210">⁢</m:mo><m:mmultiscripts id="id95212"><m:mfrac id="id95213"><m:msub id="id95214"><m:mi id="id95215">A</m:mi><m:mo id="id95218">-</m:mo></m:msub><m:msqrt id="id95220"><m:mi id="id95221">κ</m:mi></m:msqrt></m:mfrac><m:mprescripts id="id95223"/><m:mover id="id95224"><m:mrow id="id95225"><m:mi id="id95226">q</m:mi><m:mo id="id95228" movablelimits="false">→</m:mo><m:mrow id="id95233"><m:mo id="id95234" movablelimits="false">-</m:mo><m:mi id="id95239" mathvariant="normal">∞</m:mi></m:mrow></m:mrow><m:mo id="id95243">∼</m:mo></m:mover><m:none id="id95246"/></m:mmultiscripts><m:mo id="id95247">⁢</m:mo><m:msup id="id95249"><m:mi id="id95250">e</m:mi><m:mrow id="id95252"><m:mo id="id95253">-</m:mo><m:mrow id="id95256"><m:msubsup id="id95257"><m:mo id="id95258">∫</m:mo><m:msub id="id95260"><m:mi id="id95261">q</m:mi><m:mo id="id95263">-</m:mo></m:msub><m:mi id="id95265">q</m:mi></m:msubsup><m:mi id="id95268">d</m:mi><m:mo id="id95270">⁢</m:mo><m:mi id="id95272">x</m:mi><m:mo id="id95274">⁢</m:mo><m:mi id="id95277">κ</m:mi></m:mrow></m:mrow></m:msup></m:mrow><m:mo id="id95279">,</m:mo><m:mrow id="id95281"><m:mi id="id95282">ψ</m:mi><m:mo id="id95285">⁢</m:mo><m:mmultiscripts id="id95287"><m:mfrac id="id95288"><m:msub id="id95289"><m:mi id="id95290">B</m:mi><m:mo id="id95292">+</m:mo></m:msub><m:msqrt id="id95294"><m:mi id="id95296">κ</m:mi></m:msqrt></m:mfrac><m:mprescripts id="id95298"/><m:mover id="id95299"><m:mrow id="id95300"><m:mi id="id95301">q</m:mi><m:mo id="id95303" movablelimits="false">→</m:mo><m:mrow id="id95308"><m:mo id="id95309" movablelimits="false">+</m:mo><m:mi id="id95313" mathvariant="normal">∞</m:mi></m:mrow></m:mrow><m:mo id="id95318">∼</m:mo></m:mover><m:none id="id95320"/></m:mmultiscripts><m:mo id="id95322">⁢</m:mo><m:msup id="id95324"><m:mi id="id95325">e</m:mi><m:mrow id="id95327"><m:msubsup id="id95328"><m:mo id="id95329">∫</m:mo><m:msub id="id95332"><m:mi id="id95333">q</m:mi><m:mo id="id95335">+</m:mo></m:msub><m:mi id="id95337">q</m:mi></m:msubsup><m:mi id="id95339">d</m:mi><m:mo id="id95341">⁢</m:mo><m:mi id="id95344">x</m:mi><m:mo id="id95346">⁢</m:mo><m:mi id="id95348">κ</m:mi></m:mrow></m:msup></m:mrow></m:mrow><m:mo id="id95351">.</m:mo></m:mrow><m:annotation-xml id="id95353" encoding="MathML-Content"><m:apply id="id95356"><m:list id="id95357"/><m:apply id="id95358"><m:times id="id95359"/><m:ci id="id95360">ψ</m:ci><m:apply id="id95363"><m:csymbol id="id95364" cd="ambiguous">subscript</m:csymbol><m:apply id="id95368"><m:divide id="id95370"/><m:apply id="id95371"><m:csymbol id="id95372" cd="ambiguous">subscript</m:csymbol><m:ci id="id95376">A</m:ci><m:minus id="id95378"/></m:apply><m:apply id="id95380"><m:ci id="id95381"/><m:ci id="id95382">κ</m:ci></m:apply></m:apply><m:apply id="id95384"><m:csymbol id="id95385" cd="ambiguous">superscript</m:csymbol><m:apply id="id95390"><m:ci id="id95391">→</m:ci><m:ci id="id95393">q</m:ci><m:apply id="id95395"><m:minus id="id95396"/><m:infinity id="id95398"/></m:apply></m:apply><m:ci id="id95399">∼</m:ci></m:apply></m:apply><m:apply id="id95401"><m:csymbol id="id95402" cd="ambiguous">superscript</m:csymbol><m:ci id="id95407">e</m:ci><m:apply id="id95409"><m:minus id="id95410"/><m:apply id="id95411"><m:apply id="id95412"><m:csymbol id="id95413" cd="ambiguous">subscript</m:csymbol><m:apply id="id95418"><m:csymbol id="id95419" cd="ambiguous">superscript</m:csymbol><m:int id="id95424"/><m:ci id="id95425">q</m:ci></m:apply><m:apply id="id95427"><m:csymbol id="id95428" cd="ambiguous">subscript</m:csymbol><m:ci id="id95432">q</m:ci><m:minus id="id95435"/></m:apply></m:apply><m:apply id="id95436"><m:times id="id95437"/><m:ci id="id95438">d</m:ci><m:ci id="id95440">x</m:ci><m:ci id="id95442">κ</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply><m:apply id="id95444"><m:times id="id95446"/><m:ci id="id95447">ψ</m:ci><m:apply id="id95449"><m:csymbol id="id95450" cd="ambiguous">subscript</m:csymbol><m:apply id="id95455"><m:divide id="id95456"/><m:apply id="id95457"><m:csymbol id="id95458" cd="ambiguous">subscript</m:csymbol><m:ci id="id95463">B</m:ci><m:plus id="id95465"/></m:apply><m:apply id="id95466"><m:ci id="id95467"/><m:ci id="id95468">κ</m:ci></m:apply></m:apply><m:apply id="id95470"><m:csymbol id="id95471" cd="ambiguous">superscript</m:csymbol><m:apply id="id95476"><m:ci id="id95477">→</m:ci><m:ci id="id95480">q</m:ci><m:apply id="id95482"><m:plus id="id95483"/><m:infinity id="id95484"/></m:apply></m:apply><m:ci id="id95485">∼</m:ci></m:apply></m:apply><m:apply id="id95487"><m:csymbol id="id95488" cd="ambiguous">superscript</m:csymbol><m:ci id="id95493">e</m:ci><m:apply id="id95495"><m:apply id="id95496"><m:csymbol id="id95497" cd="ambiguous">subscript</m:csymbol><m:apply id="id95502"><m:csymbol id="id95503" cd="ambiguous">superscript</m:csymbol><m:int id="id95508"/><m:ci id="id95509">q</m:ci></m:apply><m:apply id="id95511"><m:csymbol id="id95512" cd="ambiguous">subscript</m:csymbol><m:ci id="id95517">q</m:ci><m:plus id="id95519"/></m:apply></m:apply><m:apply id="id95520"><m:times id="id95521"/><m:ci id="id95522">d</m:ci><m:ci id="id95524">x</m:ci><m:ci id="id95526">κ</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id98739"><h4>Hit id98739</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 21</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/235/f093853.xhtml#id98739</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:680272(000081%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <m:math id="id98739" display="block"><m:semantics id="id98742"><m:mrow id="id98743"><m:mrow id="id98744"><m:mrow id="id98746"><m:mi id="id98747">ψ</m:mi><m:mo id="id98749">⁢</m:mo><m:mmultiscripts id="id98751"><m:mfrac id="id98752"><m:msub id="id98754"><m:mi id="id98755">A</m:mi><m:mo id="id98757">-</m:mo></m:msub><m:msqrt id="id98759"><m:mi id="id98760">κ</m:mi></m:msqrt></m:mfrac><m:mprescripts id="id98762"/><m:mover id="id98763"><m:mrow id="id98764"><m:mi id="id98766">q</m:mi><m:mo id="id98768" movablelimits="false">→</m:mo><m:mrow id="id98772"><m:mo id="id98773" movablelimits="false">-</m:mo><m:mi id="id98778" mathvariant="normal">∞</m:mi></m:mrow></m:mrow><m:mo id="id98782">∼</m:mo></m:mover><m:none id="id98785"/></m:mmultiscripts><m:mo id="id98786">⁢</m:mo><m:msup id="id98788"><m:mi id="id98789">e</m:mi><m:mrow id="id98792"><m:msubsup id="id98793"><m:mo id="id98794">∫</m:mo><m:msub id="id98796"><m:mi id="id98797">q</m:mi><m:mo id="id98799">-</m:mo></m:msub><m:mi id="id98801">q</m:mi></m:msubsup><m:mi id="id98804">d</m:mi><m:mo id="id98806">⁢</m:mo><m:mi id="id98808">x</m:mi><m:mo id="id98810">⁢</m:mo><m:mi id="id98813">κ</m:mi></m:mrow></m:msup></m:mrow><m:mo id="id98815">,</m:mo><m:mrow id="id98817"><m:mi id="id98818">ψ</m:mi><m:mo id="id98821">⁢</m:mo><m:mmultiscripts id="id98823"><m:mfrac id="id98824"><m:msub id="id98825"><m:mi id="id98826">B</m:mi><m:mo id="id98828">+</m:mo></m:msub><m:msqrt id="id98830"><m:mi id="id98832">κ</m:mi></m:msqrt></m:mfrac><m:mprescripts id="id98834"/><m:mover id="id98835"><m:mrow id="id98836"><m:mi id="id98837">q</m:mi><m:mo id="id98839" movablelimits="false">→</m:mo><m:mrow id="id98844"><m:mo id="id98845" movablelimits="false">+</m:mo><m:mi id="id98849" mathvariant="normal">∞</m:mi></m:mrow></m:mrow><m:mo id="id98854">∼</m:mo></m:mover><m:none id="id98856"/></m:mmultiscripts><m:mo id="id98858">⁢</m:mo><m:msup id="id98860"><m:mi id="id98861">e</m:mi><m:mrow id="id98863"><m:mo id="id98864">-</m:mo><m:mrow id="id98866"><m:msubsup id="id98867"><m:mo id="id98868">∫</m:mo><m:msub id="id98871"><m:mi id="id98872">q</m:mi><m:mo id="id98874">+</m:mo></m:msub><m:mi id="id98876">q</m:mi></m:msubsup><m:mi id="id98878">d</m:mi><m:mo id="id98880">⁢</m:mo><m:mi id="id98883">x</m:mi><m:mo id="id98885">⁢</m:mo><m:mi id="id98887">κ</m:mi></m:mrow></m:mrow></m:msup></m:mrow></m:mrow><m:mo id="id98890">,</m:mo></m:mrow><m:annotation-xml id="id98892" encoding="MathML-Content"><m:apply id="id98895"><m:list id="id98896"/><m:apply id="id98897"><m:times id="id98898"/><m:ci id="id98900">ψ</m:ci><m:apply id="id98902"><m:csymbol id="id98903" cd="ambiguous">subscript</m:csymbol><m:apply id="id98908"><m:divide id="id98909"/><m:apply id="id98910"><m:csymbol id="id98911" cd="ambiguous">subscript</m:csymbol><m:ci id="id98916">A</m:ci><m:minus id="id98918"/></m:apply><m:apply id="id98919"><m:ci id="id98920"/><m:ci id="id98921">κ</m:ci></m:apply></m:apply><m:apply id="id98923"><m:csymbol id="id98924" cd="ambiguous">superscript</m:csymbol><m:apply id="id98929"><m:ci id="id98930">→</m:ci><m:ci id="id98932">q</m:ci><m:apply id="id98935"><m:minus id="id98936"/><m:infinity id="id98937"/></m:apply></m:apply><m:ci id="id98938">∼</m:ci></m:apply></m:apply><m:apply id="id98940"><m:csymbol id="id98941" cd="ambiguous">superscript</m:csymbol><m:ci id="id98946">e</m:ci><m:apply id="id98948"><m:apply id="id98949"><m:csymbol id="id98950" cd="ambiguous">subscript</m:csymbol><m:apply id="id98955"><m:csymbol id="id98956" cd="ambiguous">superscript</m:csymbol><m:int id="id98961"/><m:ci id="id98962">q</m:ci></m:apply><m:apply id="id98964"><m:csymbol id="id98965" cd="ambiguous">subscript</m:csymbol><m:ci id="id98970">q</m:ci><m:minus id="id98972"/></m:apply></m:apply><m:apply id="id98973"><m:times id="id98974"/><m:ci id="id98975">d</m:ci><m:ci id="id98977">x</m:ci><m:ci id="id98979">κ</m:ci></m:apply></m:apply></m:apply></m:apply><m:apply id="id98982"><m:times id="id98983"/><m:ci id="id98984">ψ</m:ci><m:apply id="id98986"><m:csymbol id="id98987" cd="ambiguous">subscript</m:csymbol><m:apply id="id98992"><m:divide id="id98993"/><m:apply id="id98994"><m:csymbol id="id98995" cd="ambiguous">subscript</m:csymbol><m:ci id="id99000">B</m:ci><m:plus id="id99002"/></m:apply><m:apply id="id99003"><m:ci id="id99004"/><m:ci id="id99005">κ</m:ci></m:apply></m:apply><m:apply id="id99007"><m:csymbol id="id99008" cd="ambiguous">superscript</m:csymbol><m:apply id="id99013"><m:ci id="id99014">→</m:ci><m:ci id="id99017">q</m:ci><m:apply id="id99019"><m:plus id="id99020"/><m:infinity id="id99021"/></m:apply></m:apply><m:ci id="id99022">∼</m:ci></m:apply></m:apply><m:apply id="id99024"><m:csymbol id="id99025" cd="ambiguous">superscript</m:csymbol><m:ci id="id99030">e</m:ci><m:apply id="id99032"><m:minus id="id99033"/><m:apply id="id99034"><m:apply id="id99035"><m:csymbol id="id99036" cd="ambiguous">subscript</m:csymbol><m:apply id="id99041"><m:csymbol id="id99042" cd="ambiguous">superscript</m:csymbol><m:int id="id99047"/><m:ci id="id99048">q</m:ci></m:apply><m:apply id="id99050"><m:csymbol id="id99051" cd="ambiguous">subscript</m:csymbol><m:ci id="id99056">q</m:ci><m:plus id="id99058"/></m:apply></m:apply><m:apply id="id99059"><m:times id="id99060"/><m:ci id="id99061">d</m:ci><m:ci id="id99063">x</m:ci><m:ci id="id99065">κ</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="idp3157072"><h4>Hit idp3157072</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 22</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/204/f081545.xhtml#idp3157072</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:399247(000032%) VariableMap:[rightarrow, b x 3, lim, +, ( x 3, ) x 3, infty, I x 2, , x 2, -, hat, frac, 1, alpha, R x 2, \ x 7, _ x 5, bar, x x 4] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 5 Expects 4 occurences for '|' but has only 0 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp3157072" alttext="\lim _{{R\rightarrow+\infty}}\frac{1}{R}(I_{x}(\hat{b}_{x},b)-I_{x}(\bar{\alpha}_{x},b))" display="inline"><semantics id="idp3157904"><mrow id="idp3158032"><msub id="idp3158160"><mo id="idp3158288">lim</mo><mrow id="idp3158544"><mi id="idp3158672">R</mi><mo id="idp3158928">→</mo><mrow id="idp3159184"><mo id="idp3159312">+</mo><mi id="idp3159568" mathvariant="normal">∞</mi></mrow></mrow></msub><mo id="idp3160096">⁡</mo><mrow id="idp3160384"><mfrac id="idp3160512"><mn id="idp3160640">1</mn><mi id="idp3160896">R</mi></mfrac><mo id="idp3161152">⁢</mo><mrow id="idp3161440"><mo id="idp3161568">(</mo><mrow id="idp3161824"><mrow id="idp3161952"><msub id="idp3162080"><mi id="idp3162208">I</mi><mi id="idp3162464">x</mi></msub><mo id="idp3162720">⁢</mo><mrow id="idp3163008"><mo id="idp3163136">(</mo><mrow id="idp3163392"><msub id="idp3163520"><mover id="idp3163648" accent="true"><mi id="idp3164048">b</mi><mo id="idp3164304">^</mo></mover><mi id="idp3164560">x</mi></msub><mo id="idp3164816">,</mo><mi id="idp3165072">b</mi></mrow><mo id="idp3165328">)</mo></mrow></mrow><mo id="idp3165584">-</mo><mrow id="idp3165840"><msub id="idp3165968"><mi id="idp3166096">I</mi><mi id="idp3166352">x</mi></msub><mo id="idp3166608">⁢</mo><mrow id="idp3166896"><mo id="idp3167024">(</mo><mrow id="idp3167280"><msub id="idp3167408"><mover id="idp3167536" accent="true"><mi id="idp3167936">α</mi><mo id="idp3168224">¯</mo></mover><mi id="idp3168512">x</mi></msub><mo id="idp3168768">,</mo><mi id="idp3169024">b</mi></mrow><mo id="idp3169280">)</mo></mrow></mrow></mrow><mo id="idp3169536">)</mo></mrow></mrow></mrow><annotation-xml id="idp3169792" encoding="MathML-Content"><apply id="idp3170192"><apply id="idp3170320"><csymbol id="idp3170448" cd="ambiguous">subscript</csymbol><limit id="idp3171008"/><apply id="idp3171136"><ci id="idp3171264">→</ci><ci id="idp3171552">R</ci><apply id="idp3171808"><plus id="idp3171936"/><infinity id="idp3172064"/></apply></apply></apply><apply id="idp3172192"><times id="idp3172320"/><apply id="idp3172448"><divide id="idp3172576"/><cn id="idp3172704" type="integer">1</cn><ci id="idp3173232">R</ci></apply><apply id="idp3173488"><minus id="idp3173616"/><apply id="idp3173744"><times id="idp3173872"/><apply id="idp3174000"><csymbol id="idp3174128" cd="ambiguous">subscript</csymbol><ci id="idp3174688">I</ci><ci id="idp3174944">x</ci></apply><apply id="idp3175200"><interval id="idp3175328" closure="open"/><apply id="idp3175728"><csymbol id="idp3175856" cd="ambiguous">subscript</csymbol><apply id="idp3176416"><ci id="idp3176544">^</ci><ci id="idp3176800">b</ci></apply><ci id="idp3177056">x</ci></apply><ci id="idp3177312">b</ci></apply></apply><apply id="idp3177568"><times id="idp3177696"/><apply id="idp3177824"><csymbol id="idp3177952" cd="ambiguous">subscript</csymbol><ci id="idp3178512">I</ci><ci id="idp3178768">x</ci></apply><apply id="idp3179024"><interval id="idp3179152" closure="open"/><apply id="idp3179552"><csymbol id="idp3179680" cd="ambiguous">subscript</csymbol><apply id="idp3180240"><ci id="idp3180368">¯</ci><ci id="idp3180656">α</ci></apply><ci id="idp3180944">x</ci></apply><ci id="idp3181200">b</ci></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp3181456" encoding="application/x-tex">\lim _{{R\rightarrow+\infty}}\frac{1}{R}(I_{x}(\hat{b}_{x},b)-I_{x}(\bar{\alpha}_{x},b))</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp3262768"><h4>Hit idp3262768</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 23</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/204/f081545.xhtml#idp3262768</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:413185(000033%) VariableMap:[rightarrow, b x 3, lim, +, ( x 3, ) x 3, I x 2, infty, , x 2, -, hat, frac, 1, displaystyle, alpha, R x 2, \ x 8, _ x 5, bar, x x 4] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 5 Expects 4 occurences for '|' but has only 0 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp3262768" alttext="\displaystyle\lim _{{R\rightarrow+\infty}}\frac{1}{R}(I_{x}(\hat{b}_{x},b)-I_{x}(\bar{\alpha}_{x},b))" display="inline"><semantics id="idp3263600"><mrow id="idp3263728"><munder id="idp3263856"><mo id="idp3263984" movablelimits="false">lim</mo><mrow id="idp3264480"><mi id="idp3264608">R</mi><mo id="idp3264864">→</mo><mrow id="idp3265120"><mo id="idp3265248">+</mo><mi id="idp3265504" mathvariant="normal">∞</mi></mrow></mrow></munder><mo id="idp3266064">⁡</mo><mrow id="idp3266352"><mstyle id="idp3266480" displaystyle="true"><mfrac id="idp3266880"><mn id="idp3267008">1</mn><mi id="idp3267264">R</mi></mfrac></mstyle><mo id="idp3267520">⁢</mo><mrow id="idp3267808"><mo id="idp3267936">(</mo><mrow id="idp3268192"><mrow id="idp3268320"><msub id="idp3268448"><mi id="idp3268576">I</mi><mi id="idp3268832">x</mi></msub><mo id="idp3269088">⁢</mo><mrow id="idp3269376"><mo id="idp3269504">(</mo><mrow id="idp3269760"><msub id="idp3269888"><mover id="idp3270016" accent="true"><mi id="idp3270416">b</mi><mo id="idp3270672">^</mo></mover><mi id="idp3270928">x</mi></msub><mo id="idp3271184">,</mo><mi id="idp3271440">b</mi></mrow><mo id="idp3271696">)</mo></mrow></mrow><mo id="idp3271952">-</mo><mrow id="idp3272208"><msub id="idp3272336"><mi id="idp3272464">I</mi><mi id="idp3272720">x</mi></msub><mo id="idp3272976">⁢</mo><mrow id="idp3273264"><mo id="idp3273392">(</mo><mrow id="idp3273648"><msub id="idp3273776"><mover id="idp3273904" accent="true"><mi id="idp3274304">α</mi><mo id="idp3274592">¯</mo></mover><mi id="idp3274880">x</mi></msub><mo id="idp3275136">,</mo><mi id="idp3275392">b</mi></mrow><mo id="idp3275648">)</mo></mrow></mrow></mrow><mo id="idp3275904">)</mo></mrow></mrow></mrow><annotation-xml id="idp3276160" encoding="MathML-Content"><apply id="idp3276560"><apply id="idp3276688"><csymbol id="idp3276816" cd="ambiguous">subscript</csymbol><limit id="idp3277376"/><apply id="idp3277504"><ci id="idp3277632">→</ci><ci id="idp3277920">R</ci><apply id="idp3278176"><plus id="idp3278304"/><infinity id="idp3278432"/></apply></apply></apply><apply id="idp3278560"><times id="idp3278688"/><apply id="idp3278816"><divide id="idp3278944"/><cn id="idp3279072" type="integer">1</cn><ci id="idp3279600">R</ci></apply><apply id="idp3279856"><minus id="idp3279984"/><apply id="idp3280112"><times id="idp3280240"/><apply id="idp3280368"><csymbol id="idp3280496" cd="ambiguous">subscript</csymbol><ci id="idp3281056">I</ci><ci id="idp3281312">x</ci></apply><apply id="idp3281568"><interval id="idp3281696" closure="open"/><apply id="idp3282096"><csymbol id="idp3282224" cd="ambiguous">subscript</csymbol><apply id="idp3282784"><ci id="idp3282912">^</ci><ci id="idp3283168">b</ci></apply><ci id="idp3283424">x</ci></apply><ci id="idp3283680">b</ci></apply></apply><apply id="idp3283936"><times id="idp3284064"/><apply id="idp3284192"><csymbol id="idp3284320" cd="ambiguous">subscript</csymbol><ci id="idp3284880">I</ci><ci id="idp3285136">x</ci></apply><apply id="idp3285392"><interval id="idp3285520" closure="open"/><apply id="idp3285920"><csymbol id="idp3286048" cd="ambiguous">subscript</csymbol><apply id="idp3286608"><ci id="idp3286736">¯</ci><ci id="idp3287024">α</ci></apply><ci id="idp3287312">x</ci></apply><ci id="idp3287568">b</ci></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp3287824" encoding="application/x-tex">\displaystyle\lim _{{R\rightarrow+\infty}}\frac{1}{R}(I_{x}(\hat{b}_{x},b)-I_{x}(\bar{\alpha}_{x},b))</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp3371280"><h4>Hit idp3371280</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 24</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/204/f081545.xhtml#idp3371280</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:427577(000034%) VariableMap:[rightarrow, b x 3, lim, +, ( x 3, ) x 3, infty, I x 2, , x 2, -, hat, frac, 1, alpha, R x 2, \ x 7, _ x 5, bar, x x 4] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 5 Expects 4 occurences for '|' but has only 0 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp3371280" alttext="\lim _{{R\rightarrow+\infty}}\frac{1}{R}(I_{x}(\hat{b}_{x},b)-I_{x}(\bar{\alpha}_{x},b))" display="inline"><semantics id="idp3372112"><mrow id="idp3372240"><msub id="idp3372368"><mo id="idp3372496">lim</mo><mrow id="idp3372752"><mi id="idp3372880">R</mi><mo id="idp3373136">→</mo><mrow id="idp3373392"><mo id="idp3373520">+</mo><mi id="idp3373776" mathvariant="normal">∞</mi></mrow></mrow></msub><mo id="idp3374304">⁡</mo><mrow id="idp3374592"><mfrac id="idp3374720"><mn id="idp3374848">1</mn><mi id="idp3375104">R</mi></mfrac><mo id="idp3375360">⁢</mo><mrow id="idp3375648"><mo id="idp3375776">(</mo><mrow id="idp3376032"><mrow id="idp3376160"><msub id="idp3376288"><mi id="idp3376416">I</mi><mi id="idp3376672">x</mi></msub><mo id="idp3376928">⁢</mo><mrow id="idp3377216"><mo id="idp3377344">(</mo><mrow id="idp3377600"><msub id="idp3377728"><mover id="idp3377856" accent="true"><mi id="idp3378256">b</mi><mo id="idp3378512">^</mo></mover><mi id="idp3378768">x</mi></msub><mo id="idp3379024">,</mo><mi id="idp3379280">b</mi></mrow><mo id="idp3379536">)</mo></mrow></mrow><mo id="idp3379792">-</mo><mrow id="idp3380048"><msub id="idp3380176"><mi id="idp3380304">I</mi><mi id="idp3380560">x</mi></msub><mo id="idp3380816">⁢</mo><mrow id="idp3381104"><mo id="idp3381232">(</mo><mrow id="idp3381488"><msub id="idp3381616"><mover id="idp3381744" accent="true"><mi id="idp3382144">α</mi><mo id="idp3382432">¯</mo></mover><mi id="idp3382720">x</mi></msub><mo id="idp3382976">,</mo><mi id="idp3383232">b</mi></mrow><mo id="idp3383488">)</mo></mrow></mrow></mrow><mo id="idp3383744">)</mo></mrow></mrow></mrow><annotation-xml id="idp3384000" encoding="MathML-Content"><apply id="idp3384400"><apply id="idp3384528"><csymbol id="idp3384656" cd="ambiguous">subscript</csymbol><limit id="idp3385216"/><apply id="idp3385344"><ci id="idp3385472">→</ci><ci id="idp3385760">R</ci><apply id="idp3386016"><plus id="idp3386144"/><infinity id="idp3386272"/></apply></apply></apply><apply id="idp3386400"><times id="idp3386528"/><apply id="idp3386656"><divide id="idp3386784"/><cn id="idp3386912" type="integer">1</cn><ci id="idp3387440">R</ci></apply><apply id="idp3387696"><minus id="idp3387824"/><apply id="idp3387952"><times id="idp3388080"/><apply id="idp3388208"><csymbol id="idp3388336" cd="ambiguous">subscript</csymbol><ci id="idp3388896">I</ci><ci id="idp3389152">x</ci></apply><apply id="idp3389408"><interval id="idp3389536" closure="open"/><apply id="idp3389936"><csymbol id="idp3390064" cd="ambiguous">subscript</csymbol><apply id="idp3390624"><ci id="idp3390752">^</ci><ci id="idp3391008">b</ci></apply><ci id="idp3391264">x</ci></apply><ci id="idp3391520">b</ci></apply></apply><apply id="idp3391776"><times id="idp3391904"/><apply id="idp3392032"><csymbol id="idp3392160" cd="ambiguous">subscript</csymbol><ci id="idp3392720">I</ci><ci id="idp3392976">x</ci></apply><apply id="idp3393232"><interval id="idp3393360" closure="open"/><apply id="idp3393760"><csymbol id="idp3393888" cd="ambiguous">subscript</csymbol><apply id="idp3394448"><ci id="idp3394576">¯</ci><ci id="idp3394864">α</ci></apply><ci id="idp3395152">x</ci></apply><ci id="idp3395408">b</ci></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp3395664" encoding="application/x-tex">\lim _{{R\rightarrow+\infty}}\frac{1}{R}(I_{x}(\hat{b}_{x},b)-I_{x}(\bar{\alpha}_{x},b))</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp5802448"><h4>Hit idp5802448</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 25</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/15/f005655.xhtml#idp5802448</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:740502(000046%) VariableMap:[eta x 3, C, g, infty, ], \ x 37, _ x 11, left x 6, ^ x 5, right x 6, [, end, rightarrow, g x 3, c, sqrt, mu x 6, + x 4, ( x 8, ) x 8, k x 5, begin, - x 3, frac x 7, 1 x 9, underset, r x 11, sim, array x 2] Expects 1 occurences for 'to' but has only 0 Expects 4 occurences for '|' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp5802448" alttext="\left(\begin{array}[]{c}g_{k}(1-\eta)\left(\mu _{r}+\frac{1}{r}\right)\\ g_{k}(1-\eta)\mu _{r}\end{array}\right)\underset{k\rightarrow+\infty}{\sim}\frac{C_{1}}{\sqrt{g_{k}}}\left(\left(\frac{\left(\mu _{r}+\frac{1}{r}\right)^{{\mu _{r}+\frac{1}{r}}}}{\mu _{r}^{{\mu _{r}}}\left(\frac{1}{r}\right)^{{\frac{1}{r}}}}\right)^{{1-\eta}}\right)^{{g_{k}}}" display="block"><semantics id="idp5802000"><mrow id="idp5802128"><mrow id="idp5802256"><mo id="idp5803536">(</mo><mtable id="idp5803792" rowspacing="0.2ex" columnspacing="0.4em"><mtr id="idp5804400"><mtd id="idp5804528" columnalign="center"><mrow id="idp5804896"><msub id="idp5805024"><mi id="idp5805152">g</mi><mi id="idp5805408">k</mi></msub><mo id="idp5805664">⁢</mo><mrow id="idp5805920"><mo id="idp5806048">(</mo><mrow id="idp5806304"><mn id="idp5806432">1</mn><mo id="idp5806688">-</mo><mi id="idp5806944">η</mi></mrow><mo id="idp5807232">)</mo></mrow><mo id="idp5807488">⁢</mo><mrow id="idp5807776"><mo id="idp5807904">(</mo><mrow id="idp5808160"><msub id="idp5808288"><mi id="idp5808416">μ</mi><mi id="idp5808704">r</mi></msub><mo id="idp5808960">+</mo><mfrac id="idp5809216"><mn id="idp5809344">1</mn><mi id="idp5809600">r</mi></mfrac></mrow><mo id="idp5809856">)</mo></mrow></mrow></mtd></mtr><mtr id="idp5810112"><mtd id="idp5810240" columnalign="center"><mrow id="idp5810640"><msub id="idp5810768"><mi id="idp5810896">g</mi><mi id="idp5811152">k</mi></msub><mo id="idp5811408">⁢</mo><mrow id="idp5811696"><mo id="idp5811824">(</mo><mrow id="idp5812080"><mn id="idp5812208">1</mn><mo id="idp5812464">-</mo><mi id="idp5812720">η</mi></mrow><mo id="idp5813008">)</mo></mrow><mo id="idp5813264">⁢</mo><msub id="idp5813552"><mi id="idp5813680">μ</mi><mi id="idp5813968">r</mi></msub></mrow></mtd></mtr></mtable><mo id="idp5814224">)</mo></mrow><mo id="idp5814480">⁢</mo><munder id="idp5814768" accent="true"><mo id="idp5815168">∼</mo><mrow id="idp5815456"><mi id="idp5815584">k</mi><mo id="idp5815840">→</mo><mrow id="idp5816128"><mo id="idp5816256">+</mo><mi id="idp5816512" mathvariant="normal">∞</mi></mrow></mrow></munder><mo id="idp5817072">⁢</mo><mfrac id="idp5817360"><msub id="idp5817488"><mi id="idp5817616">C</mi><mn id="idp5817872">1</mn></msub><msqrt id="idp5818128"><msub id="idp5818256"><mi id="idp5818384">g</mi><mi id="idp5818640">k</mi></msub></msqrt></mfrac><mo id="idp5818896">⁢</mo><msup id="idp5819184"><mrow id="idp5819312"><mo id="idp5819440">(</mo><msup id="idp5819696"><mrow id="idp5819824"><mo id="idp5819952">(</mo><mfrac id="idp5820208"><msup id="idp5820336"><mrow id="idp5820464"><mo id="idp5820592">(</mo><mrow id="idp5820848"><msub id="idp5820976"><mi id="idp5821104">μ</mi><mi id="idp5821392">r</mi></msub><mo id="idp5821648">+</mo><mfrac id="idp5821904"><mn id="idp5822032">1</mn><mi id="idp5822288">r</mi></mfrac></mrow><mo id="idp5822544">)</mo></mrow><mrow id="idp5822800"><msub id="idp5822928"><mi id="idp5823056">μ</mi><mi id="idp5823344">r</mi></msub><mo id="idp5823600">+</mo><mfrac id="idp5823856"><mn id="idp5823984">1</mn><mi id="idp5824240">r</mi></mfrac></mrow></msup><mrow id="idp5824496"><msubsup id="idp5824624"><mi id="idp5824752">μ</mi><mi id="idp5825040">r</mi><msub id="idp5825296"><mi id="idp5825424">μ</mi><mi id="idp5825712">r</mi></msub></msubsup><mo id="idp5825968">⁢</mo><msup id="idp5826256"><mrow id="idp5826384"><mo id="idp5826512">(</mo><mfrac id="idp5826768"><mn id="idp5826896">1</mn><mi id="idp5827152">r</mi></mfrac><mo id="idp5827408">)</mo></mrow><mfrac id="idp5827664"><mn id="idp5827792">1</mn><mi id="idp5828048">r</mi></mfrac></msup></mrow></mfrac><mo id="idp5828304">)</mo></mrow><mrow id="idp5828560"><mn id="idp5828688">1</mn><mo id="idp5828944">-</mo><mi id="idp5829200">η</mi></mrow></msup><mo id="idp5829488">)</mo></mrow><msub id="idp5829744"><mi id="idp5829872">g</mi><mi id="idp5830128">k</mi></msub></msup></mrow><annotation-xml id="idp5830384" encoding="MathML-Content"><apply id="idp5830784"><times id="idp5830912"/><mtext id="idp5831040">⁢gk-1η+μr1r⁢gk-1ημr</mtext><apply id="idp5831344"><apply id="idp5831472"><ci id="idp5831600">→</ci><ci id="idp5831888">k</ci><apply id="idp5832144"><plus id="idp5832272"/><infinity id="idp5832400"/></apply></apply><csymbol id="idp5832528" cd="latexml">similar-to</csymbol></apply><apply id="idp5833088"><divide id="idp5833216"/><apply id="idp5833344"><csymbol id="idp5833472" cd="ambiguous">subscript</csymbol><ci id="idp5834032">C</ci><cn id="idp5834288" type="integer">1</cn></apply><apply id="idp5834816"><root id="idp5834944"/><apply id="idp5835072"><csymbol id="idp5835200" cd="ambiguous">subscript</csymbol><ci id="idp5835760">g</ci><ci id="idp5836016">k</ci></apply></apply></apply><apply id="idp5836272"><csymbol id="idp5836400" cd="ambiguous">superscript</csymbol><apply id="idp5836960"><csymbol id="idp5837088" cd="ambiguous">superscript</csymbol><apply id="idp5837648"><divide id="idp5837776"/><apply id="idp5837904"><csymbol id="idp5838032" cd="ambiguous">superscript</csymbol><apply id="idp5838592"><plus id="idp5838720"/><apply id="idp5838848"><csymbol id="idp5838976" cd="ambiguous">subscript</csymbol><ci id="idp5839536">μ</ci><ci id="idp5839824">r</ci></apply><apply id="idp5840080"><divide id="idp5840208"/><cn id="idp5840336" type="integer">1</cn><ci id="idp5840864">r</ci></apply></apply><apply id="idp5841120"><plus id="idp5841248"/><apply id="idp5841376"><csymbol id="idp5841504" cd="ambiguous">subscript</csymbol><ci id="idp5842064">μ</ci><ci id="idp5842352">r</ci></apply><apply id="idp5842608"><divide id="idp5842736"/><cn id="idp5842864" type="integer">1</cn><ci id="idp5843392">r</ci></apply></apply></apply><apply id="idp5843648"><times id="idp5843776"/><apply id="idp5843904"><csymbol id="idp5844032" cd="ambiguous">superscript</csymbol><apply id="idp5844592"><csymbol id="idp5844720" cd="ambiguous">subscript</csymbol><ci id="idp5845280">μ</ci><ci id="idp5845568">r</ci></apply><apply id="idp5845824"><csymbol id="idp5845952" cd="ambiguous">subscript</csymbol><ci id="idp5846512">μ</ci><ci id="idp5846800">r</ci></apply></apply><apply id="idp5847056"><csymbol id="idp5847184" cd="ambiguous">superscript</csymbol><apply id="idp5847744"><divide id="idp5847872"/><cn id="idp5848000" type="integer">1</cn><ci id="idp5848528">r</ci></apply><apply id="idp5848784"><divide id="idp5848912"/><cn id="idp5849040" type="integer">1</cn><ci id="idp5849568">r</ci></apply></apply></apply></apply><apply id="idp5849824"><minus id="idp5849952"/><cn id="idp5850080" type="integer">1</cn><ci id="idp5850608">η</ci></apply></apply><apply id="idp5850896"><csymbol id="idp5851024" cd="ambiguous">subscript</csymbol><ci id="idp5851584">g</ci><ci id="idp5851840">k</ci></apply></apply></apply></annotation-xml><annotation id="idp5852096" encoding="application/x-tex">\left(\begin{array}[]{c}g_{k}(1-\eta)\left(\mu _{r}+\frac{1}{r}\right)\\ g_{k}(1-\eta)\mu _{r}\end{array}\right)\underset{k\rightarrow+\infty}{\sim}\frac{C_{1}}{\sqrt{g_{k}}}\left(\left(\frac{\left(\mu _{r}+\frac{1}{r}\right)^{{\mu _{r}+\frac{1}{r}}}}{\mu _{r}^{{\mu _{r}}}\left(\frac{1}{r}\right)^{{\frac{1}{r}}}}\right)^{{1-\eta}}\right)^{{g_{k}}}</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp5857744"><h4>Hit idp5857744</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 2</li> <li>Formulasearchengine rank: 26</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/15/f005655.xhtml#idp5857744</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:748019(000046%) VariableMap:[eta x 3, C, , infty, ], \ x 33, _ x 5, left x 5, ^ x 8, right x 5, end, [, rightarrow, g x 4, c, sqrt x 2, + x 4, ( x 8, ) x 8, ., k x 5, frac x 10, begin, - x 3, 2 x 6, 1 x 7, underset, r x 8, q x 6, sim, array x 2] Expects 1 occurences for 'to' but has only 0 Expects 6 occurences for '_' but has only 5 Expects 4 occurences for '|' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp5857744" alttext="\left(\begin{array}[]{c}\frac{g_{k}}{r}q^{{\frac{r}{2}}}(1+\eta)\\ \frac{g_{k}}{r}\left(q^{{\frac{r}{2}}}-1\right)(1+\eta)\end{array}\right)\underset{k\rightarrow+\infty}{\sim}\frac{C_{2}}{\sqrt{g_{k}}}\left(\left(\left(\frac{q^{{\frac{r}{2}}}}{q^{{\frac{r}{2}}}-1}\right)^{{\frac{1}{r}(q^{{\frac{r}{2}}}-1)}}\sqrt{q}\right)^{{1+\eta}}\right)^{{g_{k}}}." display="block"><semantics id="idp5857296"><mrow id="idp5857424"><mrow id="idp5857552"><mrow id="idp5858832"><mo id="idp5858960">(</mo><mtable id="idp5859216" rowspacing="0.2ex" columnspacing="0.4em"><mtr id="idp5859824"><mtd id="idp5859952" columnalign="center"><mrow id="idp5860320"><mfrac id="idp5860448"><msub id="idp5860576"><mi id="idp5860704">g</mi><mi id="idp5860960">k</mi></msub><mi id="idp5861216">r</mi></mfrac><mo id="idp5861472">⁢</mo><msup id="idp5861728"><mi id="idp5861856">q</mi><mfrac id="idp5862112"><mi id="idp5862240">r</mi><mn id="idp5862496">2</mn></mfrac></msup><mo id="idp5862752">⁢</mo><mrow id="idp5863040"><mo id="idp5863168">(</mo><mrow id="idp5863424"><mn id="idp5863552">1</mn><mo id="idp5863808">+</mo><mi id="idp5864064">η</mi></mrow><mo id="idp5864352">)</mo></mrow></mrow></mtd></mtr><mtr id="idp5864608"><mtd id="idp5864736" columnalign="center"><mrow id="idp5865136"><mfrac id="idp5865264"><msub id="idp5865392"><mi id="idp5865520">g</mi><mi id="idp5865776">k</mi></msub><mi id="idp5866032">r</mi></mfrac><mo id="idp5866288">⁢</mo><mrow id="idp5866576"><mo id="idp5866704">(</mo><mrow id="idp5866960"><msup id="idp5867088"><mi id="idp5867216">q</mi><mfrac id="idp5867472"><mi id="idp5867600">r</mi><mn id="idp5867856">2</mn></mfrac></msup><mo id="idp5868112">-</mo><mn id="idp5868368">1</mn></mrow><mo id="idp5868624">)</mo></mrow><mo id="idp5868880">⁢</mo><mrow id="idp5869168"><mo id="idp5869296">(</mo><mrow id="idp5869552"><mn id="idp5869680">1</mn><mo id="idp5869936">+</mo><mi id="idp5870192">η</mi></mrow><mo id="idp5870480">)</mo></mrow></mrow></mtd></mtr></mtable><mo id="idp5870736">)</mo></mrow><mo id="idp5870992">⁢</mo><munder id="idp5871280" accent="true"><mo id="idp5871680">∼</mo><mrow id="idp5871968"><mi id="idp5872096">k</mi><mo id="idp5872352">→</mo><mrow id="idp5872640"><mo id="idp5872768">+</mo><mi id="idp5873024" mathvariant="normal">∞</mi></mrow></mrow></munder><mo id="idp5873584">⁢</mo><mfrac id="idp5873872"><msub id="idp5874000"><mi id="idp5874128">C</mi><mn id="idp5874384">2</mn></msub><msqrt id="idp5874640"><msub id="idp5874768"><mi id="idp5874896">g</mi><mi id="idp5875152">k</mi></msub></msqrt></mfrac><mo id="idp5875408">⁢</mo><msup id="idp5875696"><mrow id="idp5875824"><mo id="idp5875952">(</mo><msup id="idp5876208"><mrow id="idp5876336"><mo id="idp5876464">(</mo><mrow id="idp5876720"><msup id="idp5876848"><mrow id="idp5876976"><mo id="idp5877104">(</mo><mfrac id="idp5877360"><msup id="idp5877488"><mi id="idp5877616">q</mi><mfrac id="idp5877872"><mi id="idp5878000">r</mi><mn id="idp5878256">2</mn></mfrac></msup><mrow id="idp5878512"><msup id="idp5878640"><mi id="idp5878768">q</mi><mfrac id="idp5879024"><mi id="idp5879152">r</mi><mn id="idp5879408">2</mn></mfrac></msup><mo id="idp5879664">-</mo><mn id="idp5879920">1</mn></mrow></mfrac><mo id="idp5880176">)</mo></mrow><mrow id="idp5880432"><mfrac id="idp5880560"><mn id="idp5880688">1</mn><mi id="idp5880944">r</mi></mfrac><mo id="idp5881200">⁢</mo><mrow id="idp5881488"><mo id="idp5881616">(</mo><mrow id="idp5881872"><msup id="idp5882000"><mi id="idp5882128">q</mi><mfrac id="idp5882384"><mi id="idp5882512">r</mi><mn id="idp5882768">2</mn></mfrac></msup><mo id="idp5883024">-</mo><mn id="idp5883280">1</mn></mrow><mo id="idp5883536">)</mo></mrow></mrow></msup><mo id="idp5883792">⁢</mo><msqrt id="idp5884080"><mi id="idp5884208">q</mi></msqrt></mrow><mo id="idp5884464">)</mo></mrow><mrow id="idp5884720"><mn id="idp5884848">1</mn><mo id="idp5885104">+</mo><mi id="idp5885360">η</mi></mrow></msup><mo id="idp5885648">)</mo></mrow><msub id="idp5885904"><mi id="idp5886032">g</mi><mi id="idp5886288">k</mi></msub></msup></mrow><mo id="idp5886544">.</mo></mrow><annotation-xml id="idp5886800" encoding="MathML-Content"><apply id="idp5887200"><times id="idp5887328"/><mtext id="idp5887456">⁢gkrqr2+1η⁢gkr-qr21+1η</mtext><apply id="idp5887760"><apply id="idp5887888"><ci id="idp5888016">→</ci><ci id="idp5888304">k</ci><apply id="idp5888560"><plus id="idp5888688"/><infinity id="idp5888816"/></apply></apply><csymbol id="idp5888944" cd="latexml">similar-to</csymbol></apply><apply id="idp5889504"><divide id="idp5889632"/><apply id="idp5889760"><csymbol id="idp5889888" cd="ambiguous">subscript</csymbol><ci id="idp5890448">C</ci><cn id="idp5890704" type="integer">2</cn></apply><apply id="idp5891232"><root id="idp5891360"/><apply id="idp5891488"><csymbol id="idp5891616" cd="ambiguous">subscript</csymbol><ci id="idp5892176">g</ci><ci id="idp5892432">k</ci></apply></apply></apply><apply id="idp5892688"><csymbol id="idp5892816" cd="ambiguous">superscript</csymbol><apply id="idp5893376"><csymbol id="idp5893504" cd="ambiguous">superscript</csymbol><apply id="idp5894064"><times id="idp5894192"/><apply id="idp5894320"><csymbol id="idp5894448" cd="ambiguous">superscript</csymbol><apply id="idp5895008"><divide id="idp5895136"/><apply id="idp5895264"><csymbol id="idp5895392" cd="ambiguous">superscript</csymbol><ci id="idp5895952">q</ci><apply id="idp5896208"><divide id="idp5896336"/><ci id="idp5896464">r</ci><cn id="idp5896720" type="integer">2</cn></apply></apply><apply id="idp5897248"><minus id="idp5897376"/><apply id="idp5897504"><csymbol id="idp5897632" cd="ambiguous">superscript</csymbol><ci id="idp5898192">q</ci><apply id="idp5898448"><divide id="idp5898576"/><ci id="idp5898704">r</ci><cn id="idp5898960" type="integer">2</cn></apply></apply><cn id="idp5899488" type="integer">1</cn></apply></apply><apply id="idp5900016"><times id="idp5900144"/><apply id="idp5900272"><divide id="idp5900400"/><cn id="idp5900528" type="integer">1</cn><ci id="idp5901056">r</ci></apply><apply id="idp5901312"><minus id="idp5901440"/><apply id="idp5901568"><csymbol id="idp5901696" cd="ambiguous">superscript</csymbol><ci id="idp5902256">q</ci><apply id="idp5902512"><divide id="idp5902640"/><ci id="idp5902768">r</ci><cn id="idp5903024" type="integer">2</cn></apply></apply><cn id="idp5903552" type="integer">1</cn></apply></apply></apply><apply id="idp5904080"><root id="idp5904208"/><ci id="idp5904336">q</ci></apply></apply><apply id="idp5904592"><plus id="idp5904720"/><cn id="idp5904848" type="integer">1</cn><ci id="idp5905376">η</ci></apply></apply><apply id="idp5905664"><csymbol id="idp5905792" cd="ambiguous">subscript</csymbol><ci id="idp5906288">g</ci><ci id="idp5906544">k</ci></apply></apply></apply></annotation-xml><annotation id="idp5906800" encoding="application/x-tex">\left(\begin{array}[]{c}\frac{g_{k}}{r}q^{{\frac{r}{2}}}(1+\eta)\\ \frac{g_{k}}{r}\left(q^{{\frac{r}{2}}}-1\right)(1+\eta)\end{array}\right)\underset{k\rightarrow+\infty}{\sim}\frac{C_{2}}{\sqrt{g_{k}}}\left(\left(\left(\frac{q^{{\frac{r}{2}}}}{q^{{\frac{r}{2}}}-1}\right)^{{\frac{1}{r}(q^{{\frac{r}{2}}}-1)}}\sqrt{q}\right)^{{1+\eta}}\right)^{{g_{k}}}.</annotation></semantics></math> <br /> End of MathML <br /> .</div> <h3>Detailed results for reviewer score 0</h3> <div id="id135258"><h4>Hit id135258</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 27</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/220/f087765.xhtml#id135258</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1316480(000063%) VariableMap:[mathbf, mapsto, + x 3, (, N x 2, ), k, 1, s, q, rs, \ x 3, _ x 2, ^, | x 2, dots, z] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 3 Expects 6 occurences for '_' but has only 2 Expects 4 occurences for '|' but has only 2 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id135258" alttext="z\mapsto q^{{|{\mathbf{k}}|+(N_{{1s}}+\dots+N_{{rs}})}}" display="inline"><m:semantics id="id135264"><m:mrow id="id135265"><m:mi id="id135266">z</m:mi><m:mo id="id135268">↦</m:mo><m:msup id="id135270"><m:mi id="id135271">q</m:mi><m:mrow id="id135273"><m:mfenced id="id135274" open="|" close="|"><m:mi id="id135280" mathvariant="bold">k</m:mi></m:mfenced><m:mo id="id135284">+</m:mo><m:mfenced id="id135286" open="(" close=")"><m:mrow id="id135291"><m:msub id="id135292"><m:mi id="id135293">N</m:mi><m:mrow id="id135295"><m:mn id="id135296">1</m:mn><m:mo id="id135299">⁢</m:mo><m:mi id="id135301">s</m:mi></m:mrow></m:msub><m:mo id="id135303">+</m:mo><m:mi id="id135305" mathvariant="normal">…</m:mi><m:mo id="id135310">+</m:mo><m:msub id="id135312"><m:mi id="id135313">N</m:mi><m:mrow id="id135315"><m:mi id="id135316">r</m:mi><m:mo id="id135318">⁢</m:mo><m:mi id="id135321">s</m:mi></m:mrow></m:msub></m:mrow></m:mfenced></m:mrow></m:msup></m:mrow><m:annotation-xml id="id135323" encoding="MathML-Content"><m:apply id="id135326"><m:ci id="id135327">↦</m:ci><m:ci id="id135330">z</m:ci><m:apply id="id135332"><m:csymbol id="id135333" cd="ambiguous">superscript</m:csymbol><m:ci id="id135338">q</m:ci><m:apply id="id135340"><m:plus id="id135341"/><m:apply id="id135342"><m:abs id="id135343"/><m:ci id="id135344">k</m:ci></m:apply><m:apply id="id135346"><m:plus id="id135347"/><m:apply id="id135348"><m:csymbol id="id135349" cd="ambiguous">subscript</m:csymbol><m:ci id="id135354">N</m:ci><m:apply id="id135356"><m:times id="id135357"/><m:cn id="id135358" type="integer">1</m:cn><m:ci id="id135363">s</m:ci></m:apply></m:apply><m:ci id="id135365">…</m:ci><m:apply id="id135367"><m:csymbol id="id135368" cd="ambiguous">subscript</m:csymbol><m:ci id="id135373">N</m:ci><m:apply id="id135375"><m:times id="id135376"/><m:ci id="id135377">r</m:ci><m:ci id="id135379">s</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml><m:annotation id="id135382" encoding="application/x-tex">z\mapsto q^{{|{\mathbf{k}}|+(N_{{1s}}+\dots+N_{{rs}})}}</m:annotation></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id186995"><h4>Hit id186995</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 28</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/8/f002970.xhtml#id186995</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:2152311(000057%) VariableMap:[2 x 2, 1, b x 2, r x 2, q, a, sqrt, \, _ x 2, = x 2, - x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 1 Expects 6 occurences for '_' but has only 2 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id186995" alttext="b_{{2r-1}}=-b_{{2r}}=q\sqrt{a}" display="inline"><m:semantics id="id187001"><m:mrow id="id187002"><m:msub id="id187003"><m:mi id="id187004">b</m:mi><m:mrow id="id187006"><m:mrow id="id187007"><m:mn id="id187008">2</m:mn><m:mo id="id187010">⁢</m:mo><m:mi id="id187013">r</m:mi></m:mrow><m:mo id="id187015">-</m:mo><m:mn id="id187017">1</m:mn></m:mrow></m:msub><m:mo id="id187019">=</m:mo><m:mrow id="id187021"><m:mo id="id187022">-</m:mo><m:msub id="id187024"><m:mi id="id187026">b</m:mi><m:mrow id="id187028"><m:mn id="id187029">2</m:mn><m:mo id="id187031">⁢</m:mo><m:mi id="id187033">r</m:mi></m:mrow></m:msub></m:mrow><m:mo id="id187035">=</m:mo><m:mrow id="id187038"><m:mi id="id187039">q</m:mi><m:mo id="id187041">⁢</m:mo><m:msqrt id="id187043"><m:mi id="id187044">a</m:mi></m:msqrt></m:mrow></m:mrow><m:annotation-xml id="id187046" encoding="MathML-Content"><m:apply id="id187050"><m:and id="id187051"/><m:apply id="id187052"><m:eq id="id187053"/><m:apply id="id187054"><m:csymbol id="id187055" cd="ambiguous">subscript</m:csymbol><m:ci id="id187060">b</m:ci><m:apply id="id187062"><m:minus id="id187063"/><m:apply id="id187064"><m:times id="id187065"/><m:cn id="id187066" type="integer">2</m:cn><m:ci id="id187070">r</m:ci></m:apply><m:cn id="id187073" type="integer">1</m:cn></m:apply></m:apply><m:apply id="id187077" xml:id="S6.p11.m6.sh1.cmml"><m:minus id="id187082"/><m:apply id="id187083"><m:csymbol id="id187084" cd="ambiguous">subscript</m:csymbol><m:ci id="id187088">b</m:ci><m:apply id="id187091"><m:times id="id187092"/><m:cn id="id187093" type="integer">2</m:cn><m:ci id="id187097">r</m:ci></m:apply></m:apply></m:apply></m:apply><m:apply id="id187099"><m:eq id="id187100"/><m:share id="id187101" href="#S6.p11.m6.sh1.cmml"/><m:apply id="id187105" xml:id="S6.p11.m6.sh2.cmml"><m:times id="id187109"/><m:ci id="id187110">q</m:ci><m:apply id="id187112"><m:root id="id187113"/><m:ci id="id187114">a</m:ci></m:apply></m:apply></m:apply></m:apply></m:annotation-xml><m:annotation id="id187117" encoding="application/x-tex">b_{{2r-1}}=-b_{{2r}}=q\sqrt{a}</m:annotation></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id55972"><h4>Hit id55972</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 29</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/47/f018756.xhtml#id55972</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:36253(000005%) VariableMap:[a x 2, n x 2, L, sum, (, ), in x 2, infty x 2, ,, mbox, Wiener, W, quad, displaystyle, bf, \ x 13, :, _ x 2, | x 2, ^, =, algebra, <, Z] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 2 Expects 4 occurences for '|' but has only 2 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id55972" alttext="\displaystyle W=\{ a\in L^{\infty}:\sum _{{n\in{\bf Z}}}\| a_{n}\|<\infty\}\quad\mbox{(Wiener algebra),}" display="inline"><m:semantics id="id55970"><m:mrow id="id55978"><m:mi id="id55979">W</m:mi><m:mo id="id55981">=</m:mo><m:mrow id="id55984"><m:mfenced id="id55985" open="{" close="}"><m:mrow id="id55990"><m:mrow id="id55991"><m:mi id="id55992">a</m:mi><m:mo id="id55994">∈</m:mo><m:msup id="id55996"><m:mi id="id55997">L</m:mi><m:mi id="id55999" mathvariant="normal">∞</m:mi></m:msup></m:mrow><m:mo id="id56003">:</m:mo><m:mrow id="id56006"><m:mrow id="id56007"><m:munder id="id56008"><m:mo id="id56009" movablelimits="false">∑</m:mo><m:mrow id="id56013"><m:mi id="id56014">n</m:mi><m:mo id="id56017">∈</m:mo><m:mi id="id56019" mathvariant="bold">Z</m:mi></m:mrow></m:munder><m:mfenced id="id56025" open="∥" close="∥"><m:msub id="id56031"><m:mi id="id56032">a</m:mi><m:mi id="id56034">n</m:mi></m:msub></m:mfenced></m:mrow><m:mo id="id56036"><</m:mo><m:mi id="id56039" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:mfenced><m:mo id="id56042">⁢</m:mo><m:mtext id="id56045">(Wiener algebra),</m:mtext></m:mrow></m:mrow><m:annotation-xml id="id56047" encoding="MathML-Content"><m:apply id="id56050"><m:eq id="id56051"/><m:ci id="id56052">W</m:ci><m:apply id="id56054"><m:times id="id56055"/><m:apply id="id56056"><m:ci id="id56057"/><m:apply id="id56058"><m:in id="id56059"/><m:ci id="id56060">a</m:ci><m:apply id="id56062"><m:csymbol id="id56063" cd="ambiguous">superscript</m:csymbol><m:ci id="id56068">L</m:ci><m:infinity id="id56070"/></m:apply></m:apply><m:apply id="id56071"><m:lt id="id56072"/><m:apply id="id56073"><m:apply id="id56074"><m:csymbol id="id56076" cd="ambiguous">subscript</m:csymbol><m:sum id="id56081"/><m:apply id="id56082"><m:in id="id56083"/><m:ci id="id56084">n</m:ci><m:ci id="id56086">Z</m:ci></m:apply></m:apply><m:apply id="id56088"><m:ci id="id56089"/><m:apply id="id56090"><m:csymbol id="id56091" cd="ambiguous">subscript</m:csymbol><m:ci id="id56096">a</m:ci><m:ci id="id56098">n</m:ci></m:apply></m:apply></m:apply><m:infinity id="id56100"/></m:apply></m:apply><m:mtext id="id56101">(Wiener algebra),</m:mtext></m:apply></m:apply></m:annotation-xml><m:annotation id="id56104" encoding="application/x-tex">\displaystyle W=\{ a\in L^{\infty}:\sum _{{n\in{\bf Z}}}\| a_{n}\|<\infty\}\quad\mbox{(Wiener algebra),}</m:annotation></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id56333"><h4>Hit id56333</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 30</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/165/f065725.xhtml#id56333</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:43623(000010%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id56333" display="block"><m:semantics id="id56336"><m:mrow id="id56337"><m:mrow id="id56338"><m:mfenced id="id56339" open="[" close="]"><m:mrow id="id56344"><m:msub id="id56345"><m:mi id="id56346" mathvariant="bold">t</m:mi><m:mfenced id="id56351" open="(" close=")"><m:mi id="id56356">a</m:mi></m:mfenced></m:msub><m:mo id="id56358">,</m:mo><m:msub id="id56360"><m:mi id="id56361" mathvariant="bold">t</m:mi><m:mfenced id="id56366" open="(" close=")"><m:mi id="id56371">b</m:mi></m:mfenced></m:msub></m:mrow></m:mfenced><m:mo id="id56373">=</m:mo><m:mrow id="id56375"><m:mi id="id56376">i</m:mi><m:mo id="id56378">⁢</m:mo><m:msub id="id56381"><m:mi id="id56382">ε</m:mi><m:mrow id="id56384"><m:mfenced id="id56385" open="(" close=")"><m:mi id="id56390">a</m:mi></m:mfenced><m:mo id="id56393">⁢</m:mo><m:mfenced id="id56395" open="(" close=")"><m:mi id="id56400">b</m:mi></m:mfenced><m:mo id="id56402">⁢</m:mo><m:mfenced id="id56405" open="(" close=")"><m:mi id="id56410">c</m:mi></m:mfenced></m:mrow></m:msub><m:mo id="id56412">⁢</m:mo><m:msub id="id56414"><m:mi id="id56415" mathvariant="bold">t</m:mi><m:mfenced id="id56420" open="(" close=")"><m:mi id="id56425">c</m:mi></m:mfenced></m:msub></m:mrow></m:mrow><m:mo id="id56427">,</m:mo></m:mrow><m:annotation-xml id="id56429" encoding="MathML-Content"><m:apply id="id56432"><m:eq id="id56433"/><m:apply id="id56434"><m:interval id="id56436" closure="closed"/><m:apply id="id56439"><m:csymbol id="id56440" cd="ambiguous">subscript</m:csymbol><m:ci id="id56445">t</m:ci><m:ci id="id56447">a</m:ci></m:apply><m:apply id="id56449"><m:csymbol id="id56450" cd="ambiguous">subscript</m:csymbol><m:ci id="id56455">t</m:ci><m:ci id="id56457">b</m:ci></m:apply></m:apply><m:apply id="id56459"><m:times id="id56460"/><m:ci id="id56461">i</m:ci><m:apply id="id56463"><m:csymbol id="id56464" cd="ambiguous">subscript</m:csymbol><m:ci id="id56469">ε</m:ci><m:apply id="id56471"><m:times id="id56472"/><m:ci id="id56473">a</m:ci><m:ci id="id56476">b</m:ci><m:ci id="id56478">c</m:ci></m:apply></m:apply><m:apply id="id56480"><m:csymbol id="id56481" cd="ambiguous">subscript</m:csymbol><m:ci id="id56486">t</m:ci><m:ci id="id56488">c</m:ci></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id57729"><h4>Hit id57729</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 31</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/79/f031330.xhtml#id57729</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:66215(000040%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id57729" display="block"><m:semantics id="id57732"><m:mrow id="id57733"><m:msub id="id57734"><m:mfenced id="id57735" open="[" close="]"><m:mi id="id57740">x</m:mi></m:mfenced><m:mi id="id57742">q</m:mi></m:msub><m:mo id="id57745">=</m:mo><m:mfrac id="id57747"><m:mrow id="id57748"><m:msup id="id57749"><m:mi id="id57750">q</m:mi><m:mi id="id57752">x</m:mi></m:msup><m:mo id="id57754">-</m:mo><m:msup id="id57756"><m:mi id="id57757">q</m:mi><m:mrow id="id57760"><m:mo id="id57761">-</m:mo><m:mi id="id57763">x</m:mi></m:mrow></m:msup></m:mrow><m:mrow id="id57765"><m:mi id="id57766">q</m:mi><m:mo id="id57768">-</m:mo><m:msup id="id57770"><m:mi id="id57771">q</m:mi><m:mrow id="id57773"><m:mo id="id57774">-</m:mo><m:mn id="id57777">1</m:mn></m:mrow></m:msup></m:mrow></m:mfrac></m:mrow><m:annotation-xml id="id57779" encoding="MathML-Content"><m:apply id="id57782"><m:eq id="id57783"/><m:apply id="id57784"><m:csymbol id="id57785" cd="ambiguous">subscript</m:csymbol><m:ci id="id57790">x</m:ci><m:ci id="id57792">q</m:ci></m:apply><m:apply id="id57794"><m:divide id="id57795"/><m:apply id="id57796"><m:minus id="id57797"/><m:apply id="id57798"><m:csymbol id="id57800" cd="ambiguous">superscript</m:csymbol><m:ci id="id57804">q</m:ci><m:ci id="id57806">x</m:ci></m:apply><m:apply id="id57808"><m:csymbol id="id57810" cd="ambiguous">superscript</m:csymbol><m:ci id="id57814">q</m:ci><m:apply id="id57816"><m:minus id="id57817"/><m:ci id="id57818">x</m:ci></m:apply></m:apply></m:apply><m:apply id="id57821"><m:minus id="id57822"/><m:ci id="id57823">q</m:ci><m:apply id="id57825"><m:csymbol id="id57826" cd="ambiguous">superscript</m:csymbol><m:ci id="id57831">q</m:ci><m:apply id="id57833"><m:minus id="id57834"/><m:cn id="id57835">1</m:cn></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id58041"><h4>Hit id58041</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 32</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/198/f079146.xhtml#id58041</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:73433(000019%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id58041" display="block"><m:semantics id="id58044"><m:mrow id="id58045"><m:mrow id="id58046"><m:mrow id="id58047"><m:msub id="id58048"><m:mi id="id58050">I</m:mi><m:mn id="id58052">1</m:mn></m:msub><m:mo id="id58054">⁢</m:mo><m:mfenced id="id58056" open="(" close=")"><m:msub id="id58061"><m:mi id="id58062">f</m:mi><m:mn id="id58064">1</m:mn></m:msub></m:mfenced></m:mrow><m:mo id="id58067">=</m:mo><m:mrow id="id58069"><m:mrow id="id58070"><m:msub id="id58071"><m:mi id="id58072">I</m:mi><m:mn id="id58074">1</m:mn></m:msub><m:mo id="id58076">⁢</m:mo><m:mfenced id="id58079" open="(" close=")"><m:mi id="id58084">f</m:mi></m:mfenced></m:mrow><m:mo id="id58086">+</m:mo><m:mrow id="id58088"><m:msup id="id58089"><m:mi id="id58090">f</m:mi><m:mo id="id58092">′</m:mo></m:msup><m:mo id="id58095">⁢</m:mo><m:mfenced id="id58097" open="(" close=")"><m:mi id="id58102">x</m:mi></m:mfenced></m:mrow></m:mrow></m:mrow><m:mo id="id58104">,</m:mo></m:mrow><m:annotation-xml id="id58106" encoding="MathML-Content"><m:apply id="id58110"><m:eq id="id58111"/><m:apply id="id58112"><m:times id="id58113"/><m:apply id="id58114"><m:csymbol id="id58115" cd="ambiguous">subscript</m:csymbol><m:ci id="id58120">I</m:ci><m:cn id="id58122">1</m:cn></m:apply><m:apply id="id58124"><m:csymbol id="id58125" cd="ambiguous">subscript</m:csymbol><m:ci id="id58130">f</m:ci><m:cn id="id58132">1</m:cn></m:apply></m:apply><m:apply id="id58134"><m:plus id="id58135"/><m:apply id="id58136"><m:times id="id58137"/><m:apply id="id58138"><m:csymbol id="id58139" cd="ambiguous">subscript</m:csymbol><m:ci id="id58144">I</m:ci><m:cn id="id58146">1</m:cn></m:apply><m:ci id="id58148">f</m:ci></m:apply><m:apply id="id58150"><m:times id="id58151"/><m:apply id="id58152"><m:csymbol id="id58154" cd="ambiguous">superscript</m:csymbol><m:ci id="id58158">f</m:ci><m:ci id="id58160">′</m:ci></m:apply><m:ci id="id58163">x</m:ci></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id58368"><h4>Hit id58368</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 33</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/234/f093464.xhtml#id58368</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:73922(000008%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id58368" display="block"><m:semantics id="id58371"><m:mrow id="id58372"><m:mrow id="id58373"><m:mfenced id="id58374" open="|" close="|"><m:mrow id="id58379"><m:mrow id="id58380"><m:mi id="id58382">f</m:mi><m:mo id="id58384">⁢</m:mo><m:mfenced id="id58386" open="(" close=")"><m:mrow id="id58391"><m:mi id="id58392">n</m:mi><m:mo id="id58394">+</m:mo><m:mi id="id58396">x</m:mi></m:mrow></m:mfenced></m:mrow><m:mo id="id58399">-</m:mo><m:mrow id="id58401"><m:msub id="id58402"><m:mi id="id58403">p</m:mi><m:mi id="id58405">n</m:mi></m:msub><m:mo id="id58407">⁢</m:mo><m:mfenced id="id58410" open="(" close=")"><m:mrow id="id58415"><m:mi id="id58416">n</m:mi><m:mo id="id58418">+</m:mo><m:mi id="id58420">x</m:mi></m:mrow></m:mfenced></m:mrow></m:mrow></m:mfenced><m:mo id="id58422">⟶</m:mo><m:mrow id="id58424"><m:mn id="id58426">0</m:mn><m:mo id="id58428">⁢</m:mo><m:mrow id="id58430"><m:mtext id="id58431" mathvariant="italic">as </m:mtext><m:mrow id="id58436"><m:mi id="id58437" mathvariant="normal">n</m:mi><m:mo id="id58441" mathvariant="normal">→</m:mo><m:mrow id="id58446"><m:mo id="id58447" mathvariant="normal">+</m:mo><m:mi id="id58451" mathvariant="normal">∞</m:mi></m:mrow></m:mrow></m:mrow></m:mrow></m:mrow><m:mo id="id58456">.</m:mo></m:mrow><m:annotation-xml id="id58458" encoding="MathML-Content"><m:apply id="id58462"><m:ci id="id58463">⟶</m:ci><m:apply id="id58465"><m:abs id="id58466"/><m:apply id="id58467"><m:minus id="id58468"/><m:apply id="id58469"><m:times id="id58470"/><m:ci id="id58471">f</m:ci><m:apply id="id58474"><m:plus id="id58475"/><m:ci id="id58476">n</m:ci><m:ci id="id58478">x</m:ci></m:apply></m:apply><m:apply id="id58480"><m:times id="id58481"/><m:apply id="id58482"><m:csymbol id="id58483" cd="ambiguous">subscript</m:csymbol><m:ci id="id58488">p</m:ci><m:ci id="id58490">n</m:ci></m:apply><m:apply id="id58492"><m:plus id="id58493"/><m:ci id="id58494">n</m:ci><m:ci id="id58496">x</m:ci></m:apply></m:apply></m:apply></m:apply><m:apply id="id58498"><m:times id="id58500"/><m:cn id="id58501">0</m:cn><m:mtext id="id58503">as →n+∞</m:mtext></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id58551"><h4>Hit id58551</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 34</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/249/f099457.xhtml#id58551</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:74692(000022%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id58551" display="block"><m:semantics id="id58555"><m:mrow id="id58556"><m:mrow id="id58557"><m:mi id="id58558">θ</m:mi><m:mo id="id58560"><</m:mo><m:mfrac id="id58563"><m:mn id="id58564">1</m:mn><m:mn id="id58566">2</m:mn></m:mfrac><m:mo id="id58568">⇒</m:mo><m:mrow id="id58570"><m:msub id="id58571"><m:mi id="id58572">I</m:mi><m:msub id="id58575"><m:mi id="id58576">d</m:mi><m:mi id="id58578">Q</m:mi></m:msub></m:msub><m:mo id="id58580">⁢</m:mo><m:mfenced id="id58582" open="(" close=")"><m:mrow id="id58587"><m:mi id="id58588">N</m:mi><m:mo id="id58591">,</m:mo><m:mi id="id58593">h</m:mi></m:mrow></m:mfenced><m:mo id="id58595">⁢</m:mo><m:mtext id="id58597" mathsize="small">n</m:mtext><m:mo id="id58602">⁢</m:mo><m:mi id="id58604">N</m:mi><m:mo id="id58606">⁢</m:mo><m:mi id="id58609">h</m:mi></m:mrow></m:mrow><m:mo id="id58611">,</m:mo><m:mtext id="id58613" mathsize="small">see [C-S] & compare [C2].</m:mtext></m:mrow><m:annotation-xml id="id58618" encoding="MathML-Content"><m:apply id="id58621"><m:ci id="id58622"/><m:apply id="id58624"><m:ci id="id58625"/><m:ci id="id58626">θ</m:ci><m:lt id="id58628"/><m:apply id="id58629"><m:divide id="id58630"/><m:cn id="id58631">1</m:cn><m:cn id="id58633">2</m:cn></m:apply><m:ci id="id58636">⇒</m:ci><m:apply id="id58638"><m:times id="id58639"/><m:apply id="id58640"><m:csymbol id="id58641" cd="ambiguous">subscript</m:csymbol><m:ci id="id58646">I</m:ci><m:apply id="id58648"><m:csymbol id="id58649" cd="ambiguous">subscript</m:csymbol><m:ci id="id58654">d</m:ci><m:ci id="id58656">Q</m:ci></m:apply></m:apply><m:apply id="id58658"><m:interval id="id58659" closure="open"/><m:ci id="id58662">N</m:ci><m:ci id="id58664">h</m:ci></m:apply><m:mtext id="id58667">n</m:mtext><m:ci id="id58669">N</m:ci><m:ci id="id58671">h</m:ci></m:apply></m:apply><m:mtext id="id58673">see [C-S] & compare [C2].</m:mtext></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id58853"><h4>Hit id58853</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 35</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/83/f032815.xhtml#id58853</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:77526(000024%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id58853" display="inline"><m:semantics id="id58856"><m:mrow id="id58857"><m:msub id="id58858"><m:mi id="id58860">c</m:mi><m:mrow id="id58862"><m:mi id="id58863">i</m:mi><m:mo id="id58865">⁢</m:mo><m:mi id="id58867">j</m:mi></m:mrow></m:msub><m:mo id="id58869">=</m:mo><m:mrow id="id58872"><m:msub id="id58873"><m:mi id="id58874">c</m:mi><m:mn id="id58876">0</m:mn></m:msub><m:mo id="id58878">⁢</m:mo><m:msub id="id58880"><m:mi id="id58881">c</m:mi><m:mn id="id58884">1</m:mn></m:msub><m:mo id="id58886">⁢</m:mo><m:mi id="id58888" mathvariant="normal">…</m:mi><m:mo id="id58893">⁢</m:mo><m:msub id="id58895"><m:mi id="id58896">c</m:mi><m:mrow id="id58898"><m:mi id="id58899">m</m:mi><m:mo id="id58902">-</m:mo><m:mn id="id58904">1</m:mn></m:mrow></m:msub></m:mrow></m:mrow><m:annotation-xml id="id58906" encoding="MathML-Content"><m:apply id="id58909"><m:eq id="id58910"/><m:apply id="id58911"><m:csymbol id="id58912" cd="ambiguous">subscript</m:csymbol><m:ci id="id58917">c</m:ci><m:apply id="id58919"><m:times id="id58920"/><m:ci id="id58921">i</m:ci><m:ci id="id58923">j</m:ci></m:apply></m:apply><m:apply id="id58926"><m:times id="id58927"/><m:apply id="id58928"><m:csymbol id="id58929" cd="ambiguous">subscript</m:csymbol><m:ci id="id58933">c</m:ci><m:cn id="id58936">0</m:cn></m:apply><m:apply id="id58938"><m:csymbol id="id58939" cd="ambiguous">subscript</m:csymbol><m:ci id="id58943">c</m:ci><m:cn id="id58946">1</m:cn></m:apply><m:ci id="id58948">…</m:ci><m:apply id="id58950"><m:csymbol id="id58951" cd="ambiguous">subscript</m:csymbol><m:ci id="id58956">c</m:ci><m:apply id="id58958"><m:minus id="id58959"/><m:ci id="id58960">m</m:ci><m:cn id="id58962">1</m:cn></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id58890"><h4>Hit id58890</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 36</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/242/f096509.xhtml#id58890</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:81071(000059%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id58890" display="inline"><m:semantics id="id58893"><m:mrow id="id58894"><m:msubsup id="id58895"><m:mi id="id58896">x</m:mi><m:mi id="id58898">a</m:mi><m:mo id="id58901">′</m:mo></m:msubsup><m:mo id="id58903">=</m:mo><m:mrow id="id58905"><m:mo id="id58906">-</m:mo><m:msub id="id58908"><m:mi id="id58909">x</m:mi><m:mi id="id58912">a</m:mi></m:msub><m:mo id="id58914">+</m:mo><m:mrow id="id58916"><m:mfrac id="id58917"><m:mn id="id58918">1</m:mn><m:mn id="id58920">2</m:mn></m:mfrac><m:mo id="id58922">⁢</m:mo><m:mi id="id58925">m</m:mi><m:mo id="id58927">⁢</m:mo><m:msub id="id58929"><m:mi id="id58930">m</m:mi><m:mi id="id58932">a</m:mi></m:msub></m:mrow></m:mrow></m:mrow><m:annotation-xml id="id58934" encoding="MathML-Content"><m:apply id="id58938"><m:eq id="id58939"/><m:apply id="id58940"><m:csymbol id="id58941" cd="ambiguous">subscript</m:csymbol><m:apply id="id58946"><m:csymbol id="id58947" cd="ambiguous">superscript</m:csymbol><m:ci id="id58951">x</m:ci><m:ci id="id58954">′</m:ci></m:apply><m:ci id="id58956">a</m:ci></m:apply><m:apply id="id58958"><m:plus id="id58959"/><m:apply id="id58960"><m:minus id="id58961"/><m:apply id="id58962"><m:csymbol id="id58963" cd="ambiguous">subscript</m:csymbol><m:ci id="id58968">x</m:ci><m:ci id="id58970">a</m:ci></m:apply></m:apply><m:apply id="id58972"><m:times id="id58973"/><m:apply id="id58974"><m:divide id="id58976"/><m:cn id="id58977">1</m:cn><m:cn id="id58979">2</m:cn></m:apply><m:ci id="id58981">m</m:ci><m:apply id="id58983"><m:csymbol id="id58984" cd="ambiguous">subscript</m:csymbol><m:ci id="id58989">m</m:ci><m:ci id="id58991">a</m:ci></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id59626"><h4>Hit id59626</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 37</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/136/f054168.xhtml#id59626</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:96190(000037%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id59626" display="inline"><m:semantics id="id59629"><m:mrow id="id59630"><m:mrow id="id59631"><m:mi id="id59632">M</m:mi><m:mo id="id59634">⁢</m:mo><m:mfenced id="id59637" open="(" close=")"><m:mrow id="id59642"><m:mi id="id59643">x</m:mi><m:mo id="id59645">,</m:mo><m:mover id="id59647" accent="true"><m:mi id="id59650">Q</m:mi><m:mo id="id59653">→</m:mo></m:mover></m:mrow></m:mfenced></m:mrow><m:mo id="id59655">:</m:mo><m:mrow id="id59657"><m:mrow id="id59658"><m:mi id="id59659" mathvariant="script">M</m:mi><m:mo id="id59664">×</m:mo><m:msup id="id59666"><m:mi id="id59667">S</m:mi><m:mn id="id59669">2</m:mn></m:msup></m:mrow><m:mo id="id59671">→</m:mo><m:mrow id="id59674"><m:mi id="id59675">S</m:mi><m:mo id="id59677">⁢</m:mo><m:mi id="id59679">L</m:mi><m:mo id="id59682">⁢</m:mo><m:mfenced id="id59684" open="(" close=")"><m:mrow id="id59689"><m:mi id="id59690">N</m:mi><m:mo id="id59692">,</m:mo><m:mi id="id59694" mathvariant="bold">C</m:mi></m:mrow></m:mfenced></m:mrow></m:mrow></m:mrow><m:annotation-xml id="id59699" encoding="MathML-Content"><m:apply id="id59702"><m:ci id="id59703">:</m:ci><m:apply id="id59705"><m:times id="id59706"/><m:ci id="id59707">M</m:ci><m:apply id="id59710"><m:interval id="id59711" closure="open"/><m:ci id="id59714">x</m:ci><m:apply id="id59716"><m:ci id="id59717">→</m:ci><m:ci id="id59720">Q</m:ci></m:apply></m:apply></m:apply><m:apply id="id59722"><m:ci id="id59723">→</m:ci><m:apply id="id59725"><m:times id="id59726"/><m:ci id="id59727">M</m:ci><m:apply id="id59729"><m:csymbol id="id59730" cd="ambiguous">superscript</m:csymbol><m:ci id="id59735">S</m:ci><m:cn id="id59737">2</m:cn></m:apply></m:apply><m:apply id="id59739"><m:times id="id59740"/><m:ci id="id59742">S</m:ci><m:ci id="id59744">L</m:ci><m:apply id="id59746"><m:interval id="id59747" closure="open"/><m:ci id="id59750">N</m:ci><m:ci id="id59752">C</m:ci></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id60335"><h4>Hit id60335</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 38</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/210/f083915.xhtml#id60335</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:100619(000013%) VariableMap:[mathbf x 2, leq, n, (, ), ., ,, - x 2, frac, T, 1, 4, \ x 16, left x 4, _, | x 6, Y, X, right x 4, y x 2, x x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 1 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id60335" alttext="\left|T_{{n}}\left(\mathbf{x},\mathbf{y}\right)\right|\leq\frac{1}{4}\left\| X-x\right\|\left\| Y-y\right\|." display="block"><m:semantics id="id60341"><m:mrow id="id60342"><m:mrow id="id60344"><m:mfenced id="id60345" open="|" close="|"><m:mrow id="id60350"><m:msub id="id60351"><m:mi id="id60352">T</m:mi><m:mi id="id60354">n</m:mi></m:msub><m:mo id="id60356">⁢</m:mo><m:mfenced id="id60358" open="(" close=")"><m:mrow id="id60364"><m:mi id="id60365" mathvariant="bold">x</m:mi><m:mo id="id60369">,</m:mo><m:mi id="id60371" mathvariant="bold">y</m:mi></m:mrow></m:mfenced></m:mrow></m:mfenced><m:mo id="id60376">≤</m:mo><m:mrow id="id60378"><m:mfrac id="id60379"><m:mn id="id60380">1</m:mn><m:mn id="id60382">4</m:mn></m:mfrac><m:mo id="id60384">⁢</m:mo><m:mfenced id="id60389" open="∥" close="∥"><m:mrow id="id60394"><m:mi id="id60395">X</m:mi><m:mo id="id60397">-</m:mo><m:mi id="id60400">x</m:mi></m:mrow></m:mfenced><m:mo id="id60402">⁢</m:mo><m:mfenced id="id60404" open="∥" close="∥"><m:mrow id="id60410"><m:mi id="id60411">Y</m:mi><m:mo id="id60413">-</m:mo><m:mi id="id60415">y</m:mi></m:mrow></m:mfenced></m:mrow></m:mrow><m:mo id="id60417">.</m:mo></m:mrow><m:annotation-xml id="id60419" encoding="MathML-Content"><m:apply id="id60422"><m:leq id="id60423"/><m:apply id="id60424"><m:abs id="id60425"/><m:apply id="id60426"><m:times id="id60427"/><m:apply id="id60428"><m:csymbol id="id60429" cd="ambiguous">subscript</m:csymbol><m:ci id="id60433">T</m:ci><m:ci id="id60435">n</m:ci></m:apply><m:apply id="id60437"><m:interval id="id60438" closure="open"/><m:ci id="id60442">x</m:ci><m:ci id="id60444">y</m:ci></m:apply></m:apply></m:apply><m:apply id="id60446"><m:times id="id60447"/><m:apply id="id60448"><m:divide id="id60449"/><m:cn id="id60450" type="integer">1</m:cn><m:cn id="id60454" type="integer">4</m:cn></m:apply><m:apply id="id60459"><m:ci id="id60460"/><m:apply id="id60461"><m:minus id="id60462"/><m:ci id="id60463">X</m:ci><m:ci id="id60465">x</m:ci></m:apply></m:apply><m:apply id="id60467"><m:ci id="id60468"/><m:apply id="id60470"><m:minus id="id60471"/><m:ci id="id60472">Y</m:ci><m:ci id="id60474">y</m:ci></m:apply></m:apply></m:apply></m:apply></m:annotation-xml><m:annotation id="id60476" encoding="application/x-tex">\left|T_{{n}}\left(\mathbf{x},\mathbf{y}\right)\right|\leq\frac{1}{4}\left\| X-x\right\|\left\| Y-y\right\|.</m:annotation></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id60672"><h4>Hit id60672</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 39</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/46/f018394.xhtml#id60672</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:97746(000014%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id60672" display="block"><m:semantics id="id60676"><m:mrow id="id60677"><m:mrow id="id60678"><m:msub id="id60679"><m:mfenced id="id60680" open="(" close=")"><m:mi id="id60685">q</m:mi></m:mfenced><m:mi id="id60687">n</m:mi></m:msub><m:mo id="id60689">:=</m:mo><m:mrow id="id60691"><m:mfenced id="id60692" open="(" close=")"><m:mrow id="id60698"><m:mn id="id60699">1</m:mn><m:mo id="id60701">-</m:mo><m:mi id="id60703">q</m:mi></m:mrow></m:mfenced><m:mo id="id60705">⁢</m:mo><m:mfenced id="id60707" open="(" close=")"><m:mrow id="id60712"><m:mn id="id60714">1</m:mn><m:mo id="id60716">-</m:mo><m:msup id="id60718"><m:mi id="id60719">q</m:mi><m:mn id="id60721">2</m:mn></m:msup></m:mrow></m:mfenced><m:mo id="id60723">⁢</m:mo><m:mi id="id60726" mathvariant="normal">⋯</m:mi><m:mo id="id60730">⁢</m:mo><m:mfenced id="id60733" open="(" close=")"><m:mrow id="id60738"><m:mn id="id60739">1</m:mn><m:mo id="id60741">-</m:mo><m:msup id="id60743"><m:mi id="id60744">q</m:mi><m:mi id="id60746">n</m:mi></m:msup></m:mrow></m:mfenced></m:mrow></m:mrow><m:mo id="id60748">.</m:mo></m:mrow><m:annotation-xml id="id60750" encoding="MathML-Content"><m:apply id="id60754"><m:ci id="id60755">:=</m:ci><m:apply id="id60757"><m:csymbol id="id60758" cd="ambiguous">subscript</m:csymbol><m:ci id="id60763">q</m:ci><m:ci id="id60765">n</m:ci></m:apply><m:apply id="id60767"><m:times id="id60768"/><m:apply id="id60769"><m:minus id="id60770"/><m:cn id="id60771">1</m:cn><m:ci id="id60773">q</m:ci></m:apply><m:apply id="id60776"><m:minus id="id60777"/><m:cn id="id60778">1</m:cn><m:apply id="id60780"><m:csymbol id="id60781" cd="ambiguous">superscript</m:csymbol><m:ci id="id60786">q</m:ci><m:cn id="id60788">2</m:cn></m:apply></m:apply><m:ci id="id60790">⋯</m:ci><m:apply id="id60792"><m:minus id="id60793"/><m:cn id="id60794">1</m:cn><m:apply id="id60796"><m:csymbol id="id60798" cd="ambiguous">superscript</m:csymbol><m:ci id="id60802">q</m:ci><m:ci id="id60804">n</m:ci></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id61430"><h4>Hit id61430</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 40</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/145/f057677.xhtml#id61430</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:116825(000032%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id61430" display="inline"><m:semantics id="id61433"><m:mrow id="id61434"><m:mrow id="id61435"><m:mrow id="id61436"><m:msub id="id61437"><m:mi id="id61438">p</m:mi><m:mrow id="id61440"><m:mi id="id61441">N</m:mi><m:mo id="id61444">+</m:mo><m:mn id="id61446">1</m:mn></m:mrow></m:msub><m:mo id="id61448">,</m:mo><m:msub id="id61450"><m:mi id="id61451">q</m:mi><m:mrow id="id61453"><m:mi id="id61454">N</m:mi><m:mo id="id61456">+</m:mo><m:mn id="id61458">1</m:mn></m:mrow></m:msub></m:mrow><m:mo id="id61461">=</m:mo><m:msup id="id61463"><m:mi id="id61464">p</m:mi><m:mi id="id61466">′′</m:mi></m:msup></m:mrow><m:mo id="id61468">,</m:mo><m:msup id="id61470"><m:mi id="id61472">q</m:mi><m:mi id="id61474">′′</m:mi></m:msup></m:mrow><m:annotation-xml id="id61476" encoding="MathML-Content"><m:apply id="id61479"><m:ci id="id61480"/><m:apply id="id61482"><m:eq id="id61483"/><m:apply id="id61484"><m:list id="id61485"/><m:apply id="id61486"><m:csymbol id="id61487" cd="ambiguous">subscript</m:csymbol><m:ci id="id61492">p</m:ci><m:apply id="id61494"><m:plus id="id61495"/><m:ci id="id61496">N</m:ci><m:cn id="id61498">1</m:cn></m:apply></m:apply><m:apply id="id61500"><m:csymbol id="id61501" cd="ambiguous">subscript</m:csymbol><m:ci id="id61506">q</m:ci><m:apply id="id61508"><m:plus id="id61509"/><m:ci id="id61510">N</m:ci><m:cn id="id61512">1</m:cn></m:apply></m:apply></m:apply><m:apply id="id61514"><m:csymbol id="id61515" cd="ambiguous">superscript</m:csymbol><m:ci id="id61520">p</m:ci><m:ci id="id61522">′′</m:ci></m:apply></m:apply><m:apply id="id61525"><m:csymbol id="id61526" cd="ambiguous">superscript</m:csymbol><m:ci id="id61530">q</m:ci><m:ci id="id61532">′′</m:ci></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id62532"><h4>Hit id62532</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 41</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/225/f089698.xhtml#id62532</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:133656(000036%) VariableMap:[- x 4, frac, 1, q x 5, ], \ x 3, left, _, ^ x 3, X x 3, right, [, =] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 3 Expects 6 occurences for '_' but has only 1 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id62532" alttext="\left[X\right]_{{q}}=\frac{q^{{X}}-q^{{-X}}}{q-q^{{-1}}}" display="block"><m:semantics id="id62538"><m:mrow id="id62539"><m:msub id="id62540"><m:mfenced id="id62541" open="[" close="]"><m:mi id="id62546">X</m:mi></m:mfenced><m:mi id="id62548">q</m:mi></m:msub><m:mo id="id62551">=</m:mo><m:mfrac id="id62553"><m:mrow id="id62554"><m:msup id="id62555"><m:mi id="id62556">q</m:mi><m:mi id="id62558">X</m:mi></m:msup><m:mo id="id62560">-</m:mo><m:msup id="id62562"><m:mi id="id62563">q</m:mi><m:mrow id="id62566"><m:mo id="id62567">-</m:mo><m:mi id="id62569">X</m:mi></m:mrow></m:msup></m:mrow><m:mrow id="id62571"><m:mi id="id62572">q</m:mi><m:mo id="id62574">-</m:mo><m:msup id="id62576"><m:mi id="id62577">q</m:mi><m:mrow id="id62579"><m:mo id="id62580">-</m:mo><m:mn id="id62583">1</m:mn></m:mrow></m:msup></m:mrow></m:mfrac></m:mrow><m:annotation-xml id="id62585" encoding="MathML-Content"><m:apply id="id62588"><m:eq id="id62589"/><m:apply id="id62590"><m:csymbol id="id62591" cd="ambiguous">subscript</m:csymbol><m:ci id="id62596">X</m:ci><m:ci id="id62598">q</m:ci></m:apply><m:apply id="id62600"><m:divide id="id62601"/><m:apply id="id62602"><m:minus id="id62603"/><m:apply id="id62604"><m:csymbol id="id62606" cd="ambiguous">superscript</m:csymbol><m:ci id="id62610">q</m:ci><m:ci id="id62612">X</m:ci></m:apply><m:apply id="id62614"><m:csymbol id="id62616" cd="ambiguous">superscript</m:csymbol><m:ci id="id62620">q</m:ci><m:apply id="id62622"><m:minus id="id62623"/><m:ci id="id62624">X</m:ci></m:apply></m:apply></m:apply><m:apply id="id62627"><m:minus id="id62628"/><m:ci id="id62629">q</m:ci><m:apply id="id62631"><m:csymbol id="id62632" cd="ambiguous">superscript</m:csymbol><m:ci id="id62637">q</m:ci><m:apply id="id62639"><m:minus id="id62640"/><m:cn id="id62641" type="integer">1</m:cn></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml><m:annotation id="id62645" encoding="application/x-tex">\left[X\right]_{{q}}=\frac{q^{{X}}-q^{{-X}}}{q-q^{{-1}}}</m:annotation></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id63690"><h4>Hit id63690</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 42</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/32/f012576.xhtml#id63690</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:156546(000023%) VariableMap:[0 x 3, EA, displaystyle, q, B, EC, a, n, \, _ x 4, ., =, - x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 1 Expects 6 occurences for '_' but has only 4 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id63690" alttext="\displaystyle EC_{0}-B_{0}-q_{n}EA_{0}=a." display="inline"><m:semantics id="id63696"><m:mrow id="id63697"><m:mrow id="id63698"><m:mrow id="id63699"><m:mrow id="id63700"><m:mi id="id63701">E</m:mi><m:mo id="id63703">⁢</m:mo><m:msub id="id63706"><m:mi id="id63707">C</m:mi><m:mn id="id63709">0</m:mn></m:msub></m:mrow><m:mo id="id63711">-</m:mo><m:msub id="id63713"><m:mi id="id63714">B</m:mi><m:mn id="id63716">0</m:mn></m:msub><m:mo id="id63718">-</m:mo><m:mrow id="id63720"><m:msub id="id63722"><m:mi id="id63723">q</m:mi><m:mi id="id63725">n</m:mi></m:msub><m:mo id="id63727">⁢</m:mo><m:mi id="id63729">E</m:mi><m:mo id="id63731">⁢</m:mo><m:msub id="id63734"><m:mi id="id63735">A</m:mi><m:mn id="id63737">0</m:mn></m:msub></m:mrow></m:mrow><m:mo id="id63739">=</m:mo><m:mi id="id63741">a</m:mi></m:mrow><m:mo id="id63743">.</m:mo></m:mrow><m:annotation-xml id="id63746" encoding="MathML-Content"><m:apply id="id63749"><m:eq id="id63750"/><m:apply id="id63751"><m:minus id="id63752"/><m:apply id="id63753"><m:times id="id63754"/><m:ci id="id63755">E</m:ci><m:apply id="id63757"><m:csymbol id="id63758" cd="ambiguous">subscript</m:csymbol><m:ci id="id63763">C</m:ci><m:cn id="id63765" type="integer">0</m:cn></m:apply></m:apply><m:apply id="id63770"><m:csymbol id="id63771" cd="ambiguous">subscript</m:csymbol><m:ci id="id63775">B</m:ci><m:cn id="id63778" type="integer">0</m:cn></m:apply><m:apply id="id63782"><m:times id="id63783"/><m:apply id="id63784"><m:csymbol id="id63785" cd="ambiguous">subscript</m:csymbol><m:ci id="id63790">q</m:ci><m:ci id="id63792">n</m:ci></m:apply><m:ci id="id63794">E</m:ci><m:apply id="id63796"><m:csymbol id="id63797" cd="ambiguous">subscript</m:csymbol><m:ci id="id63802">A</m:ci><m:cn id="id63804" type="integer">0</m:cn></m:apply></m:apply></m:apply><m:ci id="id63808">a</m:ci></m:apply></m:annotation-xml><m:annotation id="id63811" encoding="application/x-tex">\displaystyle EC_{0}-B_{0}-q_{n}EA_{0}=a.</m:annotation></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id63814"><h4>Hit id63814</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 43</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/208/f082964.xhtml#id63814</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:156076(000034%) VariableMap:[B x 2, l x 2, k x 2, , x 2, -, frac, qquad, 2, 1, displaystyle, q x 2, \ x 6, _ x 4, <] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 4 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id63814" alttext="\displaystyle-\frac{q_{{1}}}{q_{{2}}}B_{{l}}B_{{k}},\qquad\ \ \ k<l," display="inline"><m:semantics id="id63820"><m:mrow id="id63821"><m:mrow id="id63822"><m:mrow id="id63823"><m:mrow id="id63824"><m:mo id="id63825">-</m:mo><m:mrow id="id63828"><m:mstyle id="id63829" displaystyle="true"><m:mfrac id="id63831"><m:msub id="id63832"><m:mi id="id63833">q</m:mi><m:mn id="id63835">1</m:mn></m:msub><m:msub id="id63837"><m:mi id="id63838">q</m:mi><m:mn id="id63841">2</m:mn></m:msub></m:mfrac></m:mstyle><m:mo id="id63843">⁢</m:mo><m:msub id="id63845"><m:mi id="id63846">B</m:mi><m:mi id="id63848">l</m:mi></m:msub><m:mo id="id63850">⁢</m:mo><m:msub id="id63853"><m:mi id="id63854">B</m:mi><m:mi id="id63856">k</m:mi></m:msub></m:mrow></m:mrow><m:mo id="id63858">,</m:mo><m:mi id="id63860">k</m:mi></m:mrow><m:mo id="id63862"><</m:mo><m:mi id="id63865">l</m:mi></m:mrow><m:mo id="id63867">,</m:mo></m:mrow><m:annotation-xml id="id63869" encoding="MathML-Content"><m:apply id="id63872"><m:lt id="id63874"/><m:apply id="id63875"><m:list id="id63876"/><m:apply id="id63877"><m:minus id="id63878"/><m:apply id="id63879"><m:times id="id63880"/><m:apply id="id63881"><m:divide id="id63882"/><m:apply id="id63883"><m:csymbol id="id63884" cd="ambiguous">subscript</m:csymbol><m:ci id="id63889">q</m:ci><m:cn id="id63891" type="integer">1</m:cn></m:apply><m:apply id="id63895"><m:csymbol id="id63896" cd="ambiguous">subscript</m:csymbol><m:ci id="id63901">q</m:ci><m:cn id="id63903" type="integer">2</m:cn></m:apply></m:apply><m:apply id="id63908"><m:csymbol id="id63909" cd="ambiguous">subscript</m:csymbol><m:ci id="id63913">B</m:ci><m:ci id="id63916">l</m:ci></m:apply><m:apply id="id63918"><m:csymbol id="id63919" cd="ambiguous">subscript</m:csymbol><m:ci id="id63923">B</m:ci><m:ci id="id63926">k</m:ci></m:apply></m:apply></m:apply><m:ci id="id63928">k</m:ci></m:apply><m:ci id="id63930">l</m:ci></m:apply></m:annotation-xml><m:annotation id="id63932" encoding="application/x-tex">\displaystyle-\frac{q_{{1}}}{q_{{2}}}B_{{l}}B_{{k}},\qquad\ \ \ k<l,</m:annotation></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id65351"><h4>Hit id65351</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 44</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/116/f046332.xhtml#id65351</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:175074(000034%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id65351" display="block"><m:semantics id="id65354"><m:mrow id="id65355"><m:msup id="id65356"><m:mi id="id65357">G</m:mi><m:mfenced id="id65359" open="(" close=")"><m:mi id="id65364">j</m:mi></m:mfenced></m:msup><m:mo id="id65367">=</m:mo><m:mrow id="id65369"><m:mi id="id65370">exp</m:mi><m:mo id="id65372">⁡</m:mo><m:mfenced id="id65374" open="(" close=")"><m:mrow id="id65379"><m:mover id="id65380"><m:munder id="id65382"><m:mo id="id65383" movablelimits="false">∑</m:mo><m:mrow id="id65387"><m:mi id="id65388">k</m:mi><m:mo id="id65390" movablelimits="false">=</m:mo><m:mrow id="id65395"><m:mi id="id65396">j</m:mi><m:mo id="id65398" movablelimits="false">+</m:mo><m:mn id="id65402">1</m:mn></m:mrow></m:mrow></m:munder><m:mi id="id65405" mathvariant="normal">∞</m:mi></m:mover><m:msubsup id="id65409"><m:mi id="id65410">G</m:mi><m:mi id="id65412">k</m:mi><m:mfenced id="id65415" open="(" close=")"><m:mi id="id65420">j</m:mi></m:mfenced></m:msubsup></m:mrow></m:mfenced></m:mrow></m:mrow><m:annotation-xml id="id65422" encoding="MathML-Content"><m:apply id="id65425"><m:eq id="id65426"/><m:apply id="id65427"><m:csymbol id="id65428" cd="ambiguous">superscript</m:csymbol><m:ci id="id65433">G</m:ci><m:ci id="id65435">j</m:ci></m:apply><m:apply id="id65437"><m:exp id="id65438"/><m:apply id="id65439"><m:apply id="id65440"><m:csymbol id="id65442" cd="ambiguous">superscript</m:csymbol><m:apply id="id65446"><m:csymbol id="id65447" cd="ambiguous">subscript</m:csymbol><m:sum id="id65452"/><m:apply id="id65453"><m:eq id="id65454"/><m:ci id="id65455">k</m:ci><m:apply id="id65457"><m:plus id="id65458"/><m:ci id="id65459">j</m:ci><m:cn id="id65462">1</m:cn></m:apply></m:apply></m:apply><m:infinity id="id65464"/></m:apply><m:apply id="id65465"><m:csymbol id="id65466" cd="ambiguous">subscript</m:csymbol><m:apply id="id65470"><m:csymbol id="id65472" cd="ambiguous">superscript</m:csymbol><m:ci id="id65476">G</m:ci><m:ci id="id65478">j</m:ci></m:apply><m:ci id="id65480">k</m:ci></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id65594"><h4>Hit id65594</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 45</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/46/f018264.xhtml#id65594</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:174543(000049%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id65594" display="block"><m:semantics id="id65598"><m:mrow id="id65599"><m:msub id="id65600"><m:mi id="id65601" mathvariant="script">B</m:mi><m:mn id="id65605">1</m:mn></m:msub><m:mo id="id65607">=</m:mo><m:mrow id="id65610"><m:mrow id="id65611"><m:msub id="id65612"><m:mi id="id65613">β</m:mi><m:mo id="id65615">-</m:mo></m:msub><m:mo id="id65617">⁢</m:mo><m:mrow id="id65620"><m:msubsup id="id65621"><m:mo id="id65622">∫</m:mo><m:mn id="id65624">0</m:mn><m:mi id="id65626" mathvariant="normal">∞</m:mi></m:msubsup><m:mfrac id="id65631"><m:mrow id="id65632"><m:msub id="id65633"><m:mi id="id65634" mathvariant="script">K</m:mi><m:mo id="id65639">+</m:mo></m:msub><m:mo id="id65641">⁢</m:mo><m:msub id="id65643"><m:mi id="id65644" mathvariant="script">H</m:mi><m:mn id="id65649">1</m:mn></m:msub><m:mo id="id65651">⁢</m:mo><m:msub id="id65653"><m:mi id="id65654">F</m:mi><m:mn id="id65656">0</m:mn></m:msub></m:mrow><m:mi id="id65658" mathvariant="script">W</m:mi></m:mfrac></m:mrow></m:mrow><m:mo id="id65663">-</m:mo><m:mrow id="id65665"><m:msub id="id65666"><m:mi id="id65667">β</m:mi><m:mo id="id65670">+</m:mo></m:msub><m:mo id="id65672">⁢</m:mo><m:mrow id="id65674"><m:msubsup id="id65675"><m:mo id="id65676">∫</m:mo><m:mn id="id65679">0</m:mn><m:mi id="id65681" mathvariant="normal">∞</m:mi></m:msubsup><m:mfrac id="id65685"><m:mrow id="id65686"><m:msub id="id65688"><m:mi id="id65689" mathvariant="script">K</m:mi><m:mo id="id65693">-</m:mo></m:msub><m:mo id="id65695">⁢</m:mo><m:msub id="id65698"><m:mi id="id65699" mathvariant="script">H</m:mi><m:mn id="id65703">1</m:mn></m:msub><m:mo id="id65705">⁢</m:mo><m:msub id="id65708"><m:mi id="id65709">F</m:mi><m:mn id="id65711">0</m:mn></m:msub></m:mrow><m:mi id="id65713" mathvariant="script">W</m:mi></m:mfrac></m:mrow></m:mrow></m:mrow></m:mrow><m:annotation-xml id="id65717" encoding="MathML-Content"><m:apply id="id65721"><m:eq id="id65722"/><m:apply id="id65723"><m:csymbol id="id65724" cd="ambiguous">subscript</m:csymbol><m:ci id="id65728">B</m:ci><m:cn id="id65731">1</m:cn></m:apply><m:apply id="id65733"><m:minus id="id65734"/><m:apply id="id65735"><m:times id="id65736"/><m:apply id="id65737"><m:csymbol id="id65738" cd="ambiguous">subscript</m:csymbol><m:ci id="id65743">β</m:ci><m:minus id="id65745"/></m:apply><m:apply id="id65746"><m:apply id="id65747"><m:csymbol id="id65748" cd="ambiguous">superscript</m:csymbol><m:apply id="id65753"><m:csymbol id="id65754" cd="ambiguous">subscript</m:csymbol><m:int id="id65759"/><m:cn id="id65760">0</m:cn></m:apply><m:infinity id="id65762"/></m:apply><m:apply id="id65763"><m:divide id="id65764"/><m:apply id="id65765"><m:times id="id65766"/><m:apply id="id65767"><m:csymbol id="id65768" cd="ambiguous">subscript</m:csymbol><m:ci id="id65773">K</m:ci><m:plus id="id65775"/></m:apply><m:apply id="id65776"><m:csymbol id="id65777" cd="ambiguous">subscript</m:csymbol><m:ci id="id65782">H</m:ci><m:cn id="id65784">1</m:cn></m:apply><m:apply id="id65786"><m:csymbol id="id65787" cd="ambiguous">subscript</m:csymbol><m:ci id="id65792">F</m:ci><m:cn id="id65794">0</m:cn></m:apply></m:apply><m:ci id="id65796">W</m:ci></m:apply></m:apply></m:apply><m:apply id="id65798"><m:times id="id65799"/><m:apply id="id65800"><m:csymbol id="id65802" cd="ambiguous">subscript</m:csymbol><m:ci id="id65806">β</m:ci><m:plus id="id65809"/></m:apply><m:apply id="id65810"><m:apply id="id65811"><m:csymbol id="id65812" cd="ambiguous">superscript</m:csymbol><m:apply id="id65816"><m:csymbol id="id65818" cd="ambiguous">subscript</m:csymbol><m:int id="id65822"/><m:cn id="id65823">0</m:cn></m:apply><m:infinity id="id65825"/></m:apply><m:apply id="id65826"><m:divide id="id65828"/><m:apply id="id65829"><m:times id="id65830"/><m:apply id="id65831"><m:csymbol id="id65832" cd="ambiguous">subscript</m:csymbol><m:ci id="id65836">K</m:ci><m:minus id="id65839"/></m:apply><m:apply id="id65840"><m:csymbol id="id65841" cd="ambiguous">subscript</m:csymbol><m:ci id="id65845">H</m:ci><m:cn id="id65848">1</m:cn></m:apply><m:apply id="id65850"><m:csymbol id="id65851" cd="ambiguous">subscript</m:csymbol><m:ci id="id65855">F</m:ci><m:cn id="id65858">0</m:cn></m:apply></m:apply><m:ci id="id65860">W</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id66067"><h4>Hit id66067</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 46</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/126/f050135.xhtml#id66067</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:188961(000061%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id66067" display="inline"><m:semantics id="id66070"><m:mrow id="id66071"><m:msub id="id66072"><m:mfenced id="id66074" open="[" close="]"><m:mrow id="id66079"><m:mi id="id66080" mathvariant="bold">V</m:mi><m:mo id="id66084">⁢</m:mo><m:mfenced id="id66086" open="(" close=")"><m:mi id="id66092" mathvariant="bold">q</m:mi></m:mfenced></m:mrow></m:mfenced><m:mrow id="id66096"><m:mi id="id66097">a</m:mi><m:mo id="id66099">⁢</m:mo><m:mi id="id66102">b</m:mi></m:mrow></m:msub><m:mo id="id66104">≡</m:mo><m:mrow id="id66106"><m:mrow id="id66107"><m:msub id="id66108"><m:mi id="id66109">δ</m:mi><m:mrow id="id66112"><m:mi id="id66113">a</m:mi><m:mo id="id66115">⁢</m:mo><m:mi id="id66117">b</m:mi></m:mrow></m:msub><m:mo id="id66119">⁢</m:mo><m:msub id="id66122"><m:mi id="id66123">V</m:mi><m:mi id="id66125" mathvariant="bold">q</m:mi></m:msub></m:mrow><m:mo id="id66129">/</m:mo><m:mi id="id66132" mathvariant="normal">Ω</m:mi></m:mrow></m:mrow><m:annotation-xml id="id66136" encoding="MathML-Content"><m:apply id="id66140"><m:ci id="id66141">≡</m:ci><m:apply id="id66143"><m:csymbol id="id66144" cd="ambiguous">subscript</m:csymbol><m:apply id="id66149"><m:times id="id66150"/><m:ci id="id66151">V</m:ci><m:ci id="id66153">q</m:ci></m:apply><m:apply id="id66155"><m:times id="id66156"/><m:ci id="id66157">a</m:ci><m:ci id="id66159">b</m:ci></m:apply></m:apply><m:apply id="id66162"><m:divide id="id66163"/><m:apply id="id66164"><m:times id="id66165"/><m:apply id="id66166"><m:csymbol id="id66167" cd="ambiguous">subscript</m:csymbol><m:ci id="id66172">δ</m:ci><m:apply id="id66174"><m:times id="id66175"/><m:ci id="id66176">a</m:ci><m:ci id="id66178">b</m:ci></m:apply></m:apply><m:apply id="id66180"><m:csymbol id="id66181" cd="ambiguous">subscript</m:csymbol><m:ci id="id66186">V</m:ci><m:ci id="id66188">q</m:ci></m:apply></m:apply><m:ci id="id66190">Ω</m:ci></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id66972"><h4>Hit id66972</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 47</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/106/f042035.xhtml#id66972</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:206133(000073%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id66972" display="inline"><m:semantics id="id66976"><m:mfenced id="id66977" open="[" close="]"><m:mrow id="id66982"><m:mrow id="id66983"><m:msub id="id66984"><m:mi id="id66985">A</m:mi><m:mi id="id66987">i</m:mi></m:msub><m:mo id="id66989">⁢</m:mo><m:mfenced id="id66992" open="(" close=")"><m:mrow id="id66997"><m:mi id="id66998" mathvariant="bold">x</m:mi><m:mo id="id67002">,</m:mo><m:mi id="id67004">t</m:mi></m:mrow></m:mfenced></m:mrow><m:mo id="id67006">,</m:mo><m:mrow id="id67008"><m:msub id="id67010"><m:mi id="id67011">A</m:mi><m:mi id="id67013">j</m:mi></m:msub><m:mo id="id67015">⁢</m:mo><m:mfenced id="id67017" open="(" close=")"><m:mrow id="id67022"><m:msup id="id67023"><m:mi id="id67024" mathvariant="bold">x</m:mi><m:mo id="id67029">′</m:mo></m:msup><m:mo id="id67031">,</m:mo><m:msup id="id67033"><m:mi id="id67034">t</m:mi><m:mo id="id67037">′</m:mo></m:msup></m:mrow></m:mfenced></m:mrow></m:mrow></m:mfenced><m:annotation-xml id="id67039" encoding="MathML-Content"><m:apply id="id67042"><m:interval id="id67043" closure="closed"/><m:apply id="id67047"><m:times id="id67048"/><m:apply id="id67049"><m:csymbol id="id67050" cd="ambiguous">subscript</m:csymbol><m:ci id="id67055">A</m:ci><m:ci id="id67057">i</m:ci></m:apply><m:apply id="id67059"><m:interval id="id67060" closure="open"/><m:ci id="id67063">x</m:ci><m:ci id="id67065">t</m:ci></m:apply></m:apply><m:apply id="id67068"><m:times id="id67069"/><m:apply id="id67070"><m:csymbol id="id67071" cd="ambiguous">subscript</m:csymbol><m:ci id="id67075">A</m:ci><m:ci id="id67078">j</m:ci></m:apply><m:apply id="id67080"><m:interval id="id67081" closure="open"/><m:apply id="id67084"><m:csymbol id="id67085" cd="ambiguous">superscript</m:csymbol><m:ci id="id67090">x</m:ci><m:ci id="id67092">′</m:ci></m:apply><m:apply id="id67094"><m:csymbol id="id67095" cd="ambiguous">superscript</m:csymbol><m:ci id="id67100">t</m:ci><m:ci id="id67102">′</m:ci></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id72884"><h4>Hit id72884</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 48</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/136/f054216.xhtml#id72884</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:281116(000026%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id72884" display="inline"><m:semantics id="id72888"><m:mrow id="id72889"><m:msubsup id="id72890"><m:mi id="id72891">M</m:mi><m:mrow id="id72893"><m:mi id="id72894">b</m:mi><m:mo id="id72896">⁢</m:mo><m:mi id="id72899">a</m:mi></m:mrow><m:mfenced id="id72901" open="(" close=")"><m:mn id="id72906">0</m:mn></m:mfenced></m:msubsup><m:mo id="id72908">=</m:mo><m:mrow id="id72910"><m:mo id="id72911">-</m:mo><m:mrow id="id72913"><m:mi id="id72914" mathvariant="normal">Λ</m:mi><m:mo id="id72919">⁢</m:mo><m:mrow id="id72922"><m:msub id="id72923"><m:mo id="id72924">∂</m:mo><m:mi id="id72926" mathvariant="normal">Λ</m:mi></m:msub><m:mo id="id72931">⁡</m:mo><m:msub id="id72933"><m:mi id="id72934">D</m:mi><m:mrow id="id72936"><m:mi id="id72937">b</m:mi><m:mo id="id72940">⁢</m:mo><m:mi id="id72942">a</m:mi></m:mrow></m:msub></m:mrow></m:mrow></m:mrow></m:mrow><m:annotation-xml id="id72944" encoding="MathML-Content"><m:apply id="id72947"><m:eq id="id72948"/><m:apply id="id72950"><m:csymbol id="id72951" cd="ambiguous">subscript</m:csymbol><m:apply id="id72955"><m:csymbol id="id72956" cd="ambiguous">superscript</m:csymbol><m:ci id="id72961">M</m:ci><m:cn id="id72963">0</m:cn></m:apply><m:apply id="id72965"><m:times id="id72966"/><m:ci id="id72967">b</m:ci><m:ci id="id72970">a</m:ci></m:apply></m:apply><m:apply id="id72972"><m:minus id="id72973"/><m:apply id="id72974"><m:times id="id72975"/><m:ci id="id72976">Λ</m:ci><m:apply id="id72978"><m:apply id="id72979"><m:csymbol id="id72980" cd="ambiguous">subscript</m:csymbol><m:partialdiff id="id72985"/><m:ci id="id72986">Λ</m:ci></m:apply><m:apply id="id72989"><m:csymbol id="id72990" cd="ambiguous">subscript</m:csymbol><m:ci id="id72994">D</m:ci><m:apply id="id72996"><m:times id="id72998"/><m:ci id="id72999">b</m:ci><m:ci id="id73001">a</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id73324"><h4>Hit id73324</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 49</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/81/f032206.xhtml#id73324</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:295418(000017%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id73324" display="inline"><m:semantics id="id73327"><m:mrow id="id73328"><m:msub id="id73329"><m:mover id="id73330" accent="true"><m:mi id="id73334">X</m:mi><m:mo id="id73336">^</m:mo></m:mover><m:mn id="id73338">1</m:mn></m:msub><m:mo id="id73340">=</m:mo><m:mrow id="id73342"><m:msub id="id73343"><m:mi id="id73344">λ</m:mi><m:mrow id="id73347"><m:mi id="id73348">n</m:mi><m:mo id="id73350">⁢</m:mo><m:mi id="id73352">m</m:mi></m:mrow></m:msub><m:mo id="id73354">⁢</m:mo><m:mfenced id="id73357" open="(" close=")"><m:mi id="id73362">t</m:mi></m:mfenced><m:mo id="id73364">⁢</m:mo><m:msub id="id73366"><m:mo id="id73367">∂</m:mo><m:msub id="id73370"><m:mi id="id73371">u</m:mi><m:mrow id="id73373"><m:mi id="id73374">n</m:mi><m:mo id="id73376">⁢</m:mo><m:mi id="id73379">m</m:mi></m:mrow></m:msub></m:msub></m:mrow></m:mrow><m:annotation-xml id="id73381" encoding="MathML-Content"><m:apply id="id73384"><m:eq id="id73385"/><m:apply id="id73386"><m:csymbol id="id73387" cd="ambiguous">subscript</m:csymbol><m:apply id="id73392"><m:ci id="id73393">^</m:ci><m:ci id="id73395">X</m:ci></m:apply><m:cn id="id73397">1</m:cn></m:apply><m:apply id="id73399"><m:times id="id73400"/><m:apply id="id73402"><m:csymbol id="id73403" cd="ambiguous">subscript</m:csymbol><m:ci id="id73407">λ</m:ci><m:apply id="id73410"><m:times id="id73411"/><m:ci id="id73412">n</m:ci><m:ci id="id73414">m</m:ci></m:apply></m:apply><m:ci id="id73416">t</m:ci><m:apply id="id73418"><m:csymbol id="id73419" cd="ambiguous">subscript</m:csymbol><m:partialdiff id="id73424"/><m:apply id="id73425"><m:csymbol id="id73426" cd="ambiguous">subscript</m:csymbol><m:ci id="id73431">u</m:ci><m:apply id="id73433"><m:times id="id73434"/><m:ci id="id73435">n</m:ci><m:ci id="id73437">m</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id73427"><h4>Hit id73427</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 50</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/176/f070270.xhtml#id73427</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:302446(000039%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id73427" display="inline"><m:semantics id="id73431"><m:mrow id="id73432"><m:none id="id73433"/><m:mo id="id73434">=</m:mo><m:mrow id="id73436"><m:mi id="id73437">w</m:mi><m:mo id="id73439">⁢</m:mo><m:mfenced id="id73442" open="(" close=")"><m:mrow id="id73447"><m:mrow id="id73448"><m:mo id="id73449">-</m:mo><m:mi id="id73451">n</m:mi></m:mrow><m:mo id="id73453">,</m:mo><m:mrow id="id73455"><m:mo id="id73456">-</m:mo><m:mi id="id73458">m</m:mi></m:mrow><m:mo id="id73461">;</m:mo><m:msup id="id73463"><m:mi id="id73464">a</m:mi><m:mrow id="id73466"><m:mo id="id73467">-</m:mo><m:mn id="id73469">1</m:mn></m:mrow></m:msup><m:mo id="id73471">,</m:mo><m:mrow id="id73473"><m:mi id="id73474">q</m:mi><m:mo id="id73477">⁢</m:mo><m:msup id="id73479"><m:mi id="id73480">b</m:mi><m:mrow id="id73482"><m:mo id="id73483">-</m:mo><m:mn id="id73485">1</m:mn></m:mrow></m:msup></m:mrow><m:mo id="id73488">;</m:mo><m:mi id="id73490">q</m:mi><m:mo id="id73492">,</m:mo><m:mi id="id73494">p</m:mi></m:mrow></m:mfenced></m:mrow></m:mrow><m:annotation-xml id="id73496" encoding="MathML-Content"><m:apply id="id73499"><m:eq id="id73500"/><m:ci id="id73502"/><m:apply id="id73503"><m:times id="id73504"/><m:ci id="id73505">w</m:ci><m:apply id="id73507"><m:vector id="id73508"/><m:apply id="id73509"><m:minus id="id73510"/><m:ci id="id73511">n</m:ci></m:apply><m:apply id="id73513"><m:minus id="id73514"/><m:ci id="id73515">m</m:ci></m:apply><m:apply id="id73518"><m:csymbol id="id73519" cd="ambiguous">superscript</m:csymbol><m:ci id="id73523">a</m:ci><m:apply id="id73525"><m:minus id="id73526"/><m:cn id="id73528">1</m:cn></m:apply></m:apply><m:apply id="id73530"><m:times id="id73531"/><m:ci id="id73532">q</m:ci><m:apply id="id73534"><m:csymbol id="id73535" cd="ambiguous">superscript</m:csymbol><m:ci id="id73540">b</m:ci><m:apply id="id73542"><m:minus id="id73543"/><m:cn id="id73544">1</m:cn></m:apply></m:apply></m:apply><m:ci id="id73546">q</m:ci><m:ci id="id73548">p</m:ci></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id74290"><h4>Hit id74290</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 51</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/40/f015703.xhtml#id74290</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:304445(000016%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id74290" display="inline"><m:semantics id="id74293"><m:mrow id="id74294"><m:mrow id="id74295"><m:mi id="id74296">b</m:mi><m:mo id="id74298">:=</m:mo><m:msup id="id74300"><m:mi id="id74301">q</m:mi><m:mrow id="id74304"><m:mi id="id74305">α</m:mi><m:mo id="id74307">+</m:mo><m:mrow id="id74309"><m:mn id="id74310">1</m:mn><m:mo id="id74312">/</m:mo><m:mn id="id74314">2</m:mn></m:mrow></m:mrow></m:msup></m:mrow><m:mo id="id74317">,</m:mo><m:mrow id="id74319"><m:mi id="id74320">c</m:mi><m:mo id="id74322">:=</m:mo><m:msup id="id74324"><m:mi id="id74325">q</m:mi><m:mrow id="id74327"><m:mi id="id74328">β</m:mi><m:mo id="id74331">+</m:mo><m:mrow id="id74333"><m:mn id="id74334">1</m:mn><m:mo id="id74336">/</m:mo><m:mn id="id74338">2</m:mn></m:mrow></m:mrow></m:msup></m:mrow></m:mrow><m:annotation-xml id="id74340" encoding="MathML-Content"><m:apply id="id74344"><m:ci id="id74345"/><m:apply id="id74346"><m:ci id="id74347">:=</m:ci><m:ci id="id74349">b</m:ci><m:apply id="id74351"><m:csymbol id="id74352" cd="ambiguous">superscript</m:csymbol><m:ci id="id74357">q</m:ci><m:apply id="id74359"><m:plus id="id74360"/><m:ci id="id74361">α</m:ci><m:apply id="id74364"><m:divide id="id74365"/><m:cn id="id74366">1</m:cn><m:cn id="id74368">2</m:cn></m:apply></m:apply></m:apply></m:apply><m:apply id="id74370"><m:ci id="id74371">:=</m:ci><m:ci id="id74373">c</m:ci><m:apply id="id74375"><m:csymbol id="id74376" cd="ambiguous">superscript</m:csymbol><m:ci id="id74381">q</m:ci><m:apply id="id74383"><m:plus id="id74384"/><m:ci id="id74385">β</m:ci><m:apply id="id74388"><m:divide id="id74389"/><m:cn id="id74390">1</m:cn><m:cn id="id74392">2</m:cn></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id75261"><h4>Hit id75261</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 52</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/104/f041243.xhtml#id75261</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:324347(000051%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id75261" display="inline"><m:semantics id="id75265"><m:mrow id="id75266"><m:mrow id="id75267"><m:mrow id="id75268"><m:mfenced id="id75269" open="{" close=""><m:mtable id="id75274" rowspacing="0.2ex" columnspacing="0.4em"><m:mtr id="id75280"><m:mtd id="id75281" columnalign="left"><m:mrow id="id75284"><m:msub id="id75285"><m:mi id="id75286">t</m:mi><m:mrow id="id75288"><m:mrow id="id75289"><m:mi id="id75290">i</m:mi><m:mo id="id75292">⁢</m:mo><m:mi id="id75295">j</m:mi></m:mrow><m:mo id="id75297">-</m:mo><m:mn id="id75299">1</m:mn></m:mrow></m:msub><m:mo id="id75301">,</m:mo></m:mrow></m:mtd><m:mtd id="id75303" columnalign="left"><m:mrow id="id75307"><m:mrow id="id75308"><m:mi id="id75309">k</m:mi><m:mo id="id75311">=</m:mo><m:mrow id="id75313"><m:mi id="id75314">j</m:mi><m:mo id="id75316">-</m:mo><m:mn id="id75318">1</m:mn></m:mrow></m:mrow><m:mo id="id75321">,</m:mo></m:mrow></m:mtd></m:mtr><m:mtr id="id75323"><m:mtd id="id75324" columnalign="left"><m:mrow id="id75327"><m:mn id="id75328">0</m:mn><m:mo id="id75330">,</m:mo></m:mrow></m:mtd><m:mtd id="id75332" columnalign="left"><m:mrow id="id75336"><m:mtext id="id75337">otherwise</m:mtext><m:mo id="id75339">,</m:mo></m:mrow></m:mtd></m:mtr></m:mtable></m:mfenced><m:mo id="id75341">⁢</m:mo><m:msub id="id75344"><m:mi id="id75345">F</m:mi><m:mi id="id75347">k</m:mi></m:msub></m:mrow><m:mo id="id75349">⋅</m:mo><m:msub id="id75352"><m:mi id="id75353">t</m:mi><m:mrow id="id75355"><m:mi id="id75356">i</m:mi><m:mo id="id75358">⁢</m:mo><m:mi id="id75360">j</m:mi></m:mrow></m:msub></m:mrow><m:mo id="id75362">=</m:mo><m:mrow id="id75365"><m:msup id="id75366"><m:mi id="id75367">q</m:mi><m:mrow id="id75369"><m:mn id="id75370">1</m:mn><m:mo id="id75372">/</m:mo><m:mn id="id75374">2</m:mn></m:mrow></m:msup><m:mo id="id75376">⁢</m:mo><m:mfenced id="id75379" open="{" close=""><m:mtable id="id75384" rowspacing="0.2ex" columnspacing="0.4em"><m:mtr id="id75389"><m:mtd id="id75390" columnalign="left"><m:mrow id="id75394"><m:msub id="id75395"><m:mi id="id75396">t</m:mi><m:mrow id="id75398"><m:mrow id="id75399"><m:mi id="id75400">i</m:mi><m:mo id="id75402">⁢</m:mo><m:mi id="id75405">j</m:mi></m:mrow><m:mo id="id75407">+</m:mo><m:mn id="id75409">1</m:mn></m:mrow></m:msub><m:mo id="id75411">,</m:mo></m:mrow></m:mtd><m:mtd id="id75413" columnalign="left"><m:mrow id="id75417"><m:mrow id="id75418"><m:mi id="id75419">k</m:mi><m:mo id="id75421">=</m:mo><m:mi id="id75423">j</m:mi></m:mrow><m:mo id="id75425">,</m:mo></m:mrow></m:mtd></m:mtr><m:mtr id="id75427"><m:mtd id="id75428" columnalign="left"><m:mrow id="id75432"><m:mn id="id75433">0</m:mn><m:mo id="id75435">,</m:mo></m:mrow></m:mtd><m:mtd id="id75437" columnalign="left"><m:mrow id="id75440"><m:mtext id="id75441">otherwise</m:mtext><m:mo id="id75444">,</m:mo></m:mrow></m:mtd></m:mtr></m:mtable></m:mfenced></m:mrow></m:mrow><m:annotation-xml id="id75446" encoding="MathML-Content"><m:apply id="id75449"><m:eq id="id75450"/><m:apply id="id75451"><m:ci id="id75452">⋅</m:ci><m:apply id="id75455"><m:times id="id75456"/><m:mtext id="id75457">t-⁢ij1=k-j10otherwise</m:mtext><m:apply id="id75460"><m:csymbol id="id75461" cd="ambiguous">subscript</m:csymbol><m:ci id="id75465">F</m:ci><m:ci id="id75468">k</m:ci></m:apply></m:apply><m:apply id="id75470"><m:csymbol id="id75471" cd="ambiguous">subscript</m:csymbol><m:ci id="id75475">t</m:ci><m:apply id="id75478"><m:times id="id75479"/><m:ci id="id75480">i</m:ci><m:ci id="id75482">j</m:ci></m:apply></m:apply></m:apply><m:apply id="id75484"><m:times id="id75485"/><m:apply id="id75486"><m:csymbol id="id75487" cd="ambiguous">superscript</m:csymbol><m:ci id="id75492">q</m:ci><m:apply id="id75494"><m:divide id="id75495"/><m:cn id="id75496">1</m:cn><m:cn id="id75498">2</m:cn></m:apply></m:apply><m:mtext id="id75500">t+⁢ij1=kj0otherwise</m:mtext></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id78453"><h4>Hit id78453</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 53</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/215/f085726.xhtml#id78453</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:376142(000048%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id78453" display="block"><m:semantics id="id78456"><m:mrow id="id78458"><m:mrow id="id78459"><m:mi id="id78460">B</m:mi><m:mo id="id78462">=</m:mo><m:mrow id="id78464"><m:mrow id="id78465"><m:mrow id="id78466"><m:mi id="id78467" mathvariant="normal">Λ</m:mi><m:mo id="id78472">⁢</m:mo><m:msup id="id78474"><m:mi id="id78475">e</m:mi><m:mfrac id="id78477"><m:mrow id="id78478"><m:mi id="id78480">i</m:mi><m:mo id="id78482">⁢</m:mo><m:mn id="id78484">2</m:mn><m:mo id="id78486">⁢</m:mo><m:mi id="id78489">π</m:mi><m:mo id="id78491">⁢</m:mo><m:mi id="id78493">k</m:mi></m:mrow><m:mrow id="id78496"><m:mrow id="id78497"><m:mn id="id78498">2</m:mn><m:mo id="id78500">⁢</m:mo><m:msub id="id78502"><m:mi id="id78503">N</m:mi><m:mi id="id78505">c</m:mi></m:msub></m:mrow><m:mo id="id78508">-</m:mo><m:msub id="id78510"><m:mi id="id78511">N</m:mi><m:mi id="id78513">f</m:mi></m:msub></m:mrow></m:mfrac></m:msup><m:mo id="id78515">⁢</m:mo><m:mfrac id="id78517"><m:mrow id="id78518"><m:mi id="id78520">θ</m:mi><m:mo id="id78522">⁢</m:mo><m:msup id="id78524"><m:mfenced id="id78525" open="(" close=")"><m:mrow id="id78530"><m:msub id="id78532"><m:mi id="id78533" mathvariant="normal">∞</m:mi><m:mo id="id78537">+</m:mo></m:msub><m:mo id="id78539">-</m:mo><m:msub id="id78542"><m:mi id="id78543" mathvariant="normal">∞</m:mi><m:mo id="id78547">-</m:mo></m:msub><m:mo id="id78549">+</m:mo><m:mfrac id="id78552"><m:mrow id="id78553"><m:mn id="id78554">1</m:mn><m:mo id="id78556">+</m:mo><m:mi id="id78558">τ</m:mi></m:mrow><m:mn id="id78560">2</m:mn></m:mfrac></m:mrow></m:mfenced><m:mn id="id78562">2</m:mn></m:msup></m:mrow><m:mrow id="id78565"><m:mi id="id78566">θ</m:mi><m:mo id="id78568">⁢</m:mo><m:mfenced id="id78570" open="(" close=")"><m:mrow id="id78576"><m:msub id="id78577"><m:mi id="id78578" mathvariant="normal">∞</m:mi><m:mo id="id78582">+</m:mo></m:msub><m:mo id="id78584">-</m:mo><m:msub id="id78587"><m:mi id="id78588">z</m:mi><m:mn id="id78590">0</m:mn></m:msub><m:mo id="id78592">+</m:mo><m:mfrac id="id78594"><m:mrow id="id78595"><m:mn id="id78596">1</m:mn><m:mo id="id78598">+</m:mo><m:mi id="id78600">τ</m:mi></m:mrow><m:mn id="id78603">2</m:mn></m:mfrac></m:mrow></m:mfenced><m:mo id="id78605">⁢</m:mo><m:mi id="id78607">θ</m:mi><m:mo id="id78610">⁢</m:mo><m:mfenced id="id78612" open="(" close=")"><m:mrow id="id78617"><m:msub id="id78618"><m:mi id="id78619" mathvariant="normal">∞</m:mi><m:mo id="id78624">+</m:mo></m:msub><m:mo id="id78626">-</m:mo><m:mn id="id78628">1</m:mn><m:mo id="id78630">-</m:mo><m:mi id="id78633">τ</m:mi><m:mo id="id78635">+</m:mo><m:msub id="id78637"><m:mi id="id78638">z</m:mi><m:mn id="id78640">0</m:mn></m:msub><m:mo id="id78642">+</m:mo><m:mfrac id="id78645"><m:mrow id="id78646"><m:mn id="id78647">1</m:mn><m:mo id="id78649">+</m:mo><m:mi id="id78651">τ</m:mi></m:mrow><m:mn id="id78653">2</m:mn></m:mfrac></m:mrow></m:mfenced></m:mrow></m:mfrac></m:mrow><m:mo id="id78656">×</m:mo><m:msup id="id78658"><m:mfenced id="id78659" open="(" close=")"><m:mrow id="id78664"><m:munder id="id78665"><m:mo id="id78666" movablelimits="false">∏</m:mo><m:mi id="id78671">i</m:mi></m:munder><m:mfrac id="id78673"><m:mrow id="id78674"><m:mi id="id78675">θ</m:mi><m:mo id="id78678">⁢</m:mo><m:mfenced id="id78680" open="(" close=")"><m:mrow id="id78685"><m:msub id="id78686"><m:mi id="id78687" mathvariant="normal">∞</m:mi><m:mo id="id78692">+</m:mo></m:msub><m:mo id="id78694">-</m:mo><m:msub id="id78696"><m:mover id="id78697" accent="true"><m:mi id="id78700">z</m:mi><m:mo id="id78703">~</m:mo></m:mover><m:mi id="id78705">i</m:mi></m:msub><m:mo id="id78707">+</m:mo><m:mfrac id="id78709"><m:mrow id="id78710"><m:mn id="id78711">1</m:mn><m:mo id="id78713">+</m:mo><m:mi id="id78715">τ</m:mi></m:mrow><m:mn id="id78718">2</m:mn></m:mfrac></m:mrow></m:mfenced></m:mrow><m:mrow id="id78720"><m:mi id="id78721">θ</m:mi><m:mo id="id78723">⁢</m:mo><m:mfenced id="id78726" open="(" close=")"><m:mrow id="id78731"><m:msub id="id78732"><m:mi id="id78733" mathvariant="normal">∞</m:mi><m:mo id="id78738">-</m:mo></m:msub><m:mo id="id78740">-</m:mo><m:msub id="id78742"><m:mover id="id78743" accent="true"><m:mi id="id78746">z</m:mi><m:mo id="id78748">~</m:mo></m:mover><m:mi id="id78751">i</m:mi></m:msub><m:mo id="id78753">+</m:mo><m:mfrac id="id78755"><m:mrow id="id78756"><m:mn id="id78757">1</m:mn><m:mo id="id78759">+</m:mo><m:mi id="id78761">τ</m:mi></m:mrow><m:mn id="id78764">2</m:mn></m:mfrac></m:mrow></m:mfenced></m:mrow></m:mfrac></m:mrow></m:mfenced><m:mfrac id="id78766"><m:mn id="id78767">1</m:mn><m:mrow id="id78769"><m:mrow id="id78770"><m:mn id="id78771">2</m:mn><m:mo id="id78773">⁢</m:mo><m:msub id="id78776"><m:mi id="id78777">N</m:mi><m:mi id="id78779">c</m:mi></m:msub></m:mrow><m:mo id="id78781">-</m:mo><m:msub id="id78783"><m:mi id="id78784">N</m:mi><m:mi id="id78786">f</m:mi></m:msub></m:mrow></m:mfrac></m:msup></m:mrow><m:mo id="id78788">⁢</m:mo><m:msup id="id78791"><m:mi id="id78792">e</m:mi><m:mrow id="id78794"><m:mn id="id78795">2</m:mn><m:mo id="id78797">⁢</m:mo><m:mi id="id78800">π</m:mi><m:mo id="id78802">⁢</m:mo><m:mi id="id78804">i</m:mi><m:mo id="id78807">⁢</m:mo><m:mfenced id="id78809" open="(" close=")"><m:mrow id="id78814"><m:msub id="id78815"><m:mi id="id78816" mathvariant="normal">∞</m:mi><m:mo id="id78821">+</m:mo></m:msub><m:mo id="id78823">-</m:mo><m:msub id="id78825"><m:mi id="id78826" mathvariant="normal">∞</m:mi><m:mo id="id78831">-</m:mo></m:msub></m:mrow></m:mfenced><m:mo id="id78833">⁢</m:mo><m:mfrac id="id78835"><m:mrow id="id78836"><m:msub id="id78838"><m:mi id="id78839">N</m:mi><m:mi id="id78841">c</m:mi></m:msub><m:mo id="id78843">+</m:mo><m:msub id="id78845"><m:mi id="id78846">N</m:mi><m:mn id="id78848">1</m:mn></m:msub></m:mrow><m:mrow id="id78850"><m:mrow id="id78851"><m:mn id="id78852">2</m:mn><m:mo id="id78855">⁢</m:mo><m:msub id="id78857"><m:mi id="id78858">N</m:mi><m:mi id="id78860">c</m:mi></m:msub></m:mrow><m:mo id="id78862">-</m:mo><m:msub id="id78864"><m:mi id="id78866">N</m:mi><m:mi id="id78868">f</m:mi></m:msub></m:mrow></m:mfrac></m:mrow></m:msup><m:mo id="id78870">⁢</m:mo><m:msup id="id78872"><m:mi id="id78873">e</m:mi><m:mrow id="id78875"><m:mo id="id78876">-</m:mo><m:mrow id="id78879"><m:mi id="id78880">π</m:mi><m:mo id="id78882">⁢</m:mo><m:mi id="id78884">i</m:mi><m:mo id="id78887">⁢</m:mo><m:mfrac id="id78889"><m:msub id="id78890"><m:mi id="id78891">N</m:mi><m:mi id="id78893">f</m:mi></m:msub><m:mrow id="id78895"><m:mrow id="id78896"><m:mn id="id78898">2</m:mn><m:mo id="id78900">⁢</m:mo><m:msub id="id78902"><m:mi id="id78903">N</m:mi><m:mi id="id78905">c</m:mi></m:msub></m:mrow><m:mo id="id78907">-</m:mo><m:msub id="id78910"><m:mi id="id78911">N</m:mi><m:mi id="id78913">f</m:mi></m:msub></m:mrow></m:mfrac></m:mrow></m:mrow></m:msup></m:mrow></m:mrow><m:mo id="id78915">.</m:mo></m:mrow><m:annotation-xml id="id78917" encoding="MathML-Content"><m:apply id="id78920"><m:eq id="id78921"/><m:ci id="id78922">B</m:ci><m:apply id="id78925"><m:times id="id78926"/><m:apply id="id78927"><m:times id="id78928"/><m:apply id="id78929"><m:times id="id78930"/><m:ci id="id78931">Λ</m:ci><m:apply id="id78933"><m:csymbol id="id78934" cd="ambiguous">superscript</m:csymbol><m:ci id="id78939">e</m:ci><m:apply id="id78941"><m:divide id="id78942"/><m:apply id="id78943"><m:times id="id78944"/><m:ci id="id78946">i</m:ci><m:cn id="id78948">2</m:cn><m:ci id="id78950">π</m:ci><m:ci id="id78952">k</m:ci></m:apply><m:apply id="id78954"><m:minus id="id78955"/><m:apply id="id78956"><m:times id="id78958"/><m:cn id="id78959">2</m:cn><m:apply id="id78961"><m:csymbol id="id78962" cd="ambiguous">subscript</m:csymbol><m:ci id="id78966">N</m:ci><m:ci id="id78969">c</m:ci></m:apply></m:apply><m:apply id="id78971"><m:csymbol id="id78972" cd="ambiguous">subscript</m:csymbol><m:ci id="id78976">N</m:ci><m:ci id="id78979">f</m:ci></m:apply></m:apply></m:apply></m:apply><m:apply id="id78981"><m:divide id="id78982"/><m:apply id="id78983"><m:times id="id78984"/><m:ci id="id78985">θ</m:ci><m:apply id="id78987"><m:csymbol id="id78988" cd="ambiguous">superscript</m:csymbol><m:apply id="id78993"><m:plus id="id78994"/><m:apply id="id78995"><m:minus id="id78996"/><m:apply id="id78997"><m:csymbol id="id78998" cd="ambiguous">subscript</m:csymbol><m:infinity id="id79003"/><m:plus id="id79004"/></m:apply><m:apply id="id79005"><m:csymbol id="id79006" cd="ambiguous">subscript</m:csymbol><m:infinity id="id79011"/><m:minus id="id79012"/></m:apply></m:apply><m:apply id="id79013"><m:divide id="id79014"/><m:apply id="id79015"><m:plus id="id79016"/><m:cn id="id79017">1</m:cn><m:ci id="id79020">τ</m:ci></m:apply><m:cn id="id79022">2</m:cn></m:apply></m:apply><m:cn id="id79024">2</m:cn></m:apply></m:apply><m:apply id="id79026"><m:times id="id79027"/><m:ci id="id79028">θ</m:ci><m:apply id="id79031"><m:plus id="id79032"/><m:apply id="id79033"><m:minus id="id79034"/><m:apply id="id79035"><m:csymbol id="id79036" cd="ambiguous">subscript</m:csymbol><m:infinity id="id79041"/><m:plus id="id79042"/></m:apply><m:apply id="id79043"><m:csymbol id="id79044" cd="ambiguous">subscript</m:csymbol><m:ci id="id79049">z</m:ci><m:cn id="id79051">0</m:cn></m:apply></m:apply><m:apply id="id79053"><m:divide id="id79054"/><m:apply id="id79055"><m:plus id="id79056"/><m:cn id="id79057">1</m:cn><m:ci id="id79059">τ</m:ci></m:apply><m:cn id="id79062">2</m:cn></m:apply></m:apply><m:ci id="id79064">θ</m:ci><m:apply id="id79066"><m:plus id="id79067"/><m:apply id="id79068"><m:minus id="id79069"/><m:apply id="id79070"><m:csymbol id="id79072" cd="ambiguous">subscript</m:csymbol><m:infinity id="id79076"/><m:plus id="id79077"/></m:apply><m:cn id="id79078">1</m:cn><m:ci id="id79080">τ</m:ci></m:apply><m:apply id="id79083"><m:csymbol id="id79084" cd="ambiguous">subscript</m:csymbol><m:ci id="id79089">z</m:ci><m:cn id="id79091">0</m:cn></m:apply><m:apply id="id79093"><m:divide id="id79094"/><m:apply id="id79095"><m:plus id="id79096"/><m:cn id="id79097">1</m:cn><m:ci id="id79099">τ</m:ci></m:apply><m:cn id="id79102">2</m:cn></m:apply></m:apply></m:apply></m:apply></m:apply><m:apply id="id79104"><m:csymbol id="id79105" cd="ambiguous">superscript</m:csymbol><m:apply id="id79110"><m:apply id="id79111"><m:csymbol id="id79112" cd="ambiguous">subscript</m:csymbol><m:ci id="id79116">∏</m:ci><m:ci id="id79119">i</m:ci></m:apply><m:apply id="id79121"><m:divide id="id79122"/><m:apply id="id79123"><m:times id="id79124"/><m:ci id="id79125">θ</m:ci><m:apply id="id79128"><m:plus id="id79129"/><m:apply id="id79130"><m:minus id="id79131"/><m:apply id="id79132"><m:csymbol id="id79133" cd="ambiguous">subscript</m:csymbol><m:infinity id="id79138"/><m:plus id="id79139"/></m:apply><m:apply id="id79140"><m:csymbol id="id79141" cd="ambiguous">subscript</m:csymbol><m:apply id="id79145"><m:ci id="id79146">~</m:ci><m:ci id="id79149">z</m:ci></m:apply><m:ci id="id79151">i</m:ci></m:apply></m:apply><m:apply id="id79153"><m:divide id="id79154"/><m:apply id="id79155"><m:plus id="id79156"/><m:cn id="id79157">1</m:cn><m:ci id="id79159">τ</m:ci></m:apply><m:cn id="id79162">2</m:cn></m:apply></m:apply></m:apply><m:apply id="id79164"><m:times id="id79165"/><m:ci id="id79166">θ</m:ci><m:apply id="id79168"><m:plus id="id79169"/><m:apply id="id79170"><m:minus id="id79172"/><m:apply id="id79173"><m:csymbol id="id79174" cd="ambiguous">subscript</m:csymbol><m:infinity id="id79178"/><m:minus id="id79179"/></m:apply><m:apply id="id79180"><m:csymbol id="id79182" cd="ambiguous">subscript</m:csymbol><m:apply id="id79186"><m:ci id="id79187">~</m:ci><m:ci id="id79189">z</m:ci></m:apply><m:ci id="id79192">i</m:ci></m:apply></m:apply><m:apply id="id79194"><m:divide id="id79195"/><m:apply id="id79196"><m:plus id="id79197"/><m:cn id="id79198">1</m:cn><m:ci id="id79200">τ</m:ci></m:apply><m:cn id="id79202">2</m:cn></m:apply></m:apply></m:apply></m:apply></m:apply><m:apply id="id79205"><m:divide id="id79206"/><m:cn id="id79207">1</m:cn><m:apply id="id79209"><m:minus id="id79210"/><m:apply id="id79211"><m:times id="id79212"/><m:cn id="id79213">2</m:cn><m:apply id="id79215"><m:csymbol id="id79216" cd="ambiguous">subscript</m:csymbol><m:ci id="id79221">N</m:ci><m:ci id="id79223">c</m:ci></m:apply></m:apply><m:apply id="id79225"><m:csymbol id="id79226" cd="ambiguous">subscript</m:csymbol><m:ci id="id79231">N</m:ci><m:ci id="id79233">f</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply><m:apply id="id79235"><m:csymbol id="id79236" cd="ambiguous">superscript</m:csymbol><m:ci id="id79241">e</m:ci><m:apply id="id79243"><m:times id="id79244"/><m:cn id="id79245">2</m:cn><m:ci id="id79247">π</m:ci><m:ci id="id79250">i</m:ci><m:apply id="id79252"><m:minus id="id79253"/><m:apply id="id79254"><m:csymbol id="id79255" cd="ambiguous">subscript</m:csymbol><m:infinity id="id79260"/><m:plus id="id79261"/></m:apply><m:apply id="id79262"><m:csymbol id="id79263" cd="ambiguous">subscript</m:csymbol><m:infinity id="id79268"/><m:minus id="id79269"/></m:apply></m:apply><m:apply id="id79270"><m:divide id="id79271"/><m:apply id="id79272"><m:plus id="id79273"/><m:apply id="id79274"><m:csymbol id="id79275" cd="ambiguous">subscript</m:csymbol><m:ci id="id79280">N</m:ci><m:ci id="id79282">c</m:ci></m:apply><m:apply id="id79284"><m:csymbol id="id79285" cd="ambiguous">subscript</m:csymbol><m:ci id="id79290">N</m:ci><m:cn id="id79292">1</m:cn></m:apply></m:apply><m:apply id="id79294"><m:minus id="id79295"/><m:apply id="id79296"><m:times id="id79297"/><m:cn id="id79298">2</m:cn><m:apply id="id79300"><m:csymbol id="id79302" cd="ambiguous">subscript</m:csymbol><m:ci id="id79306">N</m:ci><m:ci id="id79308">c</m:ci></m:apply></m:apply><m:apply id="id79310"><m:csymbol id="id79312" cd="ambiguous">subscript</m:csymbol><m:ci id="id79316">N</m:ci><m:ci id="id79318">f</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply><m:apply id="id79320"><m:csymbol id="id79322" cd="ambiguous">superscript</m:csymbol><m:ci id="id79326">e</m:ci><m:apply id="id79328"><m:minus id="id79329"/><m:apply id="id79330"><m:times id="id79332"/><m:ci id="id79333">π</m:ci><m:ci id="id79335">i</m:ci><m:apply id="id79337"><m:divide id="id79338"/><m:apply id="id79339"><m:csymbol id="id79340" cd="ambiguous">subscript</m:csymbol><m:ci id="id79345">N</m:ci><m:ci id="id79347">f</m:ci></m:apply><m:apply id="id79349"><m:minus id="id79350"/><m:apply id="id79351"><m:times id="id79352"/><m:cn id="id79354">2</m:cn><m:apply id="id79356"><m:csymbol id="id79357" cd="ambiguous">subscript</m:csymbol><m:ci id="id79361">N</m:ci><m:ci id="id79364">c</m:ci></m:apply></m:apply><m:apply id="id79366"><m:csymbol id="id79367" cd="ambiguous">subscript</m:csymbol><m:ci id="id79371">N</m:ci><m:ci id="id79374">f</m:ci></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id78763"><h4>Hit id78763</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 54</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/78/f031132.xhtml#id78763</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:379742(000024%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id78763" display="inline"><m:semantics id="id78767"><m:mrow id="id78768"><m:mrow id="id78769"><m:mi id="id78770">W</m:mi><m:mo id="id78772">⁢</m:mo><m:mfenced id="id78774" open="(" close=")"><m:mi id="id78779">f</m:mi></m:mfenced><m:mo id="id78782">⁢</m:mo><m:mi id="id78784">W</m:mi><m:mo id="id78786">⁢</m:mo><m:mfenced id="id78788" open="(" close=")"><m:mi id="id78794">g</m:mi></m:mfenced></m:mrow><m:mo id="id78796">=</m:mo><m:mrow id="id78798"><m:msup id="id78799"><m:mi id="id78800">e</m:mi><m:mrow id="id78802"><m:mfrac id="id78803"><m:mi id="id78804">i</m:mi><m:mn id="id78806">2</m:mn></m:mfrac><m:mo id="id78808">⁢</m:mo><m:mi id="id78811">σ</m:mi><m:mo id="id78813">⁢</m:mo><m:mfenced id="id78816" open="(" close=")"><m:mrow id="id78821"><m:mi id="id78822">f</m:mi><m:mo id="id78824">,</m:mo><m:mi id="id78826">g</m:mi></m:mrow></m:mfenced></m:mrow></m:msup><m:mo id="id78828">⁢</m:mo><m:mi id="id78831">W</m:mi><m:mo id="id78833">⁢</m:mo><m:mfenced id="id78835" open="(" close=")"><m:mrow id="id78840"><m:mi id="id78841">f</m:mi><m:mo id="id78843">+</m:mo><m:mi id="id78846">g</m:mi></m:mrow></m:mfenced></m:mrow></m:mrow><m:annotation-xml id="id78848" encoding="MathML-Content"><m:apply id="id78851"><m:eq id="id78852"/><m:apply id="id78853"><m:times id="id78854"/><m:ci id="id78855">W</m:ci><m:ci id="id78857">f</m:ci><m:ci id="id78860">W</m:ci><m:ci id="id78862">g</m:ci></m:apply><m:apply id="id78864"><m:times id="id78865"/><m:apply id="id78866"><m:csymbol id="id78867" cd="ambiguous">superscript</m:csymbol><m:ci id="id78872">e</m:ci><m:apply id="id78874"><m:times id="id78875"/><m:apply id="id78876"><m:divide id="id78877"/><m:ci id="id78878">i</m:ci><m:cn id="id78880">2</m:cn></m:apply><m:ci id="id78882">σ</m:ci><m:apply id="id78885"><m:interval id="id78886" closure="open"/><m:ci id="id78889">f</m:ci><m:ci id="id78891">g</m:ci></m:apply></m:apply></m:apply><m:ci id="id78893">W</m:ci><m:apply id="id78896"><m:plus id="id78897"/><m:ci id="id78898">f</m:ci><m:ci id="id78900">g</m:ci></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id79054"><h4>Hit id79054</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 55</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/211/f084277.xhtml#id79054</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:396645(000046%) VariableMap:[f, b x 2, n x 2, +, (, ), , x 2, -, prime, 1, displaystyle, ], \ x 12, left x 4, _ x 3, ^, | x 4, right x 4, [, x x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 3 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id79054" alttext="\displaystyle+\left(b-x_{{n}}\right)\left\|\left|f^{{\prime}}\right|\right\| _{{\left[x_{{n}},b\right],1}}" display="inline"><m:semantics id="id79061"><m:mrow id="id79062"><m:mo id="id79063">+</m:mo><m:mrow id="id79065"><m:mfenced id="id79066" open="(" close=")"><m:mrow id="id79071"><m:mi id="id79072">b</m:mi><m:mo id="id79074">-</m:mo><m:msub id="id79077"><m:mi id="id79078">x</m:mi><m:mi id="id79080">n</m:mi></m:msub></m:mrow></m:mfenced><m:mo id="id79082">⁢</m:mo><m:msub id="id79084"><m:mfenced id="id79085" open="||" close="||"><m:msup id="id79090"><m:mi id="id79092">f</m:mi><m:mo id="id79094">′</m:mo></m:msup></m:mfenced><m:mrow id="id79096"><m:mfenced id="id79097" open="[" close="]"><m:mrow id="id79102"><m:msub id="id79103"><m:mi id="id79104">x</m:mi><m:mi id="id79106">n</m:mi></m:msub><m:mo id="id79109">,</m:mo><m:mi id="id79111">b</m:mi></m:mrow></m:mfenced><m:mo id="id79113">,</m:mo><m:mn id="id79115">1</m:mn></m:mrow></m:msub></m:mrow></m:mrow><m:annotation-xml id="id79117" encoding="MathML-Content"><m:apply id="id79120"><m:plus id="id79122"/><m:apply id="id79123"><m:times id="id79124"/><m:apply id="id79125"><m:minus id="id79126"/><m:ci id="id79127">b</m:ci><m:apply id="id79129"><m:csymbol id="id79130" cd="ambiguous">subscript</m:csymbol><m:ci id="id79135">x</m:ci><m:ci id="id79137">n</m:ci></m:apply></m:apply><m:apply id="id79139"><m:csymbol id="id79140" cd="ambiguous">subscript</m:csymbol><m:apply id="id79145"><m:ci id="id79146"/><m:apply id="id79147"><m:csymbol id="id79148" cd="ambiguous">superscript</m:csymbol><m:ci id="id79153">f</m:ci><m:ci id="id79155">′</m:ci></m:apply></m:apply><m:apply id="id79157"><m:list id="id79158"/><m:apply id="id79159"><m:interval id="id79160" closure="closed"/><m:apply id="id79164"><m:csymbol id="id79165" cd="ambiguous">subscript</m:csymbol><m:ci id="id79169">x</m:ci><m:ci id="id79172">n</m:ci></m:apply><m:ci id="id79174">b</m:ci></m:apply><m:cn id="id79176" type="integer">1</m:cn></m:apply></m:apply></m:apply></m:apply></m:annotation-xml><m:annotation id="id79180" encoding="application/x-tex">\displaystyle+\left(b-x_{{n}}\right)\left\|\left|f^{{\prime}}\right|\right\| _{{\left[x_{{n}},b\right],1}}</m:annotation></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id91601"><h4>Hit id91601</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 56</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/87/f034536.xhtml#id91601</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:558346(000077%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id91601" display="block"><m:semantics id="id91604"><m:mrow id="id91606"><m:mrow id="id91607"><m:mfenced id="id91608" open="|" close="|"><m:mi id="id91613">α</m:mi></m:mfenced><m:mo id="id91615">≤</m:mo><m:mfrac id="id91618"><m:mrow id="id91619"><m:msub id="id91620"><m:mi id="id91621">ω</m:mi><m:mrow id="id91623"><m:mo id="id91624">-</m:mo><m:mi id="id91626" mathvariant="normal">∞</m:mi></m:mrow></m:msub><m:mo id="id91631">+</m:mo><m:msub id="id91633"><m:mi id="id91634">ω</m:mi><m:mrow id="id91637"><m:mo id="id91638">+</m:mo><m:mi id="id91640" mathvariant="normal">∞</m:mi></m:mrow></m:msub></m:mrow><m:mrow id="id91644"><m:mn id="id91646">2</m:mn><m:mo id="id91648">⁢</m:mo><m:msqrt id="id91650"><m:mrow id="id91651"><m:msub id="id91652"><m:mi id="id91653">ω</m:mi><m:mrow id="id91656"><m:mo id="id91657">-</m:mo><m:mi id="id91659" mathvariant="normal">∞</m:mi></m:mrow></m:msub><m:mo id="id91664">⁢</m:mo><m:msub id="id91666"><m:mi id="id91667">ω</m:mi><m:mrow id="id91669"><m:mo id="id91670">+</m:mo><m:mi id="id91673" mathvariant="normal">∞</m:mi></m:mrow></m:msub></m:mrow></m:msqrt></m:mrow></m:mfrac></m:mrow><m:mo id="id91677">,</m:mo></m:mrow><m:annotation-xml id="id91679" encoding="MathML-Content"><m:apply id="id91683"><m:leq id="id91684"/><m:apply id="id91685"><m:abs id="id91686"/><m:ci id="id91687">α</m:ci></m:apply><m:apply id="id91689"><m:divide id="id91690"/><m:apply id="id91692"><m:plus id="id91693"/><m:apply id="id91694"><m:csymbol id="id91695" cd="ambiguous">subscript</m:csymbol><m:ci id="id91699">ω</m:ci><m:apply id="id91702"><m:minus id="id91703"/><m:infinity id="id91704"/></m:apply></m:apply><m:apply id="id91705"><m:csymbol id="id91706" cd="ambiguous">subscript</m:csymbol><m:ci id="id91711">ω</m:ci><m:apply id="id91713"><m:plus id="id91714"/><m:infinity id="id91715"/></m:apply></m:apply></m:apply><m:apply id="id91716"><m:times id="id91717"/><m:cn id="id91718">2</m:cn><m:apply id="id91721"><m:ci id="id91722"/><m:apply id="id91723"><m:times id="id91724"/><m:apply id="id91725"><m:csymbol id="id91726" cd="ambiguous">subscript</m:csymbol><m:ci id="id91731">ω</m:ci><m:apply id="id91733"><m:minus id="id91734"/><m:infinity id="id91735"/></m:apply></m:apply><m:apply id="id91736"><m:csymbol id="id91737" cd="ambiguous">subscript</m:csymbol><m:ci id="id91742">ω</m:ci><m:apply id="id91744"><m:plus id="id91745"/><m:infinity id="id91746"/></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="id91795"><h4>Hit id91795</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 57</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/87/f034536.xhtml#id91795</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:561232(000077%) VariableMap:[] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 0 Expects 6 occurences for '_' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <m:math id="id91795" display="block"><m:semantics id="id91798"><m:mrow id="id91799"><m:mrow id="id91800"><m:mfenced id="id91802" open="|" close="|"><m:mi id="id91807">β</m:mi></m:mfenced><m:mo id="id91809">≤</m:mo><m:mfrac id="id91811"><m:mfenced id="id91812" open="|" close="|"><m:mrow id="id91818"><m:msub id="id91819"><m:mi id="id91820">ω</m:mi><m:mrow id="id91822"><m:mo id="id91823">-</m:mo><m:mi id="id91825" mathvariant="normal">∞</m:mi></m:mrow></m:msub><m:mo id="id91830">-</m:mo><m:msub id="id91832"><m:mi id="id91833">ω</m:mi><m:mrow id="id91836"><m:mo id="id91837">+</m:mo><m:mi id="id91839" mathvariant="normal">∞</m:mi></m:mrow></m:msub></m:mrow></m:mfenced><m:mrow id="id91843"><m:mn id="id91844">2</m:mn><m:mo id="id91847">⁢</m:mo><m:msqrt id="id91849"><m:mrow id="id91850"><m:msub id="id91851"><m:mi id="id91852">ω</m:mi><m:mrow id="id91855"><m:mo id="id91856">-</m:mo><m:mi id="id91858" mathvariant="normal">∞</m:mi></m:mrow></m:msub><m:mo id="id91862">⁢</m:mo><m:msub id="id91865"><m:mi id="id91866">ω</m:mi><m:mrow id="id91868"><m:mo id="id91869">+</m:mo><m:mi id="id91872" mathvariant="normal">∞</m:mi></m:mrow></m:msub></m:mrow></m:msqrt></m:mrow></m:mfrac></m:mrow><m:mo id="id91876">.</m:mo></m:mrow><m:annotation-xml id="id91878" encoding="MathML-Content"><m:apply id="id91882"><m:leq id="id91883"/><m:apply id="id91884"><m:abs id="id91885"/><m:ci id="id91886">β</m:ci></m:apply><m:apply id="id91888"><m:divide id="id91889"/><m:apply id="id91890"><m:abs id="id91892"/><m:apply id="id91893"><m:minus id="id91894"/><m:apply id="id91895"><m:csymbol id="id91896" cd="ambiguous">subscript</m:csymbol><m:ci id="id91900">ω</m:ci><m:apply id="id91903"><m:minus id="id91904"/><m:infinity id="id91905"/></m:apply></m:apply><m:apply id="id91906"><m:csymbol id="id91907" cd="ambiguous">subscript</m:csymbol><m:ci id="id91912">ω</m:ci><m:apply id="id91914"><m:plus id="id91915"/><m:infinity id="id91916"/></m:apply></m:apply></m:apply></m:apply><m:apply id="id91917"><m:times id="id91918"/><m:cn id="id91920">2</m:cn><m:apply id="id91922"><m:ci id="id91923"/><m:apply id="id91924"><m:times id="id91925"/><m:apply id="id91926"><m:csymbol id="id91927" cd="ambiguous">subscript</m:csymbol><m:ci id="id91932">ω</m:ci><m:apply id="id91934"><m:minus id="id91935"/><m:infinity id="id91936"/></m:apply></m:apply><m:apply id="id91937"><m:csymbol id="id91938" cd="ambiguous">subscript</m:csymbol><m:ci id="id91943">ω</m:ci><m:apply id="id91945"><m:plus id="id91946"/><m:infinity id="id91948"/></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:apply></m:annotation-xml></m:semantics></m:math> <br /> End of MathML <br /> .</div><div id="idm21520"><h4>Hit idm21520</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 58</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/129/f051533.xhtml#idm21520</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:155568(000039%) VariableMap:[d, +, ast, (, ), m x 2, infty, mom, dU, -, frac x 3, 1 x 3, p x 2, \ x 9, textbf x 2, _ x 2, left, | x 4, ^ x 2, right, =] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 2 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idm21520" alttext="m_{{\infty}}^{{\ast}}=\left(\frac{1}{m}+\frac{1}{|\textbf{p}|}|\frac{dU_{{mom}}}{d\textbf{p}}|\right)^{{-1}}" display="inline"><semantics id="idm20672"><mrow id="idm20544"><msubsup id="idm20416"><mi id="idm20288">m</mi><mi id="idm20032" mathvariant="normal">∞</mi><mo id="idm19536">∗</mo></msubsup><mo id="idm19248">=</mo><msup id="idm18992"><mrow id="idm18864"><mo id="idm18736">(</mo><mrow id="idm18480"><mfrac id="idm18352"><mn id="idm18224">1</mn><mi id="idm17968">m</mi></mfrac><mo id="idm17712">+</mo><mrow id="idm17456"><mfrac id="idm17328"><mn id="idm17200">1</mn><mrow id="idm16944"><mo id="idm16816" fence="true">|</mo><mtext id="idp1279328" mathvariant="bold">p</mtext><mo id="idp1279856" fence="true">|</mo></mrow></mfrac><mo id="idp1280384">⁢</mo><mrow id="idp1280672"><mo id="idp1280800" fence="true">|</mo><mfrac id="idp1281328"><mrow id="idp1281456"><mi id="idp1281584">d</mi><mo id="idp1281840">⁢</mo><msub id="idp1282128"><mi id="idp1282256">U</mi><mrow id="idp1282512"><mi id="idp1282640">m</mi><mo id="idp1282896">⁢</mo><mi id="idp1283184">o</mi><mo id="idp1283440">⁢</mo><mi id="idp1283728">m</mi></mrow></msub></mrow><mrow id="idp1283984"><mi id="idp1284112">d</mi><mo id="idp1284368">⁢</mo><mtext id="idp1284656" mathvariant="bold">p</mtext></mrow></mfrac><mo id="idp1285184" fence="true">|</mo></mrow></mrow></mrow><mo id="idp1285712">)</mo></mrow><mrow id="idp1285968"><mo id="idp1286096">-</mo><mn id="idp1286352">1</mn></mrow></msup></mrow><annotation-xml id="idp1286608" encoding="MathML-Content"><apply id="idp1287008"><eq id="idp1287136"/><apply id="idp1287264"><csymbol id="idp1287392" cd="ambiguous">superscript</csymbol><apply id="idp1287952"><csymbol id="idp1288080" cd="ambiguous">subscript</csymbol><ci id="idp1288640">m</ci><infinity id="idp1288896"/></apply><ci id="idp1289024">∗</ci></apply><apply id="idp1289312"><csymbol id="idp1289440" cd="ambiguous">superscript</csymbol><apply id="idp1290000"><plus id="idp1290128"/><apply id="idp1290256"><divide id="idp1290384"/><cn id="idp1290512" type="integer">1</cn><ci id="idp1291040">m</ci></apply><apply id="idp1291296"><times id="idp1291424"/><apply id="idp1291552"><divide id="idp1291680"/><cn id="idp1291808" type="integer">1</cn><apply id="idp1292336"><abs id="idp1292464"/><mtext id="idp1292592">p</mtext></apply></apply><apply id="idp1292848"><abs id="idp1292976"/><apply id="idp1293104"><divide id="idp1293232"/><apply id="idp1293360"><times id="idp1293488"/><ci id="idp1293616">d</ci><apply id="idp1293872"><csymbol id="idp1294000" cd="ambiguous">subscript</csymbol><ci id="idp1294560">U</ci><apply id="idp1294816"><times id="idp1294944"/><ci id="idp1295072">m</ci><ci id="idp1295328">o</ci><ci id="idp1295584">m</ci></apply></apply></apply><apply id="idp1295840"><times id="idp1295968"/><ci id="idp1296096">d</ci><mtext id="idp1296352">p</mtext></apply></apply></apply></apply></apply><apply id="idp1296608"><minus id="idp1296736"/><cn id="idp1296864" type="integer">1</cn></apply></apply></apply></annotation-xml><annotation id="idp1297392" encoding="application/x-tex">m_{{\infty}}^{{\ast}}=\left(\frac{1}{m}+\frac{1}{|\textbf{p}|}|\frac{dU_{{mom}}}{d\textbf{p}}|\right)^{{-1}}</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp10997296"><h4>Hit idp10997296</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 59</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/202/f080528.xhtml#idp10997296</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1348076(000087%) VariableMap:[theta x 2, B x 2, +, k, frac, - x 4, i x 2, 2 x 3, 1, q x 2, p x 2, \ x 3, _ x 2, ^, | x 6, >] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 3 Expects 6 occurences for '_' but has only 2 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp10997296" alttext="\frac{|q\theta-p|}{|B_{i}B_{{i+1}}|}>2^{{-2k-2}}|q\theta-p|" display="block"><semantics id="idp10998096"><mrow id="idp10998224"><mfrac id="idp10998352"><mrow id="idp10998480"><mo id="idp10998608" fence="true">|</mo><mrow id="idp10998992"><mrow id="idp10999120"><mi id="idp10999248">q</mi><mo id="idp10999504">⁢</mo><mi id="idp10999760">θ</mi></mrow><mo id="idp11000048">-</mo><mi id="idp11000304">p</mi></mrow><mo id="idp11000560" fence="true">|</mo></mrow><mrow id="idp11001088"><mo id="idp11001216" fence="true">|</mo><mrow id="idp11001744"><msub id="idp11001872"><mi id="idp11002000">B</mi><mi id="idp11002256">i</mi></msub><mo id="idp11002512">⁢</mo><msub id="idp11002800"><mi id="idp11002928">B</mi><mrow id="idp11003184"><mi id="idp11003312">i</mi><mo id="idp11003568">+</mo><mn id="idp11003824">1</mn></mrow></msub></mrow><mo id="idp11004080" fence="true">|</mo></mrow></mfrac><mo id="idp11004608">></mo><mrow id="idp11004896"><msup id="idp11005024"><mn id="idp11005152">2</mn><mrow id="idp11005408"><mo id="idp11005536">-</mo><mrow id="idp11005792"><mn id="idp11005920">2</mn><mo id="idp11006176">⁢</mo><mi id="idp11006464">k</mi></mrow><mo id="idp11006720">-</mo><mn id="idp11006976">2</mn></mrow></msup><mo id="idp11007232">⁢</mo><mrow id="idp11007520"><mo id="idp11007648" fence="true">|</mo><mrow id="idp11008176"><mrow id="idp11008304"><mi id="idp11008432">q</mi><mo id="idp11008688">⁢</mo><mi id="idp11008976">θ</mi></mrow><mo id="idp11009264">-</mo><mi id="idp11009520">p</mi></mrow><mo id="idp11009776" fence="true">|</mo></mrow></mrow></mrow><annotation-xml id="idp11010304" encoding="MathML-Content"><apply id="idp11010704"><gt id="idp11010832"/><apply id="idp11010960"><divide id="idp11011088"/><apply id="idp11011216"><abs id="idp11011344"/><apply id="idp11011472"><minus id="idp11011600"/><apply id="idp11011728"><times id="idp11011856"/><ci id="idp11011984">q</ci><ci id="idp11012240">θ</ci></apply><ci id="idp11012528">p</ci></apply></apply><apply id="idp11012784"><abs id="idp11012912"/><apply id="idp11013040"><times id="idp11013168"/><apply id="idp11013296"><csymbol id="idp11013424" cd="ambiguous">subscript</csymbol><ci id="idp11013984">B</ci><ci id="idp11014240">i</ci></apply><apply id="idp11014496"><csymbol id="idp11014624" cd="ambiguous">subscript</csymbol><ci id="idp11015184">B</ci><apply id="idp11015440"><plus id="idp11015568"/><ci id="idp11015696">i</ci><cn id="idp11015952" type="integer">1</cn></apply></apply></apply></apply></apply><apply id="idp11016480"><times id="idp11016608"/><apply id="idp11016736"><csymbol id="idp11016864" cd="ambiguous">superscript</csymbol><cn id="idp11017424" type="integer">2</cn><apply id="idp11017952"><minus id="idp11018080"/><apply id="idp11018208"><minus id="idp11018336"/><apply id="idp11018464"><times id="idp11018592"/><cn id="idp11018720" type="integer">2</cn><ci id="idp11019248">k</ci></apply></apply><cn id="idp11019504" type="integer">2</cn></apply></apply><apply id="idp11020032"><abs id="idp11020160"/><apply id="idp11020288"><minus id="idp11020416"/><apply id="idp11020544"><times id="idp11020672"/><ci id="idp11020800">q</ci><ci id="idp11021056">θ</ci></apply><ci id="idp11021344">p</ci></apply></apply></apply></apply></annotation-xml><annotation id="idp11021600" encoding="application/x-tex">\frac{|q\theta-p|}{|B_{i}B_{{i+1}}|}>2^{{-2k-2}}|q\theta-p|</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp13022544"><h4>Hit idp13022544</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 60</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/16/f006120.xhtml#idp13022544</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1645099(000055%) VariableMap:[e x 2, c x 3, a x 3, *, + x 4, ( x 4, ) x 4, infty x 2, , x 2, -, u x 2, displaystyle, q x 2, \ x 3, _ x 2, ^ x 3, | x 2, z x 2, =] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '\' but has only 3 Expects 6 occurences for '_' but has only 2 Expects 4 occurences for '|' but has only 2 Expects 1 occurences for 'frac' but has only 0 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp13022544" alttext="\displaystyle=u^{*}|a(e^{a}_{z}(c,+\infty)+q)-c(e^{a}_{z}(c,+\infty)+q)|u" display="inline"><semantics id="idp13023264"><mrow id="idp13023392"><none id="idp13023520"/><mo id="idp13023648">=</mo><mrow id="idp13023904"><msup id="idp13024032"><mi id="idp13024160">u</mi><mo id="idp13024416">*</mo></msup><mo id="idp13024672">⁢</mo><mrow id="idp13024928"><mo id="idp13025056" fence="true">|</mo><mrow id="idp13025552"><mrow id="idp13025680"><mi id="idp13025808">a</mi><mo id="idp13026064">⁢</mo><mrow id="idp13026352"><mo id="idp13026480">(</mo><mrow id="idp13026736"><mrow id="idp13026864"><msubsup id="idp13026992"><mi id="idp13027120">e</mi><mi id="idp13027376">z</mi><mi id="idp13027632">a</mi></msubsup><mo id="idp13027888">⁢</mo><mrow id="idp13028176"><mo id="idp13028304">(</mo><mrow id="idp13028560"><mi id="idp13028688">c</mi><mo id="idp13028944">,</mo><mrow id="idp13029200"><mo id="idp13029328">+</mo><mi id="idp13029584" mathvariant="normal">∞</mi></mrow></mrow><mo id="idp13030144">)</mo></mrow></mrow><mo id="idp13030400">+</mo><mi id="idp13030656">q</mi></mrow><mo id="idp13030912">)</mo></mrow></mrow><mo id="idp13031168">-</mo><mrow id="idp13031424"><mi id="idp13031552">c</mi><mo id="idp13031808">⁢</mo><mrow id="idp13032096"><mo id="idp13032224">(</mo><mrow id="idp13032480"><mrow id="idp13032608"><msubsup id="idp13032736"><mi id="idp13032864">e</mi><mi id="idp13033120">z</mi><mi id="idp13033376">a</mi></msubsup><mo id="idp13033632">⁢</mo><mrow id="idp13033920"><mo id="idp13034048">(</mo><mrow id="idp13034304"><mi id="idp13034432">c</mi><mo id="idp13034688">,</mo><mrow id="idp13034944"><mo id="idp13035072">+</mo><mi id="idp13035328" mathvariant="normal">∞</mi></mrow></mrow><mo id="idp13035888">)</mo></mrow></mrow><mo id="idp13036144">+</mo><mi id="idp13036400">q</mi></mrow><mo id="idp13036656">)</mo></mrow></mrow></mrow><mo id="idp13036912" fence="true">|</mo></mrow><mo id="idp13037440">⁢</mo><mi id="idp13037728">u</mi></mrow></mrow><annotation-xml id="idp13037984" encoding="MathML-Content"><apply id="idp13038384"><eq id="idp13038512"/><csymbol id="idp13038640" cd="latexml">absent</csymbol><apply id="idp13039200"><times id="idp13039328"/><apply id="idp13039456"><csymbol id="idp13039584" cd="ambiguous">superscript</csymbol><ci id="idp13040144">u</ci><times id="idp13040400"/></apply><apply id="idp13040528"><abs id="idp13040656"/><apply id="idp13040784"><minus id="idp13040912"/><apply id="idp13041040"><times id="idp13041168"/><ci id="idp13041296">a</ci><apply id="idp13041552"><plus id="idp13041680"/><apply id="idp13041808"><times id="idp13041936"/><apply id="idp13042064"><csymbol id="idp13042192" cd="ambiguous">subscript</csymbol><apply id="idp13042752"><csymbol id="idp13042880" cd="ambiguous">superscript</csymbol><ci id="idp13043440">e</ci><ci id="idp13043696">a</ci></apply><ci id="idp13043952">z</ci></apply><apply id="idp13044208"><interval id="idp13044336" closure="open"/><ci id="idp13044736">c</ci><apply id="idp13044992"><plus id="idp13045120"/><infinity id="idp13045248"/></apply></apply></apply><ci id="idp13045376">q</ci></apply></apply><apply id="idp13045632"><times id="idp13045760"/><ci id="idp13045888">c</ci><apply id="idp13046144"><plus id="idp13046272"/><apply id="idp13046400"><times id="idp13046528"/><apply id="idp13046656"><csymbol id="idp13046784" cd="ambiguous">subscript</csymbol><apply id="idp13047344"><csymbol id="idp13047472" cd="ambiguous">superscript</csymbol><ci id="idp13048032">e</ci><ci id="idp13048288">a</ci></apply><ci id="idp13048544">z</ci></apply><apply id="idp13048800"><interval id="idp13048928" closure="open"/><ci id="idp13049328">c</ci><apply id="idp13049584"><plus id="idp13049712"/><infinity id="idp13049840"/></apply></apply></apply><ci id="idp13049968">q</ci></apply></apply></apply></apply><ci id="idp13050224">u</ci></apply></apply></annotation-xml><annotation id="idp13050480" encoding="application/x-tex">\displaystyle=u^{*}|a(e^{a}_{z}(c,+\infty)+q)-c(e^{a}_{z}(c,+\infty)+q)|u</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp13039728"><h4>Hit idp13039728</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 61</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/176/f070286.xhtml#idp13039728</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1666793(000097%) VariableMap:[+ x 2, ), . x 2, - x 3, perp x 6, 2 x 6, 1 x 4, over x 6, displaystyle, R x 4, \ x 21, left, _ x 6, | x 4, right, z x 2, vec x 6] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp13039728" alttext="\displaystyle\left.{1\over|\vec{z}_{\perp}+{\vec{R}_{{1\perp}}\over 2}+{\vec{R}_{{2\perp}}\over 2}|}-{1\over|\vec{z}_{\perp}-{\vec{R}_{{1\perp}}\over 2}-{\vec{R}_{{2\perp}}\over 2}|}\right)." display="inline"><semantics id="idp13040656"><mrow id="idp13040784"><mstyle id="idp13040912" displaystyle="true"><mfrac id="idp13041280"><mn id="idp13041408">1</mn><mrow id="idp13041664"><mo id="idp13041792" fence="true">|</mo><mrow id="idp13042288"><msub id="idp13042416"><mover id="idp13042544" accent="true"><mi id="idp13042944">z</mi><mo id="idp13043200">→</mo></mover><mo id="idp13043488">⟂</mo></msub><mo id="idp13043776">+</mo><mfrac id="idp13044032"><msub id="idp13044160"><mover id="idp13044288" accent="true"><mi id="idp13044688">R</mi><mo id="idp13044944">→</mo></mover><mrow id="idp13045232"><mn id="idp13045360">1</mn><mo id="idp13045616">⟂</mo><none id="idp13045904"/></mrow></msub><mn id="idp13046032">2</mn></mfrac><mo id="idp13046288">+</mo><mfrac id="idp13046544"><msub id="idp13046672"><mover id="idp13046800" accent="true"><mi id="idp13047200">R</mi><mo id="idp13047456">→</mo></mover><mrow id="idp13047744"><mn id="idp13047872">2</mn><mo id="idp13048128">⟂</mo><none id="idp13048416"/></mrow></msub><mn id="idp13048544">2</mn></mfrac></mrow><mo id="idp13048800" fence="true">|</mo></mrow></mfrac></mstyle><mo id="idp13049328">-</mo><mstyle id="idp13049584" displaystyle="true"><mfrac id="idp13049984"><mn id="idp13050112">1</mn><mrow id="idp13050368"><mo id="idp13050496" fence="true">|</mo><mrow id="idp13051024"><msub id="idp13051152"><mover id="idp13051280" accent="true"><mi id="idp13051680">z</mi><mo id="idp13051936">→</mo></mover><mo id="idp13052224">⟂</mo></msub><mo id="idp13052512">-</mo><mfrac id="idp13052768"><msub id="idp13052896"><mover id="idp13053024" accent="true"><mi id="idp13053424">R</mi><mo id="idp13053680">→</mo></mover><mrow id="idp13053968"><mn id="idp13054096">1</mn><mo id="idp13054352">⟂</mo><none id="idp13054640"/></mrow></msub><mn id="idp13054768">2</mn></mfrac><mo id="idp13055024">-</mo><mfrac id="idp13055280"><msub id="idp13055408"><mover id="idp13055536" accent="true"><mi id="idp13055936">R</mi><mo id="idp13056192">→</mo></mover><mrow id="idp13056480"><mn id="idp13056608">2</mn><mo id="idp13056864">⟂</mo><none id="idp13057152"/></mrow></msub><mn id="idp13057280">2</mn></mfrac></mrow><mo id="idp13057536" fence="true">|</mo></mrow></mfrac></mstyle><mo id="idp13058064">)</mo></mrow><annotation-xml id="idp13058320" encoding="MathML-Content"><cerror id="idp13058720"><csymbol id="idp13058848" cd="ambiguous" name="fragments"/><apply id="idp13059520"><divide id="idp13059648"/><cn id="idp13059776" type="integer">1</cn><apply id="idp13060304"><abs id="idp13060432"/><apply id="idp13060560"><plus id="idp13060688"/><apply id="idp13060816"><csymbol id="idp13060944" cd="ambiguous">subscript</csymbol><apply id="idp13061504"><ci id="idp13061632">→</ci><ci id="idp13061920">z</ci></apply><csymbol id="idp13062176" cd="latexml">perpendicular-to</csymbol></apply><apply id="idp13062736"><divide id="idp13062864"/><apply id="idp13062992"><csymbol id="idp13063120" cd="ambiguous">subscript</csymbol><apply id="idp13063680"><ci id="idp13063808">→</ci><ci id="idp13064096">R</ci></apply><apply id="idp13064352"><csymbol id="idp13064480" cd="latexml">perpendicular-to</csymbol><cn id="idp13065040" type="integer">1</cn><csymbol id="idp13065568" cd="latexml">absent</csymbol></apply></apply><cn id="idp13066128" type="integer">2</cn></apply><apply id="idp13066656"><divide id="idp13066784"/><apply id="idp13066912"><csymbol id="idp13067040" cd="ambiguous">subscript</csymbol><apply id="idp13067600"><ci id="idp13067728">→</ci><ci id="idp13068016">R</ci></apply><apply id="idp13068272"><csymbol id="idp13068400" cd="latexml">perpendicular-to</csymbol><cn id="idp13068960" type="integer">2</cn><csymbol id="idp13069488" cd="latexml">absent</csymbol></apply></apply><cn id="idp13070048" type="integer">2</cn></apply></apply></apply></apply><minus id="idp13070576"/><apply id="idp13070704"><divide id="idp13070832"/><cn id="idp13070960" type="integer">1</cn><apply id="idp13071488"><abs id="idp13071616"/><apply id="idp13071744"><minus id="idp13071872"/><apply id="idp13072000"><csymbol id="idp13072128" cd="ambiguous">subscript</csymbol><apply id="idp13072688"><ci id="idp13072816">→</ci><ci id="idp13073104">z</ci></apply><csymbol id="idp13073360" cd="latexml">perpendicular-to</csymbol></apply><apply id="idp13073856"><divide id="idp13073984"/><apply id="idp13074112"><csymbol id="idp13074240" cd="ambiguous">subscript</csymbol><apply id="idp13074768"><ci id="idp13074896">→</ci><ci id="idp13075184">R</ci></apply><apply id="idp13075440"><csymbol id="idp13075568" cd="latexml">perpendicular-to</csymbol><cn id="idp13076128" type="integer">1</cn><csymbol id="idp13076656" cd="latexml">absent</csymbol></apply></apply><cn id="idp13077216" type="integer">2</cn></apply><apply id="idp13077744"><divide id="idp13077872"/><apply id="idp13078000"><csymbol id="idp13078128" cd="ambiguous">subscript</csymbol><apply id="idp13078688"><ci id="idp13078816">→</ci><ci id="idp13079104">R</ci></apply><apply id="idp13079360"><csymbol id="idp13079488" cd="latexml">perpendicular-to</csymbol><cn id="idp13080048" type="integer">2</cn><csymbol id="idp13080576" cd="latexml">absent</csymbol></apply></apply><cn id="idp13081136" type="integer">2</cn></apply></apply></apply></apply><ci id="idp13081664">)</ci></cerror></annotation-xml><annotation id="idp13081920" encoding="application/x-tex">\displaystyle\left.{1\over|\vec{z}_{\perp}+{\vec{R}_{{1\perp}}\over 2}+{\vec{R}_{{2\perp}}\over 2}|}-{1\over|\vec{z}_{\perp}-{\vec{R}_{{1\perp}}\over 2}-{\vec{R}_{{2\perp}}\over 2}|}\right).</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp20217392"><h4>Hit idp20217392</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 62</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/62/f024505.xhtml#idp20217392</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:148334(000014%) VariableMap:[E x 3, F x 2, dagger x 2, beta x 4, ] x 2, \ x 21, _ x 10, uparrow x 2, ^ x 4, [ x 2, downarrow x 2, b x 2, a x 2, sqrt x 3, * x 2, + x 5, mu x 2, ( x 4, ) x 4, k x 8, , x 2, frac x 3, - x 7, 2, v x 2, 1, s, | x 4, =, vec] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp20217392" alttext="\beta _{{\vec{k},+}}=\frac{1}{2\sqrt{E_{{\beta}}[E_{{\beta}}-(\mu+v_{F}|k|)]}}\{[E_{{\beta}}-(\mu+v_{F}k)](\sqrt{\frac{k}{k^{{*}}}}a_{{+\uparrow}}-b_{{+\uparrow}})-s|k|(\sqrt{\frac{k}{k^{{*}}}}a_{{-\downarrow}}^{{\dagger}}-b_{{-\downarrow}}^{{\dagger}})\}," display="block"><semantics id="idp20218384"><mrow id="idp20218512"><mrow id="idp20218640"><msub id="idp20218768"><mi id="idp20218896">β</mi><mrow id="idp20219152"><mover id="idp20219280" accent="true"><mi id="idp20219648">k</mi><mo id="idp20219904">→</mo></mover><mo id="idp20220192">,</mo><mo id="idp20220448">+</mo></mrow></msub><mo id="idp20220704">=</mo><mrow id="idp20220960"><mfrac id="idp20221088"><mn id="idp20221216">1</mn><mrow id="idp20221472"><mn id="idp20221600">2</mn><mo id="idp20221856">⁢</mo><msqrt id="idp20222144"><mrow id="idp20222272"><msub id="idp20222400"><mi id="idp20222528">E</mi><mi id="idp20222784">β</mi></msub><mo id="idp20223072">⁢</mo><mrow id="idp20223360"><mo id="idp20223488">[</mo><mrow id="idp20223744"><msub id="idp20223872"><mi id="idp20224000">E</mi><mi id="idp20224256">β</mi></msub><mo id="idp20224544">-</mo><mrow id="idp20224800"><mo id="idp20224928">(</mo><mrow id="idp20225184"><mi id="idp20225312">μ</mi><mo id="idp20225600">+</mo><mrow id="idp20225856"><msub id="idp20225984"><mi id="idp20226112">v</mi><mi id="idp20226368">F</mi></msub><mo id="idp20226624">⁢</mo><mrow id="idp20226912"><mo id="idp20227040" fence="true">|</mo><mi id="idp20227568">k</mi><mo id="idp20227824" fence="true">|</mo></mrow></mrow></mrow><mo id="idp20228352">)</mo></mrow></mrow><mo id="idp20228608">]</mo></mrow></mrow></msqrt></mrow></mfrac><mo id="idp20228864">⁢</mo><mrow id="idp20229152"><mo id="idp20229280">{</mo><mrow id="idp20229536"><mrow id="idp20229664"><mrow id="idp20229792"><mo id="idp20229920">[</mo><mrow id="idp20230176"><msub id="idp20230304"><mi id="idp20230432">E</mi><mi id="idp20230688">β</mi></msub><mo id="idp20230976">-</mo><mrow id="idp20231232"><mo id="idp20231360">(</mo><mrow id="idp20231616"><mi id="idp20231744">μ</mi><mo id="idp20232032">+</mo><mrow id="idp20232288"><msub id="idp20232416"><mi id="idp20232544">v</mi><mi id="idp20232800">F</mi></msub><mo id="idp20233056">⁢</mo><mi id="idp20233344">k</mi></mrow></mrow><mo id="idp20233600">)</mo></mrow></mrow><mo id="idp20233856">]</mo></mrow><mo id="idp20234112">⁢</mo><mrow id="idp20234400"><mo id="idp20234528">(</mo><mrow id="idp20234784"><mrow id="idp20234912"><msqrt id="idp20235040"><mfrac id="idp20235168"><mi id="idp20235296">k</mi><msup id="idp20235552"><mi id="idp20235680">k</mi><mo id="idp20235936">*</mo></msup></mfrac></msqrt><mo id="idp20236192">⁢</mo><msub id="idp20236480"><mi id="idp20236608">a</mi><mrow id="idp20236864"><mo id="idp20236992">+</mo><mo id="idp20237248">⁣</mo><mo id="idp20237536">↑</mo></mrow></msub></mrow><mo id="idp20237824">-</mo><msub id="idp20238080"><mi id="idp20238208">b</mi><mrow id="idp20238464"><mo id="idp20238592">+</mo><mo id="idp20238848">⁣</mo><mo id="idp20239136">↑</mo></mrow></msub></mrow><mo id="idp20239424">)</mo></mrow></mrow><mo id="idp20239680">-</mo><mrow id="idp20239936"><mi id="idp20240064">s</mi><mo id="idp20240320">⁢</mo><mrow id="idp20240608"><mo id="idp20240736" fence="true">|</mo><mi id="idp20241264">k</mi><mo id="idp20241520" fence="true">|</mo></mrow><mo id="idp20242048">⁢</mo><mrow id="idp20242336"><mo id="idp20242464">(</mo><mrow id="idp20242720"><mrow id="idp20242848"><msqrt id="idp20242976"><mfrac id="idp20243104"><mi id="idp20243232">k</mi><msup id="idp20243488"><mi id="idp20243616">k</mi><mo id="idp20243872">*</mo></msup></mfrac></msqrt><mo id="idp20244128">⁢</mo><msubsup id="idp20244416"><mi id="idp20244544">a</mi><mrow id="idp20244800"><mo id="idp20244928">-</mo><mo id="idp20245184">⁣</mo><mo id="idp20245472">↓</mo></mrow><mo id="idp20245760">†</mo></msubsup></mrow><mo id="idp20246048">-</mo><msubsup id="idp20246304"><mi id="idp20246432">b</mi><mrow id="idp20246688"><mo id="idp20246816">-</mo><mo id="idp20247072">⁣</mo><mo id="idp20247360">↓</mo></mrow><mo id="idp20247648">†</mo></msubsup></mrow><mo id="idp20247936">)</mo></mrow></mrow></mrow><mo id="idp20248192">}</mo></mrow></mrow></mrow><mo id="idp20248448">,</mo></mrow><annotation-xml id="idp20248704" encoding="MathML-Content"><apply id="idp20249104"><eq id="idp20249232"/><apply id="idp20249360"><csymbol id="idp20249488" cd="ambiguous">subscript</csymbol><ci id="idp20250048">β</ci><apply id="idp20250336"><list id="idp20250464"/><apply id="idp20250592"><ci id="idp20250720">→</ci><ci id="idp20251008">k</ci></apply><plus id="idp20251264"/></apply></apply><apply id="idp20251392"><times id="idp20251520"/><apply id="idp20251648"><divide id="idp20251776"/><cn id="idp20251904" type="integer">1</cn><apply id="idp20252432"><times id="idp20252560"/><cn id="idp20252688" type="integer">2</cn><apply id="idp20253216"><root id="idp20253344"/><apply id="idp20253472"><times id="idp20253600"/><apply id="idp20253728"><csymbol id="idp20253856" cd="ambiguous">subscript</csymbol><ci id="idp20254416">E</ci><ci id="idp20254672">β</ci></apply><apply id="idp20254960"><minus id="idp20255088"/><apply id="idp20255216"><csymbol id="idp20255344" cd="ambiguous">subscript</csymbol><ci id="idp20255904">E</ci><ci id="idp20256160">β</ci></apply><apply id="idp20256448"><plus id="idp20256576"/><ci id="idp20256704">μ</ci><apply id="idp20256992"><times id="idp20257120"/><apply id="idp20257248"><csymbol id="idp20257376" cd="ambiguous">subscript</csymbol><ci id="idp20257936">v</ci><ci id="idp20258192">F</ci></apply><apply id="idp20258448"><abs id="idp20258576"/><ci id="idp20258704">k</ci></apply></apply></apply></apply></apply></apply></apply></apply><apply id="idp20258960"><set id="idp20259088"/><apply id="idp20259216"><minus id="idp20259344"/><apply id="idp20259472"><times id="idp20259600"/><apply id="idp20259728"><minus id="idp20259856"/><apply id="idp20259984"><csymbol id="idp20260112" cd="ambiguous">subscript</csymbol><ci id="idp20260672">E</ci><ci id="idp20260928">β</ci></apply><apply id="idp20261216"><plus id="idp20261344"/><ci id="idp20261472">μ</ci><apply id="idp20261760"><times id="idp20261888"/><apply id="idp20262016"><csymbol id="idp20262144" cd="ambiguous">subscript</csymbol><ci id="idp20262704">v</ci><ci id="idp20262960">F</ci></apply><ci id="idp20263216">k</ci></apply></apply></apply><apply id="idp20263472"><minus id="idp20263600"/><apply id="idp20263728"><times id="idp20263856"/><apply id="idp20263984"><root id="idp20264112"/><apply id="idp20264240"><divide id="idp20264368"/><ci id="idp20264496">k</ci><apply id="idp20264752"><csymbol id="idp20264880" cd="ambiguous">superscript</csymbol><ci id="idp20265440">k</ci><times id="idp20265696"/></apply></apply></apply><apply id="idp20265824"><csymbol id="idp20265952" cd="ambiguous">subscript</csymbol><ci id="idp20266512">a</ci><apply id="idp20266768"><list id="idp20266896"/><plus id="idp20267024"/><ci id="idp20267152">↑</ci></apply></apply></apply><apply id="idp20267440"><csymbol id="idp20267568" cd="ambiguous">subscript</csymbol><ci id="idp20268128">b</ci><apply id="idp20268384"><list id="idp20268512"/><plus id="idp20268640"/><ci id="idp20268768">↑</ci></apply></apply></apply></apply><apply id="idp20269056"><times id="idp20269184"/><ci id="idp20269312">s</ci><apply id="idp20269568"><abs id="idp20269696"/><ci id="idp20269824">k</ci></apply><apply id="idp20270080"><minus id="idp20270208"/><apply id="idp20270336"><times id="idp20270464"/><apply id="idp20270592"><root id="idp20270720"/><apply id="idp20270848"><divide id="idp20270976"/><ci id="idp20271104">k</ci><apply id="idp20271360"><csymbol id="idp20271488" cd="ambiguous">superscript</csymbol><ci id="idp20272048">k</ci><times id="idp20272304"/></apply></apply></apply><apply id="idp20272432"><csymbol id="idp20272560" cd="ambiguous">superscript</csymbol><apply id="idp20273120"><csymbol id="idp20273248" cd="ambiguous">subscript</csymbol><ci id="idp20273808">a</ci><apply id="idp20274064"><list id="idp20274192"/><minus id="idp20274320"/><ci id="idp20274448">↓</ci></apply></apply><ci id="idp20274736">†</ci></apply></apply><apply id="idp20275024"><csymbol id="idp20275152" cd="ambiguous">superscript</csymbol><apply id="idp20275712"><csymbol id="idp20275840" cd="ambiguous">subscript</csymbol><ci id="idp20276400">b</ci><apply id="idp20276656"><list id="idp20276784"/><minus id="idp20276912"/><ci id="idp20277040">↓</ci></apply></apply><ci id="idp20277328">†</ci></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp20277616" encoding="application/x-tex">\beta _{{\vec{k},+}}=\frac{1}{2\sqrt{E_{{\beta}}[E_{{\beta}}-(\mu+v_{F}|k|)]}}\{[E_{{\beta}}-(\mu+v_{F}k)](\sqrt{\frac{k}{k^{{*}}}}a_{{+\uparrow}}-b_{{+\uparrow}})-s|k|(\sqrt{\frac{k}{k^{{*}}}}a_{{-\downarrow}}^{{\dagger}}-b_{{-\downarrow}}^{{\dagger}})\},</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp20798128"><h4>Hit idp20798128</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 63</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/130/f051779.xhtml#idp20798128</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:149514(000011%) VariableMap:[f x 2, g, n x 2, sum, ( x 3, ) x 3, infty, k x 3, ,, - x 2, 1 x 2, s x 3, \ x 4, left, _ x 5, | x 2, ^, right, = x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 5 Expects 4 occurences for '|' but has only 2 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp20798128" alttext="g(s)=\sum _{{k=1}}^{{\infty}}\left|f_{{n_{{k}}}}(s)-f_{{n_{{k-1}}}}(s)\right|," display="block"><semantics id="idp20798848"><mrow id="idp20798976"><mrow id="idp20799104"><mrow id="idp20799232"><mi id="idp20799360">g</mi><mo id="idp20799616">⁢</mo><mrow id="idp20799872"><mo id="idp20800000">(</mo><mi id="idp20800256">s</mi><mo id="idp20800512">)</mo></mrow></mrow><mo id="idp20800768">=</mo><mrow id="idp20801024"><mover id="idp20801152"><munder id="idp20801280"><mo id="idp20801408" movablelimits="false">∑</mo><mrow id="idp20801936"><mi id="idp20802064">k</mi><mo id="idp20802320" movablelimits="false">=</mo><mn id="idp20802848">1</mn></mrow></munder><mi id="idp20803104" mathvariant="normal">∞</mi></mover><mrow id="idp20803664"><mo id="idp20803792" fence="true">|</mo><mrow id="idp20804320"><mrow id="idp20804448"><msub id="idp20804576"><mi id="idp20804704">f</mi><msub id="idp20804960"><mi id="idp20805088">n</mi><mi id="idp20805344">k</mi></msub></msub><mo id="idp20805600">⁢</mo><mrow id="idp20805888"><mo id="idp20806016">(</mo><mi id="idp20806272">s</mi><mo id="idp20806528">)</mo></mrow></mrow><mo id="idp20806784">-</mo><mrow id="idp20807040"><msub id="idp20807168"><mi id="idp20807296">f</mi><msub id="idp20807552"><mi id="idp20807680">n</mi><mrow id="idp20807936"><mi id="idp20808064">k</mi><mo id="idp20808320">-</mo><mn id="idp20808576">1</mn></mrow></msub></msub><mo id="idp20808832">⁢</mo><mrow id="idp20809120"><mo id="idp20809248">(</mo><mi id="idp20809504">s</mi><mo id="idp20809760">)</mo></mrow></mrow></mrow><mo id="idp20810016" fence="true">|</mo></mrow></mrow></mrow><mo id="idp20810544">,</mo></mrow><annotation-xml id="idp20810800" encoding="MathML-Content"><apply id="idp20811200"><eq id="idp20811328"/><apply id="idp20811456"><times id="idp20811584"/><ci id="idp20811712">g</ci><ci id="idp20811968">s</ci></apply><apply id="idp20812224"><apply id="idp20812352"><csymbol id="idp20812480" cd="ambiguous">superscript</csymbol><apply id="idp20813040"><csymbol id="idp20813168" cd="ambiguous">subscript</csymbol><sum id="idp20813728"/><apply id="idp20813856"><eq id="idp20813984"/><ci id="idp20814112">k</ci><cn id="idp20814368" type="integer">1</cn></apply></apply><infinity id="idp20814896"/></apply><apply id="idp20815024"><abs id="idp20815152"/><apply id="idp20815280"><minus id="idp20815408"/><apply id="idp20815536"><times id="idp20815664"/><apply id="idp20815792"><csymbol id="idp20815920" cd="ambiguous">subscript</csymbol><ci id="idp20816480">f</ci><apply id="idp20816736"><csymbol id="idp20816864" cd="ambiguous">subscript</csymbol><ci id="idp20817424">n</ci><ci id="idp20817680">k</ci></apply></apply><ci id="idp20817936">s</ci></apply><apply id="idp20818192"><times id="idp20818320"/><apply id="idp20818448"><csymbol id="idp20818576" cd="ambiguous">subscript</csymbol><ci id="idp20819136">f</ci><apply id="idp20819392"><csymbol id="idp20819520" cd="ambiguous">subscript</csymbol><ci id="idp20820080">n</ci><apply id="idp20820336"><minus id="idp20820464"/><ci id="idp20820592">k</ci><cn id="idp20820848" type="integer">1</cn></apply></apply></apply><ci id="idp20821376">s</ci></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp20821632" encoding="application/x-tex">g(s)=\sum _{{k=1}}^{{\infty}}\left|f_{{n_{{k}}}}(s)-f_{{n_{{k-1}}}}(s)\right|,</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp21432672"><h4>Hit idp21432672</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 64</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/112/f044654.xhtml#idp21432672</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:232601(000022%) VariableMap:[B x 6, + x 3, ( x 5, ) x 5, / x 2, k x 6, , x 5, - x 11, 2 x 2, over, 1 x 3, sigma, q, S, p, tau, ;, \ x 8, _ x 7, ^ x 4, | x 10] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp21432672" alttext="(-1)^{{k_{-}+|B|}}\,\tau^{{\sigma(B,\, S_{-})-k_{-}\,|B|}}\;{p^{{|B|(|B|-1)/2}}\over q^{{k_{-}(k_{-}-1)/2+k_{+}\,(k_{-}-|B|)}}}" display="block"><semantics id="idp21433536"><mrow id="idp21433664"><msup id="idp21433792"><mrow id="idp21433920"><mo id="idp21434048">(</mo><mrow id="idp21434304"><mo id="idp21434432">-</mo><mn id="idp21434688">1</mn></mrow><mo id="idp21434944">)</mo></mrow><mrow id="idp21435200"><msub id="idp21435328"><mi id="idp21435456">k</mi><mo id="idp21435712">-</mo></msub><mo id="idp21435968">+</mo><mrow id="idp21436224"><mo id="idp21436352" fence="true">|</mo><mi id="idp21436848">B</mi><mo id="idp21437104" fence="true">|</mo></mrow></mrow></msup><mo id="idp21437600">⁢</mo><msup id="idp21437888"><mi id="idp21438016">τ</mi><mrow id="idp21438304"><mrow id="idp21438432"><mi id="idp21438560">σ</mi><mo id="idp21438848">⁢</mo><mrow id="idp21439136"><mo id="idp21439264">(</mo><mrow id="idp21439520"><mi id="idp21439648">B</mi><mo id="idp21439904">,</mo><msub id="idp21440160"><mi id="idp21440288">S</mi><mo id="idp21440544">-</mo></msub></mrow><mo id="idp21440800">)</mo></mrow></mrow><mo id="idp21441056">-</mo><mrow id="idp21441312"><msub id="idp21441440"><mi id="idp21441568">k</mi><mo id="idp21441824">-</mo></msub><mo id="idp21442080">⁢</mo><mrow id="idp21442368"><mo id="idp21442496" fence="true">|</mo><mi id="idp21443024">B</mi><mo id="idp21443280" fence="true">|</mo></mrow></mrow></mrow></msup><mo id="idp21443808">⁢</mo><mfrac id="idp21444096"><msup id="idp21444224"><mi id="idp21444352">p</mi><mrow id="idp21444608"><mrow id="idp21444736"><mrow id="idp21444864"><mo id="idp21444992" fence="true">|</mo><mi id="idp21445520">B</mi><mo id="idp21445776" fence="true">|</mo></mrow><mo id="idp21446304">⁢</mo><mrow id="idp21446592"><mo id="idp21446720">(</mo><mrow id="idp21446976"><mrow id="idp21447104"><mo id="idp21447232" fence="true">|</mo><mi id="idp21447760">B</mi><mo id="idp21448016" fence="true">|</mo></mrow><mo id="idp21448544">-</mo><mn id="idp21448800">1</mn></mrow><mo id="idp21449056">)</mo></mrow></mrow><mo id="idp21449312">/</mo><mn id="idp21449568">2</mn></mrow></msup><msup id="idp21449824"><mi id="idp21449952">q</mi><mrow id="idp21450208"><mrow id="idp21450336"><mrow id="idp21450464"><msub id="idp21450592"><mi id="idp21450720">k</mi><mo id="idp21450976">-</mo></msub><mo id="idp21451232">⁢</mo><mrow id="idp21451520"><mo id="idp21451648">(</mo><mrow id="idp21451904"><msub id="idp21452032"><mi id="idp21452160">k</mi><mo id="idp21452416">-</mo></msub><mo id="idp21452672">-</mo><mn id="idp21452928">1</mn></mrow><mo id="idp21453184">)</mo></mrow></mrow><mo id="idp21453440">/</mo><mn id="idp21453696">2</mn></mrow><mo id="idp21453952">+</mo><mrow id="idp21454208"><msub id="idp21454336"><mi id="idp21454464">k</mi><mo id="idp21454720">+</mo></msub><mo id="idp21454976">⁢</mo><mrow id="idp21455264"><mo id="idp21455392">(</mo><mrow id="idp21455648"><msub id="idp21455776"><mi id="idp21455904">k</mi><mo id="idp21456160">-</mo></msub><mo id="idp21456416">-</mo><mrow id="idp21456672"><mo id="idp21456800" fence="true">|</mo><mi id="idp21457328">B</mi><mo id="idp21457584" fence="true">|</mo></mrow></mrow><mo id="idp21458112">)</mo></mrow></mrow></mrow></msup></mfrac></mrow><annotation-xml id="idp21458368" encoding="MathML-Content"><apply id="idp21458768"><times id="idp21458896"/><apply id="idp21459024"><csymbol id="idp21459152" cd="ambiguous">superscript</csymbol><apply id="idp21459712"><minus id="idp21459840"/><cn id="idp21459968" type="integer">1</cn></apply><apply id="idp21460496"><plus id="idp21460624"/><apply id="idp21460752"><csymbol id="idp21460880" cd="ambiguous">subscript</csymbol><ci id="idp21461440">k</ci><minus id="idp21461696"/></apply><apply id="idp21461824"><abs id="idp21461952"/><ci id="idp21462080">B</ci></apply></apply></apply><apply id="idp21462336"><csymbol id="idp21462464" cd="ambiguous">superscript</csymbol><ci id="idp21463024">τ</ci><apply id="idp21463312"><minus id="idp21463440"/><apply id="idp21463568"><times id="idp21463696"/><ci id="idp21463824">σ</ci><apply id="idp21464112"><interval id="idp21464240" closure="open"/><ci id="idp21464640">B</ci><apply id="idp21464896"><csymbol id="idp21465024" cd="ambiguous">subscript</csymbol><ci id="idp21465584">S</ci><minus id="idp21465840"/></apply></apply></apply><apply id="idp21465968"><times id="idp21466096"/><apply id="idp21466224"><csymbol id="idp21466352" cd="ambiguous">subscript</csymbol><ci id="idp21466912">k</ci><minus id="idp21467168"/></apply><apply id="idp21467296"><abs id="idp21467424"/><ci id="idp21467552">B</ci></apply></apply></apply></apply><apply id="idp21467808"><divide id="idp21467936"/><apply id="idp21468064"><csymbol id="idp21468192" cd="ambiguous">superscript</csymbol><ci id="idp21468752">p</ci><apply id="idp21469008"><divide id="idp21469136"/><apply id="idp21469264"><times id="idp21469392"/><apply id="idp21469520"><abs id="idp21469648"/><ci id="idp21469776">B</ci></apply><apply id="idp21470032"><minus id="idp21470160"/><apply id="idp21470288"><abs id="idp21470416"/><ci id="idp21470544">B</ci></apply><cn id="idp21470800" type="integer">1</cn></apply></apply><cn id="idp21471328" type="integer">2</cn></apply></apply><apply id="idp21471856"><csymbol id="idp21471984" cd="ambiguous">superscript</csymbol><ci id="idp21472544">q</ci><apply id="idp21472800"><plus id="idp21472928"/><apply id="idp21473056"><divide id="idp21473184"/><apply id="idp21473312"><times id="idp21473440"/><apply id="idp21473568"><csymbol id="idp21473696" cd="ambiguous">subscript</csymbol><ci id="idp21474256">k</ci><minus id="idp21474512"/></apply><apply id="idp21474640"><minus id="idp21474768"/><apply id="idp21474896"><csymbol id="idp21475024" cd="ambiguous">subscript</csymbol><ci id="idp21475584">k</ci><minus id="idp21475840"/></apply><cn id="idp21475968" type="integer">1</cn></apply></apply><cn id="idp21476496" type="integer">2</cn></apply><apply id="idp21477024"><times id="idp21477152"/><apply id="idp21477280"><csymbol id="idp21477408" cd="ambiguous">subscript</csymbol><ci id="idp21477968">k</ci><plus id="idp21478224"/></apply><apply id="idp21478352"><minus id="idp21478480"/><apply id="idp21478608"><csymbol id="idp21478736" cd="ambiguous">subscript</csymbol><ci id="idp21479296">k</ci><minus id="idp21479552"/></apply><apply id="idp21479680"><abs id="idp21479808"/><ci id="idp21479936">B</ci></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp21480192" encoding="application/x-tex">(-1)^{{k_{-}+|B|}}\,\tau^{{\sigma(B,\, S_{-})-k_{-}\,|B|}}\;{p^{{|B|(|B|-1)/2}}\over q^{{k_{-}(k_{-}-1)/2+k_{+}\,(k_{-}-|B|)}}}</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp2156720"><h4>Hit idp2156720</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 65</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/112/f044750.xhtml#idp2156720</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:285183(000090%) VariableMap:[f x 2, d x 2, rm x 2, +, (, ), - x 9, frac x 3, prime, t x 5, tau x 2, \ x 8, _ x 9, ^, =] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '|' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp2156720" alttext="{t_{-}{\frac{{\rm d}\tau _{{-}}}{{\rm d}t_{-}}}=\tau _{-}({\frac{t_{-}}{t_{+}}}-t_{-}{\frac{f_{-}^{\prime}}{f_{-}}})}" display="block"><semantics id="idp2157568"><mrow id="idp2157696"><mrow id="idp2157824"><msub id="idp2157952"><mi id="idp2158080">t</mi><mo id="idp2158336">-</mo></msub><mo id="idp2158592">⁢</mo><mfrac id="idp2158848"><mrow id="idp2158976"><mi id="idp2159104" mathvariant="normal">d</mi><mo id="idp2159600">⁢</mo><msub id="idp2159888"><mi id="idp2160016">τ</mi><mo id="idp2160304">-</mo></msub></mrow><mrow id="idp2160560"><mi id="idp2160688" mathvariant="normal">d</mi><mo id="idp2161216">⁢</mo><msub id="idp2161504"><mi id="idp2161632">t</mi><mo id="idp2161888">-</mo></msub></mrow></mfrac></mrow><mo id="idp2162144">=</mo><mrow id="idp2162400"><msub id="idp2162528"><mi id="idp2162656">τ</mi><mo id="idp2162944">-</mo></msub><mo id="idp2163200">⁢</mo><mrow id="idp2163488"><mo id="idp2163616">(</mo><mrow id="idp2163872"><mfrac id="idp2164000"><msub id="idp2164128"><mi id="idp2164256">t</mi><mo id="idp2164512">-</mo></msub><msub id="idp2164768"><mi id="idp2164896">t</mi><mo id="idp2165152">+</mo></msub></mfrac><mo id="idp2165408">-</mo><mrow id="idp2165664"><msub id="idp2165792"><mi id="idp2165920">t</mi><mo id="idp2166176">-</mo></msub><mo id="idp2166432">⁢</mo><mfrac id="idp2166720"><msubsup id="idp2166848"><mi id="idp2166976">f</mi><mo id="idp2167232">-</mo><mo id="idp2167488">′</mo></msubsup><msub id="idp2167776"><mi id="idp2167904">f</mi><mo id="idp2168160">-</mo></msub></mfrac></mrow></mrow><mo id="idp2168416">)</mo></mrow></mrow></mrow><annotation-xml id="idp2168672" encoding="MathML-Content"><apply id="idp2169072"><eq id="idp2169200"/><apply id="idp2169328"><times id="idp2169456"/><apply id="idp2169584"><csymbol id="idp2169712" cd="ambiguous">subscript</csymbol><ci id="idp2170272">t</ci><minus id="idp2170528"/></apply><apply id="idp2170656"><divide id="idp2170784"/><apply id="idp2170912"><times id="idp2171040"/><ci id="idp2171168">d</ci><apply id="idp2171424"><csymbol id="idp2171552" cd="ambiguous">subscript</csymbol><ci id="idp2172112">τ</ci><minus id="idp2172400"/></apply></apply><apply id="idp2172528"><times id="idp2172656"/><ci id="idp2172784">d</ci><apply id="idp2173040"><csymbol id="idp2173168" cd="ambiguous">subscript</csymbol><ci id="idp2173728">t</ci><minus id="idp2173984"/></apply></apply></apply></apply><apply id="idp2174112"><times id="idp2174240"/><apply id="idp2174368"><csymbol id="idp2174496" cd="ambiguous">subscript</csymbol><ci id="idp2175056">τ</ci><minus id="idp2175344"/></apply><apply id="idp2175472"><minus id="idp2175600"/><apply id="idp2175728"><divide id="idp2175856"/><apply id="idp2175984"><csymbol id="idp2176112" cd="ambiguous">subscript</csymbol><ci id="idp2176672">t</ci><minus id="idp2176928"/></apply><apply id="idp2177056"><csymbol id="idp2177184" cd="ambiguous">subscript</csymbol><ci id="idp2177744">t</ci><plus id="idp2178000"/></apply></apply><apply id="idp2178128"><times id="idp2178256"/><apply id="idp2178384"><csymbol id="idp2178512" cd="ambiguous">subscript</csymbol><ci id="idp2179072">t</ci><minus id="idp2179328"/></apply><apply id="idp2179456"><divide id="idp2179584"/><apply id="idp2179712"><csymbol id="idp2179840" cd="ambiguous">superscript</csymbol><apply id="idp2180400"><csymbol id="idp2180528" cd="ambiguous">subscript</csymbol><ci id="idp2181088">f</ci><minus id="idp2181344"/></apply><ci id="idp2181472">′</ci></apply><apply id="idp2181760"><csymbol id="idp2181888" cd="ambiguous">subscript</csymbol><ci id="idp2182448">f</ci><minus id="idp2182704"/></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp2182832" encoding="application/x-tex">{t_{-}{\frac{{\rm d}\tau _{{-}}}{{\rm d}t_{-}}}=\tau _{-}({\frac{t_{-}}{t_{+}}}-t_{-}{\frac{f_{-}^{\prime}}{f_{-}}})}</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp21834720"><h4>Hit idp21834720</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 66</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/132/f052754.xhtml#idp21834720</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:291651(000064%) VariableMap:[dt, b, A, int, n x 2, + x 2, (, ), partial x 2, sup, ,, frac, - x 2, prime, 2 x 2, 1 x 3, t, displaystyle, \ x 7, _ x 7, ^ x 2, | x 6, y x 6, x x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp21834720" alttext="\displaystyle b_{n}|y_{2}-y_{1}|+\int _{{x^{{\prime}}}}^{x}\sup|\frac{\partial A_{{n+1}}(t,y)}{\partial y}||y_{2}-y_{1}|dt" display="inline"><semantics id="idp21835584"><mrow id="idp21835712"><mrow id="idp21835840"><msub id="idp21835968"><mi id="idp21836096">b</mi><mi id="idp21836352">n</mi></msub><mo id="idp21836608">⁢</mo><mrow id="idp21836864"><mo id="idp21836992" fence="true">|</mo><mrow id="idp21837488"><msub id="idp21837616"><mi id="idp21837744">y</mi><mn id="idp21838000">2</mn></msub><mo id="idp21838256">-</mo><msub id="idp21838512"><mi id="idp21838640">y</mi><mn id="idp21838896">1</mn></msub></mrow><mo id="idp21839152" fence="true">|</mo></mrow></mrow><mo id="idp21839680">+</mo><mrow id="idp21839936"><mstyle id="idp21840064" displaystyle="true"><msubsup id="idp21840464"><mo id="idp21840592">∫</mo><msup id="idp21840880"><mi id="idp21841008">x</mi><mo id="idp21841264">′</mo></msup><mi id="idp21841552">x</mi></msubsup></mstyle><mrow id="idp21841808"><mo id="idp21841936" movablelimits="false">sup</mo><mo id="idp21842464">⁡</mo><mrow id="idp21842752"><mrow id="idp21842880"><mo id="idp21843008" fence="true">|</mo><mstyle id="idp21843536" displaystyle="true"><mfrac id="idp21843936"><mrow id="idp21844064"><mrow id="idp21844192"><mo id="idp21844320">∂</mo><mo id="idp21844608">⁡</mo><msub id="idp21844896"><mi id="idp21845024">A</mi><mrow id="idp21845280"><mi id="idp21845408">n</mi><mo id="idp21845664">+</mo><mn id="idp21845920">1</mn></mrow></msub></mrow><mo id="idp21846176">⁢</mo><mrow id="idp21846464"><mo id="idp21846592">(</mo><mrow id="idp21846848"><mi id="idp21846976">t</mi><mo id="idp21847232">,</mo><mi id="idp21847488">y</mi></mrow><mo id="idp21847744">)</mo></mrow></mrow><mrow id="idp21848000"><mo id="idp21848128">∂</mo><mo id="idp21848416">⁡</mo><mi id="idp21848704">y</mi></mrow></mfrac></mstyle><mo id="idp21848960" fence="true">|</mo></mrow><mo id="idp21849488">⁢</mo><mrow id="idp21849776"><mo id="idp21849904" fence="true">|</mo><mrow id="idp21850432"><msub id="idp21850560"><mi id="idp21850688">y</mi><mn id="idp21850944">2</mn></msub><mo id="idp21851200">-</mo><msub id="idp21851456"><mi id="idp21851584">y</mi><mn id="idp21851840">1</mn></msub></mrow><mo id="idp21852096" fence="true">|</mo></mrow><mo id="idp21852624">⁢</mo><mi id="idp21852912">d</mi><mo id="idp21853168">⁢</mo><mi id="idp21853456">t</mi></mrow></mrow></mrow></mrow><annotation-xml id="idp21853712" encoding="MathML-Content"><apply id="idp21854112"><plus id="idp21854240"/><apply id="idp21854368"><times id="idp21854496"/><apply id="idp21854624"><csymbol id="idp21854752" cd="ambiguous">subscript</csymbol><ci id="idp21855312">b</ci><ci id="idp21855568">n</ci></apply><apply id="idp21855824"><abs id="idp21855952"/><apply id="idp21856080"><minus id="idp21856208"/><apply id="idp21856336"><csymbol id="idp21856464" cd="ambiguous">subscript</csymbol><ci id="idp21857024">y</ci><cn id="idp21857280" type="integer">2</cn></apply><apply id="idp21857808"><csymbol id="idp21857936" cd="ambiguous">subscript</csymbol><ci id="idp21858496">y</ci><cn id="idp21858752" type="integer">1</cn></apply></apply></apply></apply><apply id="idp21859280"><apply id="idp21859408"><csymbol id="idp21859536" cd="ambiguous">superscript</csymbol><apply id="idp21860096"><csymbol id="idp21860224" cd="ambiguous">subscript</csymbol><int id="idp21860784"/><apply id="idp21860912"><csymbol id="idp21861040" cd="ambiguous">superscript</csymbol><ci id="idp21861600">x</ci><ci id="idp21861856">′</ci></apply></apply><ci id="idp21862144">x</ci></apply><apply id="idp21862400"><csymbol id="idp21862528" cd="latexml">supremum</csymbol><apply id="idp21863088"><times id="idp21863216"/><apply id="idp21863344"><abs id="idp21863472"/><apply id="idp21863600"><divide id="idp21863728"/><apply id="idp21863856"><times id="idp21863984"/><apply id="idp21864112"><partialdiff id="idp21864240"/><apply id="idp21864368"><csymbol id="idp21864496" cd="ambiguous">subscript</csymbol><ci id="idp21865056">A</ci><apply id="idp21865312"><plus id="idp21865440"/><ci id="idp21865568">n</ci><cn id="idp21865824" type="integer">1</cn></apply></apply></apply><apply id="idp21866352"><interval id="idp21866480" closure="open"/><ci id="idp21866880">t</ci><ci id="idp21867136">y</ci></apply></apply><apply id="idp21867392"><partialdiff id="idp21867520"/><ci id="idp21867648">y</ci></apply></apply></apply><apply id="idp21867904"><abs id="idp21868032"/><apply id="idp21868160"><minus id="idp21868288"/><apply id="idp21868416"><csymbol id="idp21868544" cd="ambiguous">subscript</csymbol><ci id="idp21869104">y</ci><cn id="idp21869360" type="integer">2</cn></apply><apply id="idp21869888"><csymbol id="idp21870016" cd="ambiguous">subscript</csymbol><ci id="idp21870576">y</ci><cn id="idp21870832" type="integer">1</cn></apply></apply></apply><ci id="idp21871360">d</ci><ci id="idp21871616">t</ci></apply></apply></apply></apply></annotation-xml><annotation id="idp21871872" encoding="application/x-tex">\displaystyle b_{n}|y_{2}-y_{1}|+\int _{{x^{{\prime}}}}^{x}\sup|\frac{\partial A_{{n+1}}(t,y)}{\partial y}||y_{2}-y_{1}|dt</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp22036064"><h4>Hit idp22036064</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 67</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/58/f023193.xhtml#idp22036064</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:309032(000036%) VariableMap:[eta x 3, ll, +, (, ), Omega, omega, I x 3, ,, -, frac x 3, 1, 0 x 6, biggl x 2, displaystyle, \ x 14, biggr x 2, _ x 6, | x 4, ^ x 3, =, eq x 2, decay] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp22036064" alttext="I\ll\frac{I_{0}}{\biggl|\eta _{0}^{{decay}}+\displaystyle\eta _{{0}}^{{eq}}\biggl(\frac{\Omega _{0}}{\omega _{0}}-1\biggr)\biggr|}=\frac{I_{0}}{|\eta^{{eq}}|}," display="block"><semantics id="idp22036960"><mrow id="idp22037088"><mrow id="idp22037216"><mi id="idp22037344">I</mi><mo id="idp22037600">≪</mo><mfrac id="idp22037856"><msub id="idp22037984"><mi id="idp22038112">I</mi><mn id="idp22038368">0</mn></msub><mrow id="idp22038624"><mo id="idp22038752" fence="true">|</mo><mrow id="idp22039296"><msubsup id="idp22039424"><mi id="idp22039552">η</mi><mn id="idp22039840">0</mn><mrow id="idp22040096"><mi id="idp22040224">d</mi><mo id="idp22040480">⁢</mo><mi id="idp22040768">e</mi><mo id="idp22041024">⁢</mo><mi id="idp22041312">c</mi><mo id="idp22041568">⁢</mo><mi id="idp22041856">a</mi><mo id="idp22042112">⁢</mo><mi id="idp22042400">y</mi></mrow></msubsup><mo id="idp22042656">+</mo><mrow id="idp22042912"><msubsup id="idp22043040"><mi id="idp22043168">η</mi><mn id="idp22043456">0</mn><mrow id="idp22043712"><mi id="idp22043840">e</mi><mo id="idp22044096">⁢</mo><mi id="idp22044384">q</mi></mrow></msubsup><mo id="idp22044640">⁢</mo><mrow id="idp22044928"><mo id="idp22045056">(</mo><mrow id="idp22045312"><mstyle id="idp22045440" displaystyle="true"><mfrac id="idp22045840"><msub id="idp22045968"><mi id="idp22046096" mathvariant="normal">Ω</mi><mn id="idp22046656">0</mn></msub><msub id="idp22046912"><mi id="idp22047040">ω</mi><mn id="idp22047328">0</mn></msub></mfrac></mstyle><mo id="idp22047584">-</mo><mn id="idp22047840">1</mn></mrow><mo id="idp22048096">)</mo></mrow></mrow></mrow><mo id="idp22048352" fence="true">|</mo></mrow></mfrac><mo id="idp22048880">=</mo><mfrac id="idp22049136"><msub id="idp22049264"><mi id="idp22049392">I</mi><mn id="idp22049648">0</mn></msub><mrow id="idp22049904"><mo id="idp22050032" fence="true">|</mo><msup id="idp22050560"><mi id="idp22050688">η</mi><mrow id="idp22050976"><mi id="idp22051104">e</mi><mo id="idp22051360">⁢</mo><mi id="idp22051648">q</mi></mrow></msup><mo id="idp22051904" fence="true">|</mo></mrow></mfrac></mrow><mo id="idp22052432">,</mo></mrow><annotation-xml id="idp22052688" encoding="MathML-Content"><apply id="idp22053088"><and id="idp22053216"/><apply id="idp22053344"><csymbol id="idp22053472" cd="latexml">much-less-than</csymbol><ci id="idp22054032">I</ci><apply id="S5.Ex9.m1.sh1au.cmml"><divide id="S5.Ex9.m1.sh1.cmml"/><apply id="S5.Ex9.m1.sh1d.cmml"><csymbol cd="ambiguous" id="S5.Ex9.m1.sh1a.cmml">subscript</csymbol><ci id="S5.Ex9.m1.sh1b.cmml">I</ci><cn type="integer" id="S5.Ex9.m1.sh1c.cmml">0</cn></apply><apply id="S5.Ex9.m1.sh1at.cmml"><abs id="S5.Ex9.m1.sh1e.cmml"/><apply id="S5.Ex9.m1.sh1as.cmml"><plus id="S5.Ex9.m1.sh1f.cmml"/><apply id="S5.Ex9.m1.sh1s.cmml"><csymbol cd="ambiguous" id="S5.Ex9.m1.sh1g.cmml">superscript</csymbol><apply id="S5.Ex9.m1.sh1k.cmml"><csymbol cd="ambiguous" id="S5.Ex9.m1.sh1h.cmml">subscript</csymbol><ci id="S5.Ex9.m1.sh1i.cmml">η</ci><cn type="integer" id="S5.Ex9.m1.sh1j.cmml">0</cn></apply><apply id="S5.Ex9.m1.sh1r.cmml"><times id="S5.Ex9.m1.sh1l.cmml"/><ci id="S5.Ex9.m1.sh1m.cmml">d</ci><ci id="S5.Ex9.m1.sh1n.cmml">e</ci><ci id="S5.Ex9.m1.sh1o.cmml">c</ci><ci id="S5.Ex9.m1.sh1p.cmml">a</ci><ci id="S5.Ex9.m1.sh1q.cmml">y</ci></apply></apply><apply id="S5.Ex9.m1.sh1ar.cmml"><times id="S5.Ex9.m1.sh1t.cmml"/><apply id="S5.Ex9.m1.sh1ad.cmml"><csymbol cd="ambiguous" id="S5.Ex9.m1.sh1u.cmml">superscript</csymbol><apply id="S5.Ex9.m1.sh1y.cmml"><csymbol cd="ambiguous" id="S5.Ex9.m1.sh1v.cmml">subscript</csymbol><ci id="S5.Ex9.m1.sh1w.cmml">η</ci><cn type="integer" id="S5.Ex9.m1.sh1x.cmml">0</cn></apply><apply id="S5.Ex9.m1.sh1ac.cmml"><times id="S5.Ex9.m1.sh1z.cmml"/><ci id="S5.Ex9.m1.sh1aa.cmml">e</ci><ci id="S5.Ex9.m1.sh1ab.cmml">q</ci></apply></apply><apply id="S5.Ex9.m1.sh1aq.cmml"><minus id="S5.Ex9.m1.sh1ae.cmml"/><apply id="S5.Ex9.m1.sh1ao.cmml"><divide id="S5.Ex9.m1.sh1af.cmml"/><apply id="S5.Ex9.m1.sh1aj.cmml"><csymbol cd="ambiguous" id="S5.Ex9.m1.sh1ag.cmml">subscript</csymbol><ci id="S5.Ex9.m1.sh1ah.cmml">Ω</ci><cn type="integer" id="S5.Ex9.m1.sh1ai.cmml">0</cn></apply><apply id="S5.Ex9.m1.sh1an.cmml"><csymbol cd="ambiguous" id="S5.Ex9.m1.sh1ak.cmml">subscript</csymbol><ci id="S5.Ex9.m1.sh1al.cmml">ω</ci><cn type="integer" id="S5.Ex9.m1.sh1am.cmml">0</cn></apply></apply><cn type="integer" id="S5.Ex9.m1.sh1ap.cmml">1</cn></apply></apply></apply></apply></apply></apply><apply id="idp22080576"><eq id="idp22080704"/><share id="idp22080832" href="#S5.Ex9.m1.sh1.cmml"/><apply id="S5.Ex9.m1.sh2n.cmml"><divide id="S5.Ex9.m1.sh2.cmml"/><apply id="S5.Ex9.m1.sh2d.cmml"><csymbol cd="ambiguous" id="S5.Ex9.m1.sh2a.cmml">subscript</csymbol><ci id="S5.Ex9.m1.sh2b.cmml">I</ci><cn type="integer" id="S5.Ex9.m1.sh2c.cmml">0</cn></apply><apply id="S5.Ex9.m1.sh2m.cmml"><abs id="S5.Ex9.m1.sh2e.cmml"/><apply id="S5.Ex9.m1.sh2l.cmml"><csymbol cd="ambiguous" id="S5.Ex9.m1.sh2f.cmml">superscript</csymbol><ci id="S5.Ex9.m1.sh2g.cmml">η</ci><apply id="S5.Ex9.m1.sh2k.cmml"><times id="S5.Ex9.m1.sh2h.cmml"/><ci id="S5.Ex9.m1.sh2i.cmml">e</ci><ci id="S5.Ex9.m1.sh2j.cmml">q</ci></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp22089040" encoding="application/x-tex">I\ll\frac{I_{0}}{\biggl|\eta _{0}^{{decay}}+\displaystyle\eta _{{0}}^{{eq}}\biggl(\frac{\Omega _{0}}{\omega _{0}}-1\biggr)\biggr|}=\frac{I_{0}}{|\eta^{{eq}}|},</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp22689584"><h4>Hit idp22689584</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 68</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/60/f023872.xhtml#idp22689584</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:400441(000030%) VariableMap:[sum x 2, x 2, infty x 4, varepsilon, lambda x 9, W x 2, gamma x 2, Q, psi x 4, times, \ x 52, left x 4, _ x 9, ^ x 4, right x 4, b x 2, c x 2, leq x 2, a x 4, n x 6, mu, + x 10, ( x 16, ) x 16, ., omega x 2, k x 2, , x 3, frac x 10, - x 5, 2 x 8, 1 x 7, | x 18, pi x 2, = x 2, x x 3] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp22689584" alttext="|Q_{{12}}(x,\lambda)|\leq\frac{|c|}{|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\frac{1}{(x+1)^{{\gamma}}}\\ \times\sum _{{n=-\infty}}^{{+\infty}}|b_{n}(\lambda)|\left(\frac{1}{\left|\frac{2k(\lambda)}{a}+2\omega+\frac{2\pi n}{a}\right|}+\frac{1}{\left|\frac{2k(\lambda)}{a}-2\omega+\frac{2\pi n}{a}\right|}\right)\\ \leq\frac{2|c|}{\varepsilon(\mu)|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\left(\sum _{{n=-\infty}}^{{+\infty}}|b_{n}(\lambda)|\right)\frac{1}{(x+1)^{{\gamma}}}." display="block"><semantics id="idp22688704"><mrow id="idp22688832"><mrow id="idp22688960"><mrow id="idp22689088"><mo id="idp22689216" fence="true">|</mo><mrow id="idp22690928"><msub id="idp22691056"><mi id="idp22691184">Q</mi><mn id="idp22691440">12</mn></msub><mo id="idp22691696">⁢</mo><mrow id="idp22691952"><mo id="idp22692080">(</mo><mrow id="idp22692336"><mi id="idp22692464">x</mi><mo id="idp22692720">,</mo><mi id="idp22692976">λ</mi></mrow><mo id="idp22693264">)</mo></mrow></mrow><mo id="idp22693520" fence="true">|</mo></mrow><mo id="idp22694048">≤</mo><mrow id="idp22694336"><mrow id="idp22694464"><mfrac id="idp22694592"><mrow id="idp22694720"><mo id="idp22694848" fence="true">|</mo><mi id="idp22695376">c</mi><mo id="idp22695632" fence="true">|</mo></mrow><mrow id="idp22696160"><mo id="idp22696288" fence="true">|</mo><mrow id="idp22696816"><mi id="idp22696944">W</mi><mo id="idp22697200">⁢</mo><mrow id="idp22697488"><mo id="idp22697616">(</mo><mrow id="idp22697872"><mrow id="idp22698000"><msub id="idp22698128"><mi id="idp22698256">ψ</mi><mo id="idp22698544">+</mo></msub><mo id="idp22698800">⁢</mo><mrow id="idp22699088"><mo id="idp22699216">(</mo><mi id="idp22699472">λ</mi><mo id="idp22699760">)</mo></mrow></mrow><mo id="idp22700016">,</mo><mrow id="idp22700272"><msub id="idp22700400"><mi id="idp22700528">ψ</mi><mo id="idp22700816">-</mo></msub><mo id="idp22701072">⁢</mo><mrow id="idp22701360"><mo id="idp22701488">(</mo><mi id="idp22701744">λ</mi><mo id="idp22702032">)</mo></mrow></mrow></mrow><mo id="idp22702288">)</mo></mrow></mrow><mo id="idp22702544" fence="true">|</mo></mrow></mfrac><mo id="idp22703072">⁢</mo><mfrac id="idp22703360"><mn id="idp22703488">1</mn><msup id="idp22703744"><mrow id="idp22703872"><mo id="idp22704000">(</mo><mrow id="idp22704256"><mi id="idp22704384">x</mi><mo id="idp22704640">+</mo><mn id="idp22704896">1</mn></mrow><mo id="idp22705152">)</mo></mrow><mi id="idp22705408">γ</mi></msup></mfrac></mrow><mo id="idp22705696">×</mo><mrow id="idp22705984"><mover id="idp22706112"><munder id="idp22706240"><mo id="idp22706368" movablelimits="false">∑</mo><mrow id="idp22706928"><mi id="idp22707056">n</mi><mo id="idp22707312" movablelimits="false">=</mo><mrow id="idp22707840"><mo id="idp22707968" movablelimits="false">-</mo><mi id="idp22708496" mathvariant="normal">∞</mi></mrow></mrow></munder><mrow id="idp22709056"><mo id="idp22709184">+</mo><mi id="idp22709440" mathvariant="normal">∞</mi></mrow></mover><mrow id="idp22710000"><mrow id="idp22710128"><mo id="idp22710256" fence="true">|</mo><mrow id="idp22710784"><msub id="idp22710912"><mi id="idp22711040">b</mi><mi id="idp22711296">n</mi></msub><mo id="idp22711552">⁢</mo><mrow id="idp22711840"><mo id="idp22711968">(</mo><mi id="idp22712224">λ</mi><mo id="idp22712512">)</mo></mrow></mrow><mo id="idp22712768" fence="true">|</mo></mrow><mo id="idp22713296">⁢</mo><mrow id="idp22713584"><mo id="idp22713712">(</mo><mrow id="idp22713968"><mfrac id="idp22714096"><mn id="idp22714224">1</mn><mrow id="idp22714480"><mo id="idp22714608" fence="true">|</mo><mrow id="idp22715136"><mfrac id="idp22715264"><mrow id="idp22715392"><mn id="idp22715520">2</mn><mo id="idp22715776">⁢</mo><mi id="idp22716064">k</mi><mo id="idp22716320">⁢</mo><mrow id="idp22716608"><mo id="idp22716736">(</mo><mi id="idp22716992">λ</mi><mo id="idp22717280">)</mo></mrow></mrow><mi id="idp22717536">a</mi></mfrac><mo id="idp22717792">+</mo><mrow id="idp22718048"><mn id="idp22718176">2</mn><mo id="idp22718432">⁢</mo><mi id="idp22718720">ω</mi></mrow><mo id="idp22719008">+</mo><mfrac id="idp22719264"><mrow id="idp22719392"><mn id="idp22719520">2</mn><mo id="idp22719776">⁢</mo><mi id="idp22720064">π</mi><mo id="idp22720352">⁢</mo><mi id="idp22720640">n</mi></mrow><mi id="idp22720896">a</mi></mfrac></mrow><mo id="idp22721152" fence="true">|</mo></mrow></mfrac><mo id="idp22721680">+</mo><mfrac id="idp22721936"><mn id="idp22722064">1</mn><mrow id="idp22722320"><mo id="idp22722448" fence="true">|</mo><mrow id="idp22722976"><mfrac id="idp22723104"><mrow id="idp22723232"><mn id="idp22723360">2</mn><mo id="idp22723616">⁢</mo><mi id="idp22723904">k</mi><mo id="idp22724160">⁢</mo><mrow id="idp22724448"><mo id="idp22724576">(</mo><mi id="idp22724832">λ</mi><mo id="idp22725120">)</mo></mrow></mrow><mi id="idp22725376">a</mi></mfrac><mo id="idp22725632">-</mo><mrow id="idp22725888"><mn id="idp22726016">2</mn><mo id="idp22726272">⁢</mo><mi id="idp22726560">ω</mi></mrow><mo id="idp22726848">+</mo><mfrac id="idp22727104"><mrow id="idp22727232"><mn id="idp22727360">2</mn><mo id="idp22727616">⁢</mo><mi id="idp22727904">π</mi><mo id="idp22728192">⁢</mo><mi id="idp22728480">n</mi></mrow><mi id="idp22728736">a</mi></mfrac></mrow><mo id="idp22728992" fence="true">|</mo></mrow></mfrac></mrow><mo id="idp22729520">)</mo></mrow></mrow></mrow></mrow><mo id="idp22729776">≤</mo><mrow id="idp22730064"><mfrac id="idp22730192"><mrow id="idp22730320"><mn id="idp22730448">2</mn><mo id="idp22730704">⁢</mo><mrow id="idp22730992"><mo id="idp22731120" fence="true">|</mo><mi id="idp22731648">c</mi><mo id="idp22731904" fence="true">|</mo></mrow></mrow><mrow id="idp22732432"><mi id="idp22732560">ε</mi><mo id="idp22732848">⁢</mo><mrow id="idp22733136"><mo id="idp22733264">(</mo><mi id="idp22733520">μ</mi><mo id="idp22733808">)</mo></mrow><mo id="idp22734064">⁢</mo><mrow id="idp22734352"><mo id="idp22734480" fence="true">|</mo><mrow id="idp22735008"><mi id="idp22735136">W</mi><mo id="idp22735392">⁢</mo><mrow id="idp22735680"><mo id="idp22735808">(</mo><mrow id="idp22736064"><mrow id="idp22736192"><msub id="idp22736320"><mi id="idp22736448">ψ</mi><mo id="idp22736736">+</mo></msub><mo id="idp22736992">⁢</mo><mrow id="idp22737280"><mo id="idp22737408">(</mo><mi id="idp22737664">λ</mi><mo id="idp22737952">)</mo></mrow></mrow><mo id="idp22738208">,</mo><mrow id="idp22738464"><msub id="idp22738592"><mi id="idp22738720">ψ</mi><mo id="idp22739008">-</mo></msub><mo id="idp22739264">⁢</mo><mrow id="idp22739552"><mo id="idp22739680">(</mo><mi id="idp22739936">λ</mi><mo id="idp22740224">)</mo></mrow></mrow></mrow><mo id="idp22740480">)</mo></mrow></mrow><mo id="idp22740736" fence="true">|</mo></mrow></mrow></mfrac><mo id="idp22741264">⁢</mo><mrow id="idp22741552"><mo id="idp22741680">(</mo><mrow id="idp22741936"><mover id="idp22742064"><munder id="idp22742192"><mo id="idp22742320" movablelimits="false">∑</mo><mrow id="idp22742880"><mi id="idp22743008">n</mi><mo id="idp22743264" movablelimits="false">=</mo><mrow id="idp22743792"><mo id="idp22743920" movablelimits="false">-</mo><mi id="idp22744448" mathvariant="normal">∞</mi></mrow></mrow></munder><mrow id="idp22745008"><mo id="idp22745136">+</mo><mi id="idp22745392" mathvariant="normal">∞</mi></mrow></mover><mrow id="idp22745952"><mo id="idp22746080" fence="true">|</mo><mrow id="idp22746608"><msub id="idp22746736"><mi id="idp22746864">b</mi><mi id="idp22747120">n</mi></msub><mo id="idp22747376">⁢</mo><mrow id="idp22747664"><mo id="idp22747792">(</mo><mi id="idp22748048">λ</mi><mo id="idp22748336">)</mo></mrow></mrow><mo id="idp22748592" fence="true">|</mo></mrow></mrow><mo id="idp22749120">)</mo></mrow><mo id="idp22749376">⁢</mo><mfrac id="idp22749664"><mn id="idp22749792">1</mn><msup id="idp22750048"><mrow id="idp22750176"><mo id="idp22750304">(</mo><mrow id="idp22750560"><mi id="idp22750688">x</mi><mo id="idp22750944">+</mo><mn id="idp22751200">1</mn></mrow><mo id="idp22751456">)</mo></mrow><mi id="idp22751712">γ</mi></msup></mfrac></mrow></mrow><mo id="idp22752000">.</mo></mrow><annotation-xml id="idp22752256" encoding="MathML-Content"><apply id="idp22752656"><and id="idp22752784"/><apply id="idp22752912"><leq id="idp22753040"/><apply id="idp22753168"><abs id="idp22753296"/><apply id="idp22753424"><times id="idp22753552"/><apply id="idp22753680"><csymbol id="idp22753808" cd="ambiguous">subscript</csymbol><ci id="idp22754368">Q</ci><cn id="idp22754624" type="integer">12</cn></apply><apply id="idp22755152"><interval id="idp22755280" closure="open"/><ci id="idp22755680">x</ci><ci id="idp22755936">λ</ci></apply></apply></apply><apply id="S3.E22.m1.sh1ds.cmml"><times id="S3.E22.m1.sh1.cmml"/><apply id="S3.E22.m1.sh1al.cmml"><times id="S3.E22.m1.sh1a.cmml"/><apply id="S3.E22.m1.sh1aa.cmml"><divide id="S3.E22.m1.sh1b.cmml"/><apply id="S3.E22.m1.sh1e.cmml"><abs id="S3.E22.m1.sh1c.cmml"/><ci id="S3.E22.m1.sh1d.cmml">c</ci></apply><apply id="S3.E22.m1.sh1z.cmml"><abs id="S3.E22.m1.sh1f.cmml"/><apply id="S3.E22.m1.sh1y.cmml"><times id="S3.E22.m1.sh1g.cmml"/><ci id="S3.E22.m1.sh1h.cmml">W</ci><apply id="S3.E22.m1.sh1x.cmml"><interval closure="open" id="S3.E22.m1.sh1i.cmml"/><apply id="S3.E22.m1.sh1p.cmml"><times id="S3.E22.m1.sh1j.cmml"/><apply id="S3.E22.m1.sh1n.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh1k.cmml">subscript</csymbol><ci id="S3.E22.m1.sh1l.cmml">ψ</ci><plus id="S3.E22.m1.sh1m.cmml"/></apply><ci id="S3.E22.m1.sh1o.cmml">λ</ci></apply><apply id="S3.E22.m1.sh1w.cmml"><times id="S3.E22.m1.sh1q.cmml"/><apply id="S3.E22.m1.sh1u.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh1r.cmml">subscript</csymbol><ci id="S3.E22.m1.sh1s.cmml">ψ</ci><minus id="S3.E22.m1.sh1t.cmml"/></apply><ci id="S3.E22.m1.sh1v.cmml">λ</ci></apply></apply></apply></apply></apply><apply id="S3.E22.m1.sh1ak.cmml"><divide id="S3.E22.m1.sh1ab.cmml"/><cn type="integer" id="S3.E22.m1.sh1ac.cmml">1</cn><apply id="S3.E22.m1.sh1aj.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh1ad.cmml">superscript</csymbol><apply id="S3.E22.m1.sh1ah.cmml"><plus id="S3.E22.m1.sh1ae.cmml"/><ci id="S3.E22.m1.sh1af.cmml">x</ci><cn type="integer" id="S3.E22.m1.sh1ag.cmml">1</cn></apply><ci id="S3.E22.m1.sh1ai.cmml">γ</ci></apply></apply></apply><apply id="S3.E22.m1.sh1dr.cmml"><apply id="S3.E22.m1.sh1az.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh1am.cmml">superscript</csymbol><apply id="S3.E22.m1.sh1av.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh1an.cmml">subscript</csymbol><sum id="S3.E22.m1.sh1ao.cmml"/><apply id="S3.E22.m1.sh1au.cmml"><eq id="S3.E22.m1.sh1ap.cmml"/><ci id="S3.E22.m1.sh1aq.cmml">n</ci><apply id="S3.E22.m1.sh1at.cmml"><minus id="S3.E22.m1.sh1ar.cmml"/><infinity id="S3.E22.m1.sh1as.cmml"/></apply></apply></apply><apply id="S3.E22.m1.sh1ay.cmml"><plus id="S3.E22.m1.sh1aw.cmml"/><infinity id="S3.E22.m1.sh1ax.cmml"/></apply></apply><apply id="S3.E22.m1.sh1dq.cmml"><times id="S3.E22.m1.sh1ba.cmml"/><apply id="S3.E22.m1.sh1bj.cmml"><abs id="S3.E22.m1.sh1bb.cmml"/><apply id="S3.E22.m1.sh1bi.cmml"><times id="S3.E22.m1.sh1bc.cmml"/><apply id="S3.E22.m1.sh1bg.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh1bd.cmml">subscript</csymbol><ci id="S3.E22.m1.sh1be.cmml">b</ci><ci id="S3.E22.m1.sh1bf.cmml">n</ci></apply><ci id="S3.E22.m1.sh1bh.cmml">λ</ci></apply></apply><apply id="S3.E22.m1.sh1dp.cmml"><plus id="S3.E22.m1.sh1bk.cmml"/><apply id="S3.E22.m1.sh1cl.cmml"><divide id="S3.E22.m1.sh1bl.cmml"/><cn type="integer" id="S3.E22.m1.sh1bm.cmml">1</cn><apply id="S3.E22.m1.sh1ck.cmml"><abs id="S3.E22.m1.sh1bn.cmml"/><apply id="S3.E22.m1.sh1cj.cmml"><plus id="S3.E22.m1.sh1bo.cmml"/><apply id="S3.E22.m1.sh1bw.cmml"><divide id="S3.E22.m1.sh1bp.cmml"/><apply id="S3.E22.m1.sh1bu.cmml"><times id="S3.E22.m1.sh1bq.cmml"/><cn type="integer" id="S3.E22.m1.sh1br.cmml">2</cn><ci id="S3.E22.m1.sh1bs.cmml">k</ci><ci id="S3.E22.m1.sh1bt.cmml">λ</ci></apply><ci id="S3.E22.m1.sh1bv.cmml">a</ci></apply><apply id="S3.E22.m1.sh1ca.cmml"><times id="S3.E22.m1.sh1bx.cmml"/><cn type="integer" id="S3.E22.m1.sh1by.cmml">2</cn><ci id="S3.E22.m1.sh1bz.cmml">ω</ci></apply><apply id="S3.E22.m1.sh1ci.cmml"><divide id="S3.E22.m1.sh1cb.cmml"/><apply id="S3.E22.m1.sh1cg.cmml"><times id="S3.E22.m1.sh1cc.cmml"/><cn type="integer" id="S3.E22.m1.sh1cd.cmml">2</cn><ci id="S3.E22.m1.sh1ce.cmml">π</ci><ci id="S3.E22.m1.sh1cf.cmml">n</ci></apply><ci id="S3.E22.m1.sh1ch.cmml">a</ci></apply></apply></apply></apply><apply id="S3.E22.m1.sh1do.cmml"><divide id="S3.E22.m1.sh1cm.cmml"/><cn type="integer" id="S3.E22.m1.sh1cn.cmml">1</cn><apply id="S3.E22.m1.sh1dn.cmml"><abs id="S3.E22.m1.sh1co.cmml"/><apply id="S3.E22.m1.sh1dm.cmml"><plus id="S3.E22.m1.sh1cp.cmml"/><apply id="S3.E22.m1.sh1dd.cmml"><minus id="S3.E22.m1.sh1cq.cmml"/><apply id="S3.E22.m1.sh1cy.cmml"><divide id="S3.E22.m1.sh1cr.cmml"/><apply id="S3.E22.m1.sh1cw.cmml"><times id="S3.E22.m1.sh1cs.cmml"/><cn type="integer" id="S3.E22.m1.sh1ct.cmml">2</cn><ci id="S3.E22.m1.sh1cu.cmml">k</ci><ci id="S3.E22.m1.sh1cv.cmml">λ</ci></apply><ci id="S3.E22.m1.sh1cx.cmml">a</ci></apply><apply id="S3.E22.m1.sh1dc.cmml"><times id="S3.E22.m1.sh1cz.cmml"/><cn type="integer" id="S3.E22.m1.sh1da.cmml">2</cn><ci id="S3.E22.m1.sh1db.cmml">ω</ci></apply></apply><apply id="S3.E22.m1.sh1dl.cmml"><divide id="S3.E22.m1.sh1de.cmml"/><apply id="S3.E22.m1.sh1dj.cmml"><times id="S3.E22.m1.sh1df.cmml"/><cn type="integer" id="S3.E22.m1.sh1dg.cmml">2</cn><ci id="S3.E22.m1.sh1dh.cmml">π</ci><ci id="S3.E22.m1.sh1di.cmml">n</ci></apply><ci id="S3.E22.m1.sh1dk.cmml">a</ci></apply></apply></apply></apply></apply></apply></apply></apply></apply><apply id="idp22816400"><leq id="idp22816528"/><share id="idp22816656" href="#S3.E22.m1.sh1.cmml"/><apply id="S3.E22.m1.sh2bp.cmml"><times id="S3.E22.m1.sh2.cmml"/><apply id="S3.E22.m1.sh2ag.cmml"><divide id="S3.E22.m1.sh2a.cmml"/><apply id="S3.E22.m1.sh2g.cmml"><times id="S3.E22.m1.sh2b.cmml"/><cn type="integer" id="S3.E22.m1.sh2c.cmml">2</cn><apply id="S3.E22.m1.sh2f.cmml"><abs id="S3.E22.m1.sh2d.cmml"/><ci id="S3.E22.m1.sh2e.cmml">c</ci></apply></apply><apply id="S3.E22.m1.sh2af.cmml"><times id="S3.E22.m1.sh2h.cmml"/><ci id="S3.E22.m1.sh2i.cmml">ε</ci><ci id="S3.E22.m1.sh2j.cmml">μ</ci><apply id="S3.E22.m1.sh2ae.cmml"><abs id="S3.E22.m1.sh2k.cmml"/><apply id="S3.E22.m1.sh2ad.cmml"><times id="S3.E22.m1.sh2l.cmml"/><ci id="S3.E22.m1.sh2m.cmml">W</ci><apply id="S3.E22.m1.sh2ac.cmml"><interval closure="open" id="S3.E22.m1.sh2n.cmml"/><apply id="S3.E22.m1.sh2u.cmml"><times id="S3.E22.m1.sh2o.cmml"/><apply id="S3.E22.m1.sh2s.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh2p.cmml">subscript</csymbol><ci id="S3.E22.m1.sh2q.cmml">ψ</ci><plus id="S3.E22.m1.sh2r.cmml"/></apply><ci id="S3.E22.m1.sh2t.cmml">λ</ci></apply><apply id="S3.E22.m1.sh2ab.cmml"><times id="S3.E22.m1.sh2v.cmml"/><apply id="S3.E22.m1.sh2z.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh2w.cmml">subscript</csymbol><ci id="S3.E22.m1.sh2x.cmml">ψ</ci><minus id="S3.E22.m1.sh2y.cmml"/></apply><ci id="S3.E22.m1.sh2aa.cmml">λ</ci></apply></apply></apply></apply></apply></apply><apply id="S3.E22.m1.sh2be.cmml"><apply id="S3.E22.m1.sh2au.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh2ah.cmml">superscript</csymbol><apply id="S3.E22.m1.sh2aq.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh2ai.cmml">subscript</csymbol><sum id="S3.E22.m1.sh2aj.cmml"/><apply id="S3.E22.m1.sh2ap.cmml"><eq id="S3.E22.m1.sh2ak.cmml"/><ci id="S3.E22.m1.sh2al.cmml">n</ci><apply id="S3.E22.m1.sh2ao.cmml"><minus id="S3.E22.m1.sh2am.cmml"/><infinity id="S3.E22.m1.sh2an.cmml"/></apply></apply></apply><apply id="S3.E22.m1.sh2at.cmml"><plus id="S3.E22.m1.sh2ar.cmml"/><infinity id="S3.E22.m1.sh2as.cmml"/></apply></apply><apply id="S3.E22.m1.sh2bd.cmml"><abs id="S3.E22.m1.sh2av.cmml"/><apply id="S3.E22.m1.sh2bc.cmml"><times id="S3.E22.m1.sh2aw.cmml"/><apply id="S3.E22.m1.sh2ba.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh2ax.cmml">subscript</csymbol><ci id="S3.E22.m1.sh2ay.cmml">b</ci><ci id="S3.E22.m1.sh2az.cmml">n</ci></apply><ci id="S3.E22.m1.sh2bb.cmml">λ</ci></apply></apply></apply><apply id="S3.E22.m1.sh2bo.cmml"><divide id="S3.E22.m1.sh2bf.cmml"/><cn type="integer" id="S3.E22.m1.sh2bg.cmml">1</cn><apply id="S3.E22.m1.sh2bn.cmml"><csymbol cd="ambiguous" id="S3.E22.m1.sh2bh.cmml">superscript</csymbol><apply id="S3.E22.m1.sh2bl.cmml"><plus id="S3.E22.m1.sh2bi.cmml"/><ci id="S3.E22.m1.sh2bj.cmml">x</ci><cn type="integer" id="S3.E22.m1.sh2bk.cmml">1</cn></apply><ci id="S3.E22.m1.sh2bm.cmml">γ</ci></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp22850768" encoding="application/x-tex">|Q_{{12}}(x,\lambda)|\leq\frac{|c|}{|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\frac{1}{(x+1)^{{\gamma}}}\\ \times\sum _{{n=-\infty}}^{{+\infty}}|b_{n}(\lambda)|\left(\frac{1}{\left|\frac{2k(\lambda)}{a}+2\omega+\frac{2\pi n}{a}\right|}+\frac{1}{\left|\frac{2k(\lambda)}{a}-2\omega+\frac{2\pi n}{a}\right|}\right)\\ \leq\frac{2|c|}{\varepsilon(\mu)|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\left(\sum _{{n=-\infty}}^{{+\infty}}|b_{n}(\lambda)|\right)\frac{1}{(x+1)^{{\gamma}}}.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp22777168"><h4>Hit idp22777168</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 69</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/112/f044449.xhtml#idp22777168</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:435264(000053%) VariableMap:[D, theta, H, infty x 2, lambda, P, \ x 18, epsilon, _ x 6, ^, d, int, +, mu, mathrm x 2, (, ), omega x 4, ,, -, frac, v, 2, 1, displaystyle, sin, | x 4, =, vec x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp22777168" alttext="\displaystyle=(\lambda\sin 2\theta _{\mathrm{v}}+\mu D_{1})\int _{{-\infty}}^{\infty}\frac{\epsilon _{\omega}|\vec{P}_{\omega}|}{|\vec{H}_{\omega}|}\mathrm{d}\omega," display="inline"><semantics id="idp22778064"><mrow id="idp22778192"><mrow id="idp22778320"><none id="idp22778448"/><mo id="idp22778576">=</mo><mrow id="idp22778832"><mrow id="idp22778960"><mo id="idp22779088">(</mo><mrow id="idp22779344"><mrow id="idp22779472"><mi id="idp22779600">λ</mi><mo id="idp22779856">⁢</mo><mrow id="idp22780112"><mi id="idp22780240">sin</mi><mo id="idp22780496">⁡</mo><mrow id="idp22780784"><mn id="idp22780912">2</mn><mo id="idp22781168">⁢</mo><msub id="idp22781456"><mi id="idp22781584">θ</mi><mi id="idp22781872" mathvariant="normal">v</mi></msub></mrow></mrow></mrow><mo id="idp22782400">+</mo><mrow id="idp22782656"><mi id="idp22782784">μ</mi><mo id="idp22783072">⁢</mo><msub id="idp22783360"><mi id="idp22783488">D</mi><mn id="idp22783744">1</mn></msub></mrow></mrow><mo id="idp22784000">)</mo></mrow><mo id="idp22784256">⁢</mo><mrow id="idp22784544"><mstyle id="idp22784672" displaystyle="true"><msubsup id="idp22785072"><mo id="idp22785200">∫</mo><mrow id="idp22785488"><mo id="idp22785616">-</mo><mi id="idp22785872" mathvariant="normal">∞</mi></mrow><mi id="idp22786432" mathvariant="normal">∞</mi></msubsup></mstyle><mrow id="idp22786992"><mstyle id="idp22787120" displaystyle="true"><mfrac id="idp22787520"><mrow id="idp22787648"><msub id="idp22787776"><mi id="idp22787904">ϵ</mi><mi id="idp22788192">ω</mi></msub><mo id="idp22788480">⁢</mo><mrow id="idp22788768"><mo id="idp22788896" fence="true">|</mo><msub id="idp22789424"><mover id="idp22789552" accent="true"><mi id="idp22789952">P</mi><mo id="idp22790208">→</mo></mover><mi id="idp22790496">ω</mi></msub><mo id="idp22790784" fence="true">|</mo></mrow></mrow><mrow id="idp22791312"><mo id="idp22791440" fence="true">|</mo><msub id="idp22791968"><mover id="idp22792096" accent="true"><mi id="idp22792496">H</mi><mo id="idp22792752">→</mo></mover><mi id="idp22793040">ω</mi></msub><mo id="idp22793328" fence="true">|</mo></mrow></mfrac></mstyle><mo id="idp22793856">⁢</mo><mi id="idp22794144" mathvariant="normal">d</mi><mo id="idp22794672">⁢</mo><mi id="idp22794960">ω</mi></mrow></mrow></mrow></mrow><mo id="idp22795248">,</mo></mrow><annotation-xml id="idp22795504" encoding="MathML-Content"><apply id="idp22795904"><eq id="idp22796032"/><csymbol id="idp22796160" cd="latexml">absent</csymbol><apply id="idp22796720"><times id="idp22796848"/><apply id="idp22796976"><plus id="idp22797104"/><apply id="idp22797232"><times id="idp22797360"/><ci id="idp22797488">λ</ci><apply id="idp22797776"><sin id="idp22797904"/><apply id="idp22798032"><times id="idp22798160"/><cn id="idp22798288" type="integer">2</cn><apply id="idp22798816"><csymbol id="idp22798944" cd="ambiguous">subscript</csymbol><ci id="idp22799504">θ</ci><ci id="idp22799792">v</ci></apply></apply></apply></apply><apply id="idp22800048"><times id="idp22800176"/><ci id="idp22800304">μ</ci><apply id="idp22800592"><csymbol id="idp22800720" cd="ambiguous">subscript</csymbol><ci id="idp22801280">D</ci><cn id="idp22801536" type="integer">1</cn></apply></apply></apply><apply id="idp22802064"><apply id="idp22802192"><csymbol id="idp22802320" cd="ambiguous">superscript</csymbol><apply id="idp22802880"><csymbol id="idp22803008" cd="ambiguous">subscript</csymbol><int id="idp22803568"/><apply id="idp22803696"><minus id="idp22803824"/><infinity id="idp22803952"/></apply></apply><infinity id="idp22804080"/></apply><apply id="idp22804208"><times id="idp22804336"/><apply id="idp22804464"><divide id="idp22804592"/><apply id="idp22804720"><times id="idp22804848"/><apply id="idp22804976"><csymbol id="idp22805104" cd="ambiguous">subscript</csymbol><ci id="idp22805664">ϵ</ci><ci id="idp22805952">ω</ci></apply><apply id="idp22806240"><abs id="idp22806368"/><apply id="idp22806496"><csymbol id="idp22806624" cd="ambiguous">subscript</csymbol><apply id="idp22807184"><ci id="idp22807312">→</ci><ci id="idp22807600">P</ci></apply><ci id="idp22807856">ω</ci></apply></apply></apply><apply id="idp22808144"><abs id="idp22808272"/><apply id="idp22808400"><csymbol id="idp22808528" cd="ambiguous">subscript</csymbol><apply id="idp22809088"><ci id="idp22809216">→</ci><ci id="idp22809504">H</ci></apply><ci id="idp22809760">ω</ci></apply></apply></apply><ci id="idp22810048">d</ci><ci id="idp22810304">ω</ci></apply></apply></apply></apply></annotation-xml><annotation id="idp22810592" encoding="application/x-tex">\displaystyle=(\lambda\sin 2\theta _{\mathrm{v}}+\mu D_{1})\int _{{-\infty}}^{\infty}\frac{\epsilon _{\omega}|\vec{P}_{\omega}|}{|\vec{H}_{\omega}|}\mathrm{d}\omega,</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp22855536"><h4>Hit idp22855536</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 70</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/112/f044449.xhtml#idp22855536</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:445683(000055%) VariableMap:[D, theta, cos, H, infty x 2, lambda, P, \ x 19, epsilon, _ x 6, ^, d, int, + x 2, mu, (, mathrm x 2, ), omega x 5, ,, - x 2, frac, 3, 2, v, displaystyle, | x 4, =, vec x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp22855536" alttext="\displaystyle=\int _{{-\infty}}^{\infty}(-\omega+\lambda\cos 2\theta _{\mathrm{v}}+\mu D_{3})\frac{\epsilon _{\omega}|\vec{P}_{\omega}|}{|\vec{H}_{\omega}|}\mathrm{d}\omega," display="inline"><semantics id="idp22856448"><mrow id="idp22856576"><mrow id="idp22856704"><none id="idp22856832"/><mo id="idp22856960">=</mo><mrow id="idp22857216"><mstyle id="idp22857344" displaystyle="true"><msubsup id="idp22857712"><mo id="idp22857840">∫</mo><mrow id="idp22858096"><mo id="idp22858224">-</mo><mi id="idp22858480" mathvariant="normal">∞</mi></mrow><mi id="idp22859040" mathvariant="normal">∞</mi></msubsup></mstyle><mrow id="idp22859600"><mrow id="idp22859728"><mo id="idp22859856">(</mo><mrow id="idp22860112"><mo id="idp22860240">-</mo><mi id="idp22860496">ω</mi><mo id="idp22860784">+</mo><mrow id="idp22861040"><mi id="idp22861168">λ</mi><mo id="idp22861456">⁢</mo><mrow id="idp22861744"><mi id="idp22861872">cos</mi><mo id="idp22862128">⁡</mo><mrow id="idp22862416"><mn id="idp22862544">2</mn><mo id="idp22862800">⁢</mo><msub id="idp22863088"><mi id="idp22863216">θ</mi><mi id="idp22863504" mathvariant="normal">v</mi></msub></mrow></mrow></mrow><mo id="idp22864032">+</mo><mrow id="idp22864288"><mi id="idp22864416">μ</mi><mo id="idp22864704">⁢</mo><msub id="idp22864992"><mi id="idp22865120">D</mi><mn id="idp22865376">3</mn></msub></mrow></mrow><mo id="idp22865632">)</mo></mrow><mo id="idp22865888">⁢</mo><mstyle id="idp22866176" displaystyle="true"><mfrac id="idp22866576"><mrow id="idp22866704"><msub id="idp22866832"><mi id="idp22866960">ϵ</mi><mi id="idp22867248">ω</mi></msub><mo id="idp22867536">⁢</mo><mrow id="idp22867824"><mo id="idp22867952" fence="true">|</mo><msub id="idp22868480"><mover id="idp22868608" accent="true"><mi id="idp22869008">P</mi><mo id="idp22869264">→</mo></mover><mi id="idp22869552">ω</mi></msub><mo id="idp22869840" fence="true">|</mo></mrow></mrow><mrow id="idp22870368"><mo id="idp22870496" fence="true">|</mo><msub id="idp22871024"><mover id="idp22871152" accent="true"><mi id="idp22871552">H</mi><mo id="idp22871808">→</mo></mover><mi id="idp22872096">ω</mi></msub><mo id="idp22872384" fence="true">|</mo></mrow></mfrac></mstyle><mo id="idp22872912">⁢</mo><mi id="idp22873200" mathvariant="normal">d</mi><mo id="idp22873728">⁢</mo><mi id="idp22874016">ω</mi></mrow></mrow></mrow><mo id="idp22874304">,</mo></mrow><annotation-xml id="idp22874560" encoding="MathML-Content"><apply id="idp22874960"><eq id="idp22875088"/><csymbol id="idp22875216" cd="latexml">absent</csymbol><apply id="idp22875776"><apply id="idp22875904"><csymbol id="idp22876032" cd="ambiguous">superscript</csymbol><apply id="idp22876592"><csymbol id="idp22876720" cd="ambiguous">subscript</csymbol><int id="idp22877280"/><apply id="idp22877408"><minus id="idp22877536"/><infinity id="idp22877664"/></apply></apply><infinity id="idp22877792"/></apply><apply id="idp22877920"><times id="idp22878048"/><apply id="idp22878176"><plus id="idp22878304"/><apply id="idp22878432"><minus id="idp22878560"/><ci id="idp22878688">ω</ci></apply><apply id="idp22878976"><times id="idp22879104"/><ci id="idp22879232">λ</ci><apply id="idp22879520"><cos id="idp22879648"/><apply id="idp22879776"><times id="idp22879904"/><cn id="idp22880032" type="integer">2</cn><apply id="idp22880560"><csymbol id="idp22880688" cd="ambiguous">subscript</csymbol><ci id="idp22881248">θ</ci><ci id="idp22881536">v</ci></apply></apply></apply></apply><apply id="idp22881792"><times id="idp22881920"/><ci id="idp22882048">μ</ci><apply id="idp22882336"><csymbol id="idp22882464" cd="ambiguous">subscript</csymbol><ci id="idp22883024">D</ci><cn id="idp22883280" type="integer">3</cn></apply></apply></apply><apply id="idp22883808"><divide id="idp22883936"/><apply id="idp22884064"><times id="idp22884192"/><apply id="idp22884320"><csymbol id="idp22884448" cd="ambiguous">subscript</csymbol><ci id="idp22885008">ϵ</ci><ci id="idp22885296">ω</ci></apply><apply id="idp22885584"><abs id="idp22885712"/><apply id="idp22885840"><csymbol id="idp22885968" cd="ambiguous">subscript</csymbol><apply id="idp22886528"><ci id="idp22886656">→</ci><ci id="idp22886944">P</ci></apply><ci id="idp22887200">ω</ci></apply></apply></apply><apply id="idp22887488"><abs id="idp22887616"/><apply id="idp22887744"><csymbol id="idp22887872" cd="ambiguous">subscript</csymbol><apply id="idp22888432"><ci id="idp22888560">→</ci><ci id="idp22888848">H</ci></apply><ci id="idp22889104">ω</ci></apply></apply></apply><ci id="idp22889392">d</ci><ci id="idp22889648">ω</ci></apply></apply></apply></annotation-xml><annotation id="idp22889936" encoding="application/x-tex">\displaystyle=\int _{{-\infty}}^{\infty}(-\omega+\lambda\cos 2\theta _{\mathrm{v}}+\mu D_{3})\frac{\epsilon _{\omega}|\vec{P}_{\omega}|}{|\vec{H}_{\omega}|}\mathrm{d}\omega,</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp23027200"><h4>Hit idp23027200</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 71</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/115/f045919.xhtml#idp23027200</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:450116(000037%) VariableMap:[geq x 3, sqrt x 4, +, j x 7, ., frac x 7, i x 7, - x 15, 2 x 5, 1 x 4, r, bf x 8, \ x 22, _ x 15, | x 18, y x 8, x x 14] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp23027200" alttext="\frac{x_{i}-x_{j}}{|x_{i}-x_{j}|}.\frac{y_{i}-y_{j}}{|y_{i}-y_{j}|}\geq\frac{1-\sqrt{2}\frac{|{\bf x}-{\bf y}|}{|x_{i}-x_{j}|}}{1+\sqrt{2}\frac{|{\bf x}-{\bf y}|}{|x_{i}-x_{j}|}}\geq 1-2\sqrt{2}\frac{|{\bf x}-{\bf y}|}{|x_{i}-x_{j}|}\geq 1-\frac{\sqrt{2}}{{r_{-}}}|{\bf x}-{\bf y}|" display="block"><semantics id="idp23028224"><mrow id="idp23028352"><mfrac id="idp23028480"><mrow id="idp23028608"><msub id="idp23028736"><mi id="idp23028864">x</mi><mi id="idp23029120">i</mi></msub><mo id="idp23029376">-</mo><msub id="idp23029632"><mi id="idp23029760">x</mi><mi id="idp23030016">j</mi></msub></mrow><mrow id="idp23030272"><mo id="idp23030400" fence="true">|</mo><mrow id="idp23030896"><msub id="idp23031024"><mi id="idp23031152">x</mi><mi id="idp23031408">i</mi></msub><mo id="idp23031664">-</mo><msub id="idp23031920"><mi id="idp23032048">x</mi><mi id="idp23032304">j</mi></msub></mrow><mo id="idp23032560" fence="true">|</mo></mrow></mfrac><mo id="idp23033056" separator="true">.</mo><mrow id="idp23033584"><mfrac id="idp23033712"><mrow id="idp23033840"><msub id="idp23033968"><mi id="idp23034096">y</mi><mi id="idp23034352">i</mi></msub><mo id="idp23034608">-</mo><msub id="idp23034864"><mi id="idp23034992">y</mi><mi id="idp23035248">j</mi></msub></mrow><mrow id="idp23035504"><mo id="idp23035632" fence="true">|</mo><mrow id="idp23036160"><msub id="idp23036288"><mi id="idp23036416">y</mi><mi id="idp23036672">i</mi></msub><mo id="idp23036928">-</mo><msub id="idp23037184"><mi id="idp23037312">y</mi><mi id="idp23037568">j</mi></msub></mrow><mo id="idp23037824" fence="true">|</mo></mrow></mfrac><mo id="idp23038352">≥</mo><mfrac id="idp23038640"><mrow id="idp23038768"><mn id="idp23038896">1</mn><mo id="idp23039152">-</mo><mrow id="idp23039408"><msqrt id="idp23039536"><mn id="idp23039664">2</mn></msqrt><mo id="idp23039920">⁢</mo><mfrac id="idp23040208"><mrow id="idp23040336"><mo id="idp23040464" fence="true">|</mo><mrow id="idp23040992"><mi id="idp23041120" mathvariant="bold">x</mi><mo id="idp23041648">-</mo><mi id="idp23041904" mathvariant="bold">y</mi></mrow><mo id="idp23042432" fence="true">|</mo></mrow><mrow id="idp23042960"><mo id="idp23043088" fence="true">|</mo><mrow id="idp23043616"><msub id="idp23043744"><mi id="idp23043872">x</mi><mi id="idp23044128">i</mi></msub><mo id="idp23044384">-</mo><msub id="idp23044640"><mi id="idp23044768">x</mi><mi id="idp23045024">j</mi></msub></mrow><mo id="idp23045280" fence="true">|</mo></mrow></mfrac></mrow></mrow><mrow id="idp23045808"><mn id="idp23045936">1</mn><mo id="idp23046192">+</mo><mrow id="idp23046448"><msqrt id="idp23046576"><mn id="idp23046704">2</mn></msqrt><mo id="idp23046960">⁢</mo><mfrac id="idp23047248"><mrow id="idp23047376"><mo id="idp23047504" fence="true">|</mo><mrow id="idp23048032"><mi id="idp23048160" mathvariant="bold">x</mi><mo id="idp23048688">-</mo><mi id="idp23048944" mathvariant="bold">y</mi></mrow><mo id="idp23049472" fence="true">|</mo></mrow><mrow id="idp23050000"><mo id="idp23050128" fence="true">|</mo><mrow id="idp23050656"><msub id="idp23050784"><mi id="idp23050912">x</mi><mi id="idp23051168">i</mi></msub><mo id="idp23051424">-</mo><msub id="idp23051680"><mi id="idp23051808">x</mi><mi id="idp23052064">j</mi></msub></mrow><mo id="idp23052320" fence="true">|</mo></mrow></mfrac></mrow></mrow></mfrac><mo id="idp23052848">≥</mo><mrow id="idp23053136"><mn id="idp23053264">1</mn><mo id="idp23053520">-</mo><mrow id="idp23053776"><mn id="idp23053904">2</mn><mo id="idp23054160">⁢</mo><msqrt id="idp23054448"><mn id="idp23054576">2</mn></msqrt><mo id="idp23054832">⁢</mo><mfrac id="idp23055120"><mrow id="idp23055248"><mo id="idp23055376" fence="true">|</mo><mrow id="idp23055904"><mi id="idp23056032" mathvariant="bold">x</mi><mo id="idp23056560">-</mo><mi id="idp23056816" mathvariant="bold">y</mi></mrow><mo id="idp23057344" fence="true">|</mo></mrow><mrow id="idp23057872"><mo id="idp23058000" fence="true">|</mo><mrow id="idp23058528"><msub id="idp23058656"><mi id="idp23058784">x</mi><mi id="idp23059040">i</mi></msub><mo id="idp23059296">-</mo><msub id="idp23059552"><mi id="idp23059680">x</mi><mi id="idp23059936">j</mi></msub></mrow><mo id="idp23060192" fence="true">|</mo></mrow></mfrac></mrow></mrow><mo id="idp23060720">≥</mo><mrow id="idp23061008"><mn id="idp23061136">1</mn><mo id="idp23061392">-</mo><mrow id="idp23061648"><mfrac id="idp23061776"><msqrt id="idp23061904"><mn id="idp23062032">2</mn></msqrt><msub id="idp23062288"><mi id="idp23062416">r</mi><mo id="idp23062672">-</mo></msub></mfrac><mo id="idp23062928">⁢</mo><mrow id="idp23063216"><mo id="idp23063344" fence="true">|</mo><mrow id="idp23063872"><mi id="idp23064000" mathvariant="bold">x</mi><mo id="idp23064528">-</mo><mi id="idp23064784" mathvariant="bold">y</mi></mrow><mo id="idp23065312" fence="true">|</mo></mrow></mrow></mrow></mrow></mrow><annotation-xml id="idp23065840" encoding="MathML-Content"><apply id="idp23066240"><csymbol id="idp23066368" cd="ambiguous" name="formulae-sequence"/><apply id="idp23067040"><divide id="idp23067168"/><apply id="idp23067296"><minus id="idp23067424"/><apply id="idp23067552"><csymbol id="idp23067680" cd="ambiguous">subscript</csymbol><ci id="idp23068240">x</ci><ci id="idp23068496">i</ci></apply><apply id="idp23068752"><csymbol id="idp23068880" cd="ambiguous">subscript</csymbol><ci id="idp23069440">x</ci><ci id="idp23069696">j</ci></apply></apply><apply id="idp23069952"><abs id="idp23070080"/><apply id="idp23070208"><minus id="idp23070336"/><apply id="idp23070464"><csymbol id="idp23070592" cd="ambiguous">subscript</csymbol><ci id="idp23071152">x</ci><ci id="idp23071408">i</ci></apply><apply id="idp23071664"><csymbol id="idp23071792" cd="ambiguous">subscript</csymbol><ci id="idp23072352">x</ci><ci id="idp23072608">j</ci></apply></apply></apply></apply><apply id="idp23072864"><and id="idp23072992"/><apply id="idp23073120"><geq id="idp23073248"/><apply id="idp23073376"><divide id="idp23073504"/><apply id="idp23073632"><minus id="idp23073760"/><apply id="idp23073888"><csymbol id="idp23074016" cd="ambiguous">subscript</csymbol><ci id="idp23074576">y</ci><ci id="idp23074832">i</ci></apply><apply id="idp23075088"><csymbol id="idp23075216" cd="ambiguous">subscript</csymbol><ci id="idp23075776">y</ci><ci id="idp23076032">j</ci></apply></apply><apply id="idp23076288"><abs id="idp23076416"/><apply id="idp23076544"><minus id="idp23076672"/><apply id="idp23076800"><csymbol id="idp23076928" cd="ambiguous">subscript</csymbol><ci id="idp23077488">y</ci><ci id="idp23077744">i</ci></apply><apply id="idp23078000"><csymbol id="idp23078128" cd="ambiguous">subscript</csymbol><ci id="idp23078688">y</ci><ci id="idp23078944">j</ci></apply></apply></apply></apply><apply id="S3.Ex23.m1.sh1be.cmml"><divide id="S3.Ex23.m1.sh1.cmml"/><apply id="S3.Ex23.m1.sh1ab.cmml"><minus id="S3.Ex23.m1.sh1a.cmml"/><cn type="integer" id="S3.Ex23.m1.sh1b.cmml">1</cn><apply id="S3.Ex23.m1.sh1aa.cmml"><times id="S3.Ex23.m1.sh1c.cmml"/><apply id="S3.Ex23.m1.sh1e.cmml"><root id="S3.Ex23.m1.sh1f.cmml"/><cn type="integer" id="S3.Ex23.m1.sh1d.cmml">2</cn></apply><apply id="S3.Ex23.m1.sh1z.cmml"><divide id="S3.Ex23.m1.sh1g.cmml"/><apply id="S3.Ex23.m1.sh1m.cmml"><abs id="S3.Ex23.m1.sh1h.cmml"/><apply id="S3.Ex23.m1.sh1l.cmml"><minus id="S3.Ex23.m1.sh1i.cmml"/><ci id="S3.Ex23.m1.sh1j.cmml">x</ci><ci id="S3.Ex23.m1.sh1k.cmml">y</ci></apply></apply><apply id="S3.Ex23.m1.sh1y.cmml"><abs id="S3.Ex23.m1.sh1n.cmml"/><apply id="S3.Ex23.m1.sh1x.cmml"><minus id="S3.Ex23.m1.sh1o.cmml"/><apply id="S3.Ex23.m1.sh1s.cmml"><csymbol cd="ambiguous" id="S3.Ex23.m1.sh1p.cmml">subscript</csymbol><ci id="S3.Ex23.m1.sh1q.cmml">x</ci><ci id="S3.Ex23.m1.sh1r.cmml">i</ci></apply><apply id="S3.Ex23.m1.sh1w.cmml"><csymbol cd="ambiguous" id="S3.Ex23.m1.sh1t.cmml">subscript</csymbol><ci id="S3.Ex23.m1.sh1u.cmml">x</ci><ci id="S3.Ex23.m1.sh1v.cmml">j</ci></apply></apply></apply></apply></apply></apply><apply id="S3.Ex23.m1.sh1bd.cmml"><plus id="S3.Ex23.m1.sh1ac.cmml"/><cn type="integer" id="S3.Ex23.m1.sh1ad.cmml">1</cn><apply id="S3.Ex23.m1.sh1bc.cmml"><times id="S3.Ex23.m1.sh1ae.cmml"/><apply id="S3.Ex23.m1.sh1ag.cmml"><root id="S3.Ex23.m1.sh1ah.cmml"/><cn type="integer" id="S3.Ex23.m1.sh1af.cmml">2</cn></apply><apply id="S3.Ex23.m1.sh1bb.cmml"><divide id="S3.Ex23.m1.sh1ai.cmml"/><apply id="S3.Ex23.m1.sh1ao.cmml"><abs id="S3.Ex23.m1.sh1aj.cmml"/><apply id="S3.Ex23.m1.sh1an.cmml"><minus id="S3.Ex23.m1.sh1ak.cmml"/><ci id="S3.Ex23.m1.sh1al.cmml">x</ci><ci id="S3.Ex23.m1.sh1am.cmml">y</ci></apply></apply><apply id="S3.Ex23.m1.sh1ba.cmml"><abs id="S3.Ex23.m1.sh1ap.cmml"/><apply id="S3.Ex23.m1.sh1az.cmml"><minus id="S3.Ex23.m1.sh1aq.cmml"/><apply id="S3.Ex23.m1.sh1au.cmml"><csymbol cd="ambiguous" id="S3.Ex23.m1.sh1ar.cmml">subscript</csymbol><ci id="S3.Ex23.m1.sh1as.cmml">x</ci><ci id="S3.Ex23.m1.sh1at.cmml">i</ci></apply><apply id="S3.Ex23.m1.sh1ay.cmml"><csymbol cd="ambiguous" id="S3.Ex23.m1.sh1av.cmml">subscript</csymbol><ci id="S3.Ex23.m1.sh1aw.cmml">x</ci><ci id="S3.Ex23.m1.sh1ax.cmml">j</ci></apply></apply></apply></apply></apply></apply></apply></apply><apply id="idp23107264"><geq id="idp23107392"/><share id="idp23107520" href="#S3.Ex23.m1.sh1.cmml"/><apply id="S3.Ex23.m1.sh2ab.cmml"><minus id="S3.Ex23.m1.sh2.cmml"/><cn type="integer" id="S3.Ex23.m1.sh2a.cmml">1</cn><apply id="S3.Ex23.m1.sh2aa.cmml"><times id="S3.Ex23.m1.sh2b.cmml"/><cn type="integer" id="S3.Ex23.m1.sh2c.cmml">2</cn><apply id="S3.Ex23.m1.sh2e.cmml"><root id="S3.Ex23.m1.sh2f.cmml"/><cn type="integer" id="S3.Ex23.m1.sh2d.cmml">2</cn></apply><apply id="S3.Ex23.m1.sh2z.cmml"><divide id="S3.Ex23.m1.sh2g.cmml"/><apply id="S3.Ex23.m1.sh2m.cmml"><abs id="S3.Ex23.m1.sh2h.cmml"/><apply id="S3.Ex23.m1.sh2l.cmml"><minus id="S3.Ex23.m1.sh2i.cmml"/><ci id="S3.Ex23.m1.sh2j.cmml">x</ci><ci id="S3.Ex23.m1.sh2k.cmml">y</ci></apply></apply><apply id="S3.Ex23.m1.sh2y.cmml"><abs id="S3.Ex23.m1.sh2n.cmml"/><apply id="S3.Ex23.m1.sh2x.cmml"><minus id="S3.Ex23.m1.sh2o.cmml"/><apply id="S3.Ex23.m1.sh2s.cmml"><csymbol cd="ambiguous" id="S3.Ex23.m1.sh2p.cmml">subscript</csymbol><ci id="S3.Ex23.m1.sh2q.cmml">x</ci><ci id="S3.Ex23.m1.sh2r.cmml">i</ci></apply><apply id="S3.Ex23.m1.sh2w.cmml"><csymbol cd="ambiguous" id="S3.Ex23.m1.sh2t.cmml">subscript</csymbol><ci id="S3.Ex23.m1.sh2u.cmml">x</ci><ci id="S3.Ex23.m1.sh2v.cmml">j</ci></apply></apply></apply></apply></apply></apply></apply><apply id="idp23122352"><geq id="idp23122480"/><share id="idp23122608" href="#S3.Ex23.m1.sh2.cmml"/><apply id="S3.Ex23.m1.sh3s.cmml"><minus id="S3.Ex23.m1.sh3.cmml"/><cn type="integer" id="S3.Ex23.m1.sh3a.cmml">1</cn><apply id="S3.Ex23.m1.sh3r.cmml"><times id="S3.Ex23.m1.sh3b.cmml"/><apply id="S3.Ex23.m1.sh3k.cmml"><divide id="S3.Ex23.m1.sh3c.cmml"/><apply id="S3.Ex23.m1.sh3e.cmml"><root id="S3.Ex23.m1.sh3f.cmml"/><cn type="integer" id="S3.Ex23.m1.sh3d.cmml">2</cn></apply><apply id="S3.Ex23.m1.sh3j.cmml"><csymbol cd="ambiguous" id="S3.Ex23.m1.sh3g.cmml">subscript</csymbol><ci id="S3.Ex23.m1.sh3h.cmml">r</ci><minus id="S3.Ex23.m1.sh3i.cmml"/></apply></apply><apply id="S3.Ex23.m1.sh3q.cmml"><abs id="S3.Ex23.m1.sh3l.cmml"/><apply id="S3.Ex23.m1.sh3p.cmml"><minus id="S3.Ex23.m1.sh3m.cmml"/><ci id="S3.Ex23.m1.sh3n.cmml">x</ci><ci id="S3.Ex23.m1.sh3o.cmml">y</ci></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp23132624" encoding="application/x-tex">\frac{x_{i}-x_{j}}{|x_{i}-x_{j}|}.\frac{y_{i}-y_{j}}{|y_{i}-y_{j}|}\geq\frac{1-\sqrt{2}\frac{|{\bf x}-{\bf y}|}{|x_{i}-x_{j}|}}{1+\sqrt{2}\frac{|{\bf x}-{\bf y}|}{|x_{i}-x_{j}|}}\geq 1-2\sqrt{2}\frac{|{\bf x}-{\bf y}|}{|x_{i}-x_{j}|}\geq 1-\frac{\sqrt{2}}{{r_{-}}}|{\bf x}-{\bf y}|</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp23205440"><h4>Hit idp23205440</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 72</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/116/f046124.xhtml#idp23205440</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:473304(000036%) VariableMap:[int, B x 2, sqrt x 2, kappa x 2, +, ( x 4, ) x 4, O x 2, infty x 3, K, frac x 2, - x 2, 2 x 2, T x 2, 1 x 2, displaystyle, dK, \ x 21, _ x 3, left x 2, | x 8, ^ x 4, right x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 3 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp23205440" alttext="\displaystyle O\left(\frac{\kappa^{{-1}}}{\sqrt{T}}\| B^{{(2)}}\| _{\infty}\| K\| _{\infty}\right)+O\left(\frac{\kappa^{{-1}}}{\sqrt{T}}\| B^{{(2)}}\| _{\infty}\int|dK|\right)" display="inline"><semantics id="idp23206352"><mrow id="idp23206480"><mrow id="idp23206608"><mi id="idp23206736">O</mi><mo id="idp23206992">⁢</mo><mrow id="idp23207248"><mo id="idp23207376">(</mo><mrow id="idp23207632"><mstyle id="idp23207760" displaystyle="true"><mfrac id="idp23208128"><msup id="idp23208256"><mi id="idp23208384">κ</mi><mrow id="idp23208672"><mo id="idp23208800">-</mo><mn id="idp23209056">1</mn></mrow></msup><msqrt id="idp23209312"><mi id="idp23209440">T</mi></msqrt></mfrac></mstyle><mo id="idp23209696">⁢</mo><msub id="idp23209984"><mrow id="idp23210112"><mo id="idp23210240" fence="true">∥</mo><msup id="idp23210800"><mi id="idp23210928">B</mi><mrow id="idp23211184"><mo id="idp23211312">(</mo><mn id="idp23211568">2</mn><mo id="idp23211824">)</mo></mrow></msup><mo id="idp23212080" fence="true">∥</mo></mrow><mi id="idp23212640" mathvariant="normal">∞</mi></msub><mo id="idp23213200">⁢</mo><msub id="idp23213488"><mrow id="idp23213616"><mo id="idp23213744" fence="true">∥</mo><mi id="idp23214304">K</mi><mo id="idp23214560" fence="true">∥</mo></mrow><mi id="idp23215120" mathvariant="normal">∞</mi></msub></mrow><mo id="idp23215680">)</mo></mrow></mrow><mo id="idp23215936">+</mo><mrow id="idp23216192"><mi id="idp23216320">O</mi><mo id="idp23216576">⁢</mo><mrow id="idp23216864"><mo id="idp23216992">(</mo><mrow id="idp23217248"><mstyle id="idp23217376" displaystyle="true"><mfrac id="idp23217776"><msup id="idp23217904"><mi id="idp23218032">κ</mi><mrow id="idp23218320"><mo id="idp23218448">-</mo><mn id="idp23218704">1</mn></mrow></msup><msqrt id="idp23218960"><mi id="idp23219088">T</mi></msqrt></mfrac></mstyle><mo id="idp23219344">⁢</mo><msub id="idp23219632"><mrow id="idp23219760"><mo id="idp23219888" fence="true">∥</mo><msup id="idp23220448"><mi id="idp23220576">B</mi><mrow id="idp23220832"><mo id="idp23220960">(</mo><mn id="idp23221216">2</mn><mo id="idp23221472">)</mo></mrow></msup><mo id="idp23221728" fence="true">∥</mo></mrow><mi id="idp23222288" mathvariant="normal">∞</mi></msub><mo id="idp23222848">⁢</mo><mstyle id="idp23223136" displaystyle="true"><mrow id="idp23223536"><mo id="idp23223664">∫</mo><mrow id="idp23223952"><mo id="idp23224080" fence="true">|</mo><mrow id="idp23224608"><mi id="idp23224736">d</mi><mo id="idp23224992">⁢</mo><mi id="idp23225280">K</mi></mrow><mo id="idp23225536" fence="true">|</mo></mrow></mrow></mstyle></mrow><mo id="idp23226064">)</mo></mrow></mrow></mrow><annotation-xml id="idp23226320" encoding="MathML-Content"><apply id="idp23226720"><plus id="idp23226848"/><apply id="idp23226976"><times id="idp23227104"/><ci id="idp23227232">O</ci><apply id="idp23227488"><times id="idp23227616"/><apply id="idp23227744"><divide id="idp23227872"/><apply id="idp23228000"><csymbol id="idp23228128" cd="ambiguous">superscript</csymbol><ci id="idp23228688">κ</ci><apply id="idp23228976"><minus id="idp23229104"/><cn id="idp23229232" type="integer">1</cn></apply></apply><apply id="idp23229760"><root id="idp23229888"/><ci id="idp23230016">T</ci></apply></apply><apply id="idp23230272"><csymbol id="idp23230400" cd="ambiguous">subscript</csymbol><apply id="idp23230960"><csymbol id="idp23231088" cd="latexml">norm</csymbol><apply id="idp23231648"><csymbol id="idp23231776" cd="ambiguous">superscript</csymbol><ci id="idp23232336">B</ci><cn id="idp23232592" type="integer">2</cn></apply></apply><infinity id="idp23233120"/></apply><apply id="idp23233248"><csymbol id="idp23233376" cd="ambiguous">subscript</csymbol><apply id="idp23233936"><csymbol id="idp23234064" cd="latexml">norm</csymbol><ci id="idp23234624">K</ci></apply><infinity id="idp23234880"/></apply></apply></apply><apply id="idp23235008"><times id="idp23235136"/><ci id="idp23235264">O</ci><apply id="idp23235520"><times id="idp23235648"/><apply id="idp23235776"><divide id="idp23235904"/><apply id="idp23236032"><csymbol id="idp23236160" cd="ambiguous">superscript</csymbol><ci id="idp23236720">κ</ci><apply id="idp23237008"><minus id="idp23237136"/><cn id="idp23237264" type="integer">1</cn></apply></apply><apply id="idp23237792"><root id="idp23237920"/><ci id="idp23238048">T</ci></apply></apply><apply id="idp23238304"><csymbol id="idp23238432" cd="ambiguous">subscript</csymbol><apply id="idp23238992"><csymbol id="idp23239120" cd="latexml">norm</csymbol><apply id="idp23239680"><csymbol id="idp23239808" cd="ambiguous">superscript</csymbol><ci id="idp23240368">B</ci><cn id="idp23240624" type="integer">2</cn></apply></apply><infinity id="idp23241152"/></apply><apply id="idp23241280"><int id="idp23241408"/><apply id="idp23241536"><abs id="idp23241664"/><apply id="idp23241792"><times id="idp23241920"/><ci id="idp23242048">d</ci><ci id="idp23242304">K</ci></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp23242560" encoding="application/x-tex">\displaystyle O\left(\frac{\kappa^{{-1}}}{\sqrt{T}}\| B^{{(2)}}\| _{\infty}\| K\| _{\infty}\right)+O\left(\frac{\kappa^{{-1}}}{\sqrt{T}}\| B^{{(2)}}\| _{\infty}\int|dK|\right)</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp23399600"><h4>Hit idp23399600</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 73</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/60/f023872.xhtml#idp23399600</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:479134(000036%) VariableMap:[sum x 2, x 2, infty x 4, varepsilon, hat x 2, lambda x 9, W x 2, gamma x 2, Q, times, psi x 4, \ x 55, left x 4, _ x 9, ^ x 5, right x 4, II, b x 2, c x 2, leq x 2, a x 4, n x 6, mu x 2, + x 8, ( x 16, ) x 16, omega x 2, k x 2, , x 4, frac x 10, - x 7, 2 x 8, 1 x 7, | x 18, pi x 2, = x 2, x x 3] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp23399600" alttext="|Q_{{21}}^{{II}}(x,\lambda,\mu)|\leq\frac{|c|}{|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\frac{1}{(x+1)^{{\gamma}}}\\ \times\sum _{{n=-\infty}}^{{+\infty}}|\hat{b}_{n}(\lambda)|\left(\frac{1}{\left|\frac{2k(\lambda)}{a}-2\omega-\frac{2\pi n}{a}\right|}+\frac{1}{\left|\frac{2k(\lambda)}{a}+2\omega-\frac{2\pi n}{a}\right|}\right)\\ \leq\frac{2|c|}{\varepsilon(\mu)|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\left(\sum _{{n=-\infty}}^{{+\infty}}|\hat{b}_{n}(\lambda)|\right)\frac{1}{(x+1)^{{\gamma}}}" display="block"><semantics id="idp23398720"><mrow id="idp23398848"><mrow id="idp23398976"><mo id="idp23399104" fence="true">|</mo><mrow id="idp23400832"><msubsup id="idp23400960"><mi id="idp23401088">Q</mi><mn id="idp23401344">21</mn><mrow id="idp23401600"><mi id="idp23401728">I</mi><mo id="idp23401984">⁢</mo><mi id="idp23402240">I</mi></mrow></msubsup><mo id="idp23402496">⁢</mo><mrow id="idp23402784"><mo id="idp23402912">(</mo><mrow id="idp23403168"><mi id="idp23403296">x</mi><mo id="idp23403552">,</mo><mi id="idp23403808">λ</mi><mo id="idp23404096">,</mo><mi id="idp23404352">μ</mi></mrow><mo id="idp23404640">)</mo></mrow></mrow><mo id="idp23404896" fence="true">|</mo></mrow><mo id="idp23405424">≤</mo><mrow id="idp23405712"><mrow id="idp23405840"><mfrac id="idp23405968"><mrow id="idp23406096"><mo id="idp23406224" fence="true">|</mo><mi id="idp23406752">c</mi><mo id="idp23407008" fence="true">|</mo></mrow><mrow id="idp23407536"><mo id="idp23407664" fence="true">|</mo><mrow id="idp23408192"><mi id="idp23408320">W</mi><mo id="idp23408576">⁢</mo><mrow id="idp23408864"><mo id="idp23408992">(</mo><mrow id="idp23409248"><mrow id="idp23409376"><msub id="idp23409504"><mi id="idp23409632">ψ</mi><mo id="idp23409920">+</mo></msub><mo id="idp23410176">⁢</mo><mrow id="idp23410464"><mo id="idp23410592">(</mo><mi id="idp23410848">λ</mi><mo id="idp23411136">)</mo></mrow></mrow><mo id="idp23411392">,</mo><mrow id="idp23411648"><msub id="idp23411776"><mi id="idp23411904">ψ</mi><mo id="idp23412192">-</mo></msub><mo id="idp23412448">⁢</mo><mrow id="idp23412736"><mo id="idp23412864">(</mo><mi id="idp23413120">λ</mi><mo id="idp23413408">)</mo></mrow></mrow></mrow><mo id="idp23413664">)</mo></mrow></mrow><mo id="idp23413920" fence="true">|</mo></mrow></mfrac><mo id="idp23414448">⁢</mo><mfrac id="idp23414736"><mn id="idp23414864">1</mn><msup id="idp23415120"><mrow id="idp23415248"><mo id="idp23415376">(</mo><mrow id="idp23415632"><mi id="idp23415760">x</mi><mo id="idp23416016">+</mo><mn id="idp23416272">1</mn></mrow><mo id="idp23416528">)</mo></mrow><mi id="idp23416784">γ</mi></msup></mfrac></mrow><mo id="idp23417072">×</mo><mrow id="idp23417360"><mover id="idp23417488"><munder id="idp23417616"><mo id="idp23417744" movablelimits="false">∑</mo><mrow id="idp23418304"><mi id="idp23418432">n</mi><mo id="idp23418688" movablelimits="false">=</mo><mrow id="idp23419216"><mo id="idp23419344" movablelimits="false">-</mo><mi id="idp23419872" mathvariant="normal">∞</mi></mrow></mrow></munder><mrow id="idp23420432"><mo id="idp23420560">+</mo><mi id="idp23420816" mathvariant="normal">∞</mi></mrow></mover><mrow id="idp23421376"><mrow id="idp23421504"><mo id="idp23421632" fence="true">|</mo><mrow id="idp23422160"><msub id="idp23422288"><mover id="idp23422416" accent="true"><mi id="idp23422816">b</mi><mo id="idp23423072">^</mo></mover><mi id="idp23423328">n</mi></msub><mo id="idp23423584">⁢</mo><mrow id="idp23423872"><mo id="idp23424000">(</mo><mi id="idp23424256">λ</mi><mo id="idp23424544">)</mo></mrow></mrow><mo id="idp23424800" fence="true">|</mo></mrow><mo id="idp23425328">⁢</mo><mrow id="idp23425616"><mo id="idp23425744">(</mo><mrow id="idp23426000"><mfrac id="idp23426128"><mn id="idp23426256">1</mn><mrow id="idp23426512"><mo id="idp23426640" fence="true">|</mo><mrow id="idp23427168"><mfrac id="idp23427296"><mrow id="idp23427424"><mn id="idp23427552">2</mn><mo id="idp23427808">⁢</mo><mi id="idp23428096">k</mi><mo id="idp23428352">⁢</mo><mrow id="idp23428640"><mo id="idp23428768">(</mo><mi id="idp23429024">λ</mi><mo id="idp23429312">)</mo></mrow></mrow><mi id="idp23429568">a</mi></mfrac><mo id="idp23429824">-</mo><mrow id="idp23430080"><mn id="idp23430208">2</mn><mo id="idp23430464">⁢</mo><mi id="idp23430752">ω</mi></mrow><mo id="idp23431040">-</mo><mfrac id="idp23431296"><mrow id="idp23431424"><mn id="idp23431552">2</mn><mo id="idp23431808">⁢</mo><mi id="idp23432096">π</mi><mo id="idp23432384">⁢</mo><mi id="idp23432672">n</mi></mrow><mi id="idp23432928">a</mi></mfrac></mrow><mo id="idp23433184" fence="true">|</mo></mrow></mfrac><mo id="idp23433712">+</mo><mfrac id="idp23433968"><mn id="idp23434096">1</mn><mrow id="idp23434352"><mo id="idp23434480" fence="true">|</mo><mrow id="idp23435008"><mfrac id="idp23435136"><mrow id="idp23435264"><mn id="idp23435392">2</mn><mo id="idp23435648">⁢</mo><mi id="idp23435936">k</mi><mo id="idp23436192">⁢</mo><mrow id="idp23436480"><mo id="idp23436608">(</mo><mi id="idp23436864">λ</mi><mo id="idp23437152">)</mo></mrow></mrow><mi id="idp23437408">a</mi></mfrac><mo id="idp23437664">+</mo><mrow id="idp23437920"><mn id="idp23438048">2</mn><mo id="idp23438304">⁢</mo><mi id="idp23438592">ω</mi></mrow><mo id="idp23438880">-</mo><mfrac id="idp23439136"><mrow id="idp23439264"><mn id="idp23439392">2</mn><mo id="idp23439648">⁢</mo><mi id="idp23439936">π</mi><mo id="idp23440224">⁢</mo><mi id="idp23440512">n</mi></mrow><mi id="idp23440768">a</mi></mfrac></mrow><mo id="idp23441024" fence="true">|</mo></mrow></mfrac></mrow><mo id="idp23441552">)</mo></mrow></mrow></mrow></mrow><mo id="idp23441808">≤</mo><mrow id="idp23442096"><mfrac id="idp23442224"><mrow id="idp23442352"><mn id="idp23442480">2</mn><mo id="idp23442736">⁢</mo><mrow id="idp23443024"><mo id="idp23443152" fence="true">|</mo><mi id="idp23443680">c</mi><mo id="idp23443936" fence="true">|</mo></mrow></mrow><mrow id="idp23444464"><mi id="idp23444592">ε</mi><mo id="idp23444880">⁢</mo><mrow id="idp23445168"><mo id="idp23445296">(</mo><mi id="idp23445552">μ</mi><mo id="idp23445840">)</mo></mrow><mo id="idp23446096">⁢</mo><mrow id="idp23446384"><mo id="idp23446512" fence="true">|</mo><mrow id="idp23447040"><mi id="idp23447168">W</mi><mo id="idp23447424">⁢</mo><mrow id="idp23447712"><mo id="idp23447840">(</mo><mrow id="idp23448096"><mrow id="idp23448224"><msub id="idp23448352"><mi id="idp23448480">ψ</mi><mo id="idp23448768">+</mo></msub><mo id="idp23449024">⁢</mo><mrow id="idp23449312"><mo id="idp23449440">(</mo><mi id="idp23449696">λ</mi><mo id="idp23449984">)</mo></mrow></mrow><mo id="idp23450240">,</mo><mrow id="idp23450496"><msub id="idp23450624"><mi id="idp23450752">ψ</mi><mo id="idp23451040">-</mo></msub><mo id="idp23451296">⁢</mo><mrow id="idp23451584"><mo id="idp23451712">(</mo><mi id="idp23451968">λ</mi><mo id="idp23452256">)</mo></mrow></mrow></mrow><mo id="idp23452512">)</mo></mrow></mrow><mo id="idp23452768" fence="true">|</mo></mrow></mrow></mfrac><mo id="idp23453296">⁢</mo><mrow id="idp23453584"><mo id="idp23453712">(</mo><mrow id="idp23453968"><mover id="idp23454096"><munder id="idp23454224"><mo id="idp23454352" movablelimits="false">∑</mo><mrow id="idp23454912"><mi id="idp23455040">n</mi><mo id="idp23455296" movablelimits="false">=</mo><mrow id="idp23455824"><mo id="idp23455952" movablelimits="false">-</mo><mi id="idp23456480" mathvariant="normal">∞</mi></mrow></mrow></munder><mrow id="idp23457040"><mo id="idp23457168">+</mo><mi id="idp23457424" mathvariant="normal">∞</mi></mrow></mover><mrow id="idp23457984"><mo id="idp23458112" fence="true">|</mo><mrow id="idp23458640"><msub id="idp23458768"><mover id="idp23458896" accent="true"><mi id="idp23459296">b</mi><mo id="idp23459552">^</mo></mover><mi id="idp23459808">n</mi></msub><mo id="idp23460064">⁢</mo><mrow id="idp23460352"><mo id="idp23460480">(</mo><mi id="idp23460736">λ</mi><mo id="idp23461024">)</mo></mrow></mrow><mo id="idp23461280" fence="true">|</mo></mrow></mrow><mo id="idp23461808">)</mo></mrow><mo id="idp23462064">⁢</mo><mfrac id="idp23462352"><mn id="idp23462480">1</mn><msup id="idp23462736"><mrow id="idp23462864"><mo id="idp23462992">(</mo><mrow id="idp23463248"><mi id="idp23463376">x</mi><mo id="idp23463632">+</mo><mn id="idp23463888">1</mn></mrow><mo id="idp23464144">)</mo></mrow><mi id="idp23464400">γ</mi></msup></mfrac></mrow></mrow><annotation-xml id="idp23464688" encoding="MathML-Content"><apply id="idp23465088"><and id="idp23465216"/><apply id="idp23465344"><leq id="idp23465472"/><apply id="idp23465600"><abs id="idp23465728"/><apply id="idp23465856"><times id="idp23465984"/><apply id="idp23466112"><csymbol id="idp23466240" cd="ambiguous">superscript</csymbol><apply id="idp23466800"><csymbol id="idp23466928" cd="ambiguous">subscript</csymbol><ci id="idp23467488">Q</ci><cn id="idp23467744" type="integer">21</cn></apply><apply id="idp23468272"><times id="idp23468400"/><ci id="idp23468528">I</ci><ci id="idp23468784">I</ci></apply></apply><apply id="idp23469040"><vector id="idp23469168"/><ci id="idp23469296">x</ci><ci id="idp23469552">λ</ci><ci id="idp23469840">μ</ci></apply></apply></apply><apply id="S3.E23.m1.sh1du.cmml"><times id="S3.E23.m1.sh1.cmml"/><apply id="S3.E23.m1.sh1al.cmml"><times id="S3.E23.m1.sh1a.cmml"/><apply id="S3.E23.m1.sh1aa.cmml"><divide id="S3.E23.m1.sh1b.cmml"/><apply id="S3.E23.m1.sh1e.cmml"><abs id="S3.E23.m1.sh1c.cmml"/><ci id="S3.E23.m1.sh1d.cmml">c</ci></apply><apply id="S3.E23.m1.sh1z.cmml"><abs id="S3.E23.m1.sh1f.cmml"/><apply id="S3.E23.m1.sh1y.cmml"><times id="S3.E23.m1.sh1g.cmml"/><ci id="S3.E23.m1.sh1h.cmml">W</ci><apply id="S3.E23.m1.sh1x.cmml"><interval closure="open" id="S3.E23.m1.sh1i.cmml"/><apply id="S3.E23.m1.sh1p.cmml"><times id="S3.E23.m1.sh1j.cmml"/><apply id="S3.E23.m1.sh1n.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh1k.cmml">subscript</csymbol><ci id="S3.E23.m1.sh1l.cmml">ψ</ci><plus id="S3.E23.m1.sh1m.cmml"/></apply><ci id="S3.E23.m1.sh1o.cmml">λ</ci></apply><apply id="S3.E23.m1.sh1w.cmml"><times id="S3.E23.m1.sh1q.cmml"/><apply id="S3.E23.m1.sh1u.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh1r.cmml">subscript</csymbol><ci id="S3.E23.m1.sh1s.cmml">ψ</ci><minus id="S3.E23.m1.sh1t.cmml"/></apply><ci id="S3.E23.m1.sh1v.cmml">λ</ci></apply></apply></apply></apply></apply><apply id="S3.E23.m1.sh1ak.cmml"><divide id="S3.E23.m1.sh1ab.cmml"/><cn type="integer" id="S3.E23.m1.sh1ac.cmml">1</cn><apply id="S3.E23.m1.sh1aj.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh1ad.cmml">superscript</csymbol><apply id="S3.E23.m1.sh1ah.cmml"><plus id="S3.E23.m1.sh1ae.cmml"/><ci id="S3.E23.m1.sh1af.cmml">x</ci><cn type="integer" id="S3.E23.m1.sh1ag.cmml">1</cn></apply><ci id="S3.E23.m1.sh1ai.cmml">γ</ci></apply></apply></apply><apply id="S3.E23.m1.sh1dt.cmml"><apply id="S3.E23.m1.sh1az.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh1am.cmml">superscript</csymbol><apply id="S3.E23.m1.sh1av.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh1an.cmml">subscript</csymbol><sum id="S3.E23.m1.sh1ao.cmml"/><apply id="S3.E23.m1.sh1au.cmml"><eq id="S3.E23.m1.sh1ap.cmml"/><ci id="S3.E23.m1.sh1aq.cmml">n</ci><apply id="S3.E23.m1.sh1at.cmml"><minus id="S3.E23.m1.sh1ar.cmml"/><infinity id="S3.E23.m1.sh1as.cmml"/></apply></apply></apply><apply id="S3.E23.m1.sh1ay.cmml"><plus id="S3.E23.m1.sh1aw.cmml"/><infinity id="S3.E23.m1.sh1ax.cmml"/></apply></apply><apply id="S3.E23.m1.sh1ds.cmml"><times id="S3.E23.m1.sh1ba.cmml"/><apply id="S3.E23.m1.sh1bl.cmml"><abs id="S3.E23.m1.sh1bb.cmml"/><apply id="S3.E23.m1.sh1bk.cmml"><times id="S3.E23.m1.sh1bc.cmml"/><apply id="S3.E23.m1.sh1bi.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh1bd.cmml">subscript</csymbol><apply id="S3.E23.m1.sh1bg.cmml"><ci id="S3.E23.m1.sh1be.cmml">^</ci><ci id="S3.E23.m1.sh1bf.cmml">b</ci></apply><ci id="S3.E23.m1.sh1bh.cmml">n</ci></apply><ci id="S3.E23.m1.sh1bj.cmml">λ</ci></apply></apply><apply id="S3.E23.m1.sh1dr.cmml"><plus id="S3.E23.m1.sh1bm.cmml"/><apply id="S3.E23.m1.sh1cn.cmml"><divide id="S3.E23.m1.sh1bn.cmml"/><cn type="integer" id="S3.E23.m1.sh1bo.cmml">1</cn><apply id="S3.E23.m1.sh1cm.cmml"><abs id="S3.E23.m1.sh1bp.cmml"/><apply id="S3.E23.m1.sh1cl.cmml"><minus id="S3.E23.m1.sh1bq.cmml"/><apply id="S3.E23.m1.sh1by.cmml"><divide id="S3.E23.m1.sh1br.cmml"/><apply id="S3.E23.m1.sh1bw.cmml"><times id="S3.E23.m1.sh1bs.cmml"/><cn type="integer" id="S3.E23.m1.sh1bt.cmml">2</cn><ci id="S3.E23.m1.sh1bu.cmml">k</ci><ci id="S3.E23.m1.sh1bv.cmml">λ</ci></apply><ci id="S3.E23.m1.sh1bx.cmml">a</ci></apply><apply id="S3.E23.m1.sh1cc.cmml"><times id="S3.E23.m1.sh1bz.cmml"/><cn type="integer" id="S3.E23.m1.sh1ca.cmml">2</cn><ci id="S3.E23.m1.sh1cb.cmml">ω</ci></apply><apply id="S3.E23.m1.sh1ck.cmml"><divide id="S3.E23.m1.sh1cd.cmml"/><apply id="S3.E23.m1.sh1ci.cmml"><times id="S3.E23.m1.sh1ce.cmml"/><cn type="integer" id="S3.E23.m1.sh1cf.cmml">2</cn><ci id="S3.E23.m1.sh1cg.cmml">π</ci><ci id="S3.E23.m1.sh1ch.cmml">n</ci></apply><ci id="S3.E23.m1.sh1cj.cmml">a</ci></apply></apply></apply></apply><apply id="S3.E23.m1.sh1dq.cmml"><divide id="S3.E23.m1.sh1co.cmml"/><cn type="integer" id="S3.E23.m1.sh1cp.cmml">1</cn><apply id="S3.E23.m1.sh1dp.cmml"><abs id="S3.E23.m1.sh1cq.cmml"/><apply id="S3.E23.m1.sh1do.cmml"><minus id="S3.E23.m1.sh1cr.cmml"/><apply id="S3.E23.m1.sh1df.cmml"><plus id="S3.E23.m1.sh1cs.cmml"/><apply id="S3.E23.m1.sh1da.cmml"><divide id="S3.E23.m1.sh1ct.cmml"/><apply id="S3.E23.m1.sh1cy.cmml"><times id="S3.E23.m1.sh1cu.cmml"/><cn type="integer" id="S3.E23.m1.sh1cv.cmml">2</cn><ci id="S3.E23.m1.sh1cw.cmml">k</ci><ci id="S3.E23.m1.sh1cx.cmml">λ</ci></apply><ci id="S3.E23.m1.sh1cz.cmml">a</ci></apply><apply id="S3.E23.m1.sh1de.cmml"><times id="S3.E23.m1.sh1db.cmml"/><cn type="integer" id="S3.E23.m1.sh1dc.cmml">2</cn><ci id="S3.E23.m1.sh1dd.cmml">ω</ci></apply></apply><apply id="S3.E23.m1.sh1dn.cmml"><divide id="S3.E23.m1.sh1dg.cmml"/><apply id="S3.E23.m1.sh1dl.cmml"><times id="S3.E23.m1.sh1dh.cmml"/><cn type="integer" id="S3.E23.m1.sh1di.cmml">2</cn><ci id="S3.E23.m1.sh1dj.cmml">π</ci><ci id="S3.E23.m1.sh1dk.cmml">n</ci></apply><ci id="S3.E23.m1.sh1dm.cmml">a</ci></apply></apply></apply></apply></apply></apply></apply></apply></apply><apply id="idp23531232"><leq id="idp23531360"/><share id="idp23531488" href="#S3.E23.m1.sh1.cmml"/><apply id="S3.E23.m1.sh2br.cmml"><times id="S3.E23.m1.sh2.cmml"/><apply id="S3.E23.m1.sh2ag.cmml"><divide id="S3.E23.m1.sh2a.cmml"/><apply id="S3.E23.m1.sh2g.cmml"><times id="S3.E23.m1.sh2b.cmml"/><cn type="integer" id="S3.E23.m1.sh2c.cmml">2</cn><apply id="S3.E23.m1.sh2f.cmml"><abs id="S3.E23.m1.sh2d.cmml"/><ci id="S3.E23.m1.sh2e.cmml">c</ci></apply></apply><apply id="S3.E23.m1.sh2af.cmml"><times id="S3.E23.m1.sh2h.cmml"/><ci id="S3.E23.m1.sh2i.cmml">ε</ci><ci id="S3.E23.m1.sh2j.cmml">μ</ci><apply id="S3.E23.m1.sh2ae.cmml"><abs id="S3.E23.m1.sh2k.cmml"/><apply id="S3.E23.m1.sh2ad.cmml"><times id="S3.E23.m1.sh2l.cmml"/><ci id="S3.E23.m1.sh2m.cmml">W</ci><apply id="S3.E23.m1.sh2ac.cmml"><interval closure="open" id="S3.E23.m1.sh2n.cmml"/><apply id="S3.E23.m1.sh2u.cmml"><times id="S3.E23.m1.sh2o.cmml"/><apply id="S3.E23.m1.sh2s.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh2p.cmml">subscript</csymbol><ci id="S3.E23.m1.sh2q.cmml">ψ</ci><plus id="S3.E23.m1.sh2r.cmml"/></apply><ci id="S3.E23.m1.sh2t.cmml">λ</ci></apply><apply id="S3.E23.m1.sh2ab.cmml"><times id="S3.E23.m1.sh2v.cmml"/><apply id="S3.E23.m1.sh2z.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh2w.cmml">subscript</csymbol><ci id="S3.E23.m1.sh2x.cmml">ψ</ci><minus id="S3.E23.m1.sh2y.cmml"/></apply><ci id="S3.E23.m1.sh2aa.cmml">λ</ci></apply></apply></apply></apply></apply></apply><apply id="S3.E23.m1.sh2bg.cmml"><apply id="S3.E23.m1.sh2au.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh2ah.cmml">superscript</csymbol><apply id="S3.E23.m1.sh2aq.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh2ai.cmml">subscript</csymbol><sum id="S3.E23.m1.sh2aj.cmml"/><apply id="S3.E23.m1.sh2ap.cmml"><eq id="S3.E23.m1.sh2ak.cmml"/><ci id="S3.E23.m1.sh2al.cmml">n</ci><apply id="S3.E23.m1.sh2ao.cmml"><minus id="S3.E23.m1.sh2am.cmml"/><infinity id="S3.E23.m1.sh2an.cmml"/></apply></apply></apply><apply id="S3.E23.m1.sh2at.cmml"><plus id="S3.E23.m1.sh2ar.cmml"/><infinity id="S3.E23.m1.sh2as.cmml"/></apply></apply><apply id="S3.E23.m1.sh2bf.cmml"><abs id="S3.E23.m1.sh2av.cmml"/><apply id="S3.E23.m1.sh2be.cmml"><times id="S3.E23.m1.sh2aw.cmml"/><apply id="S3.E23.m1.sh2bc.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh2ax.cmml">subscript</csymbol><apply id="S3.E23.m1.sh2ba.cmml"><ci id="S3.E23.m1.sh2ay.cmml">^</ci><ci id="S3.E23.m1.sh2az.cmml">b</ci></apply><ci id="S3.E23.m1.sh2bb.cmml">n</ci></apply><ci id="S3.E23.m1.sh2bd.cmml">λ</ci></apply></apply></apply><apply id="S3.E23.m1.sh2bq.cmml"><divide id="S3.E23.m1.sh2bh.cmml"/><cn type="integer" id="S3.E23.m1.sh2bi.cmml">1</cn><apply id="S3.E23.m1.sh2bp.cmml"><csymbol cd="ambiguous" id="S3.E23.m1.sh2bj.cmml">superscript</csymbol><apply id="S3.E23.m1.sh2bn.cmml"><plus id="S3.E23.m1.sh2bk.cmml"/><ci id="S3.E23.m1.sh2bl.cmml">x</ci><cn type="integer" id="S3.E23.m1.sh2bm.cmml">1</cn></apply><ci id="S3.E23.m1.sh2bo.cmml">γ</ci></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp23566528" encoding="application/x-tex">|Q_{{21}}^{{II}}(x,\lambda,\mu)|\leq\frac{|c|}{|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\frac{1}{(x+1)^{{\gamma}}}\\ \times\sum _{{n=-\infty}}^{{+\infty}}|\hat{b}_{n}(\lambda)|\left(\frac{1}{\left|\frac{2k(\lambda)}{a}-2\omega-\frac{2\pi n}{a}\right|}+\frac{1}{\left|\frac{2k(\lambda)}{a}+2\omega-\frac{2\pi n}{a}\right|}\right)\\ \leq\frac{2|c|}{\varepsilon(\mu)|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\left(\sum _{{n=-\infty}}^{{+\infty}}|\hat{b}_{n}(\lambda)|\right)\frac{1}{(x+1)^{{\gamma}}}</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp23406880"><h4>Hit idp23406880</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 74</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/62/f024501.xhtml#idp23406880</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:2988132(000098%) VariableMap:[f, leq, C, a x 10, +, (, ), ., , x 4, - x 3, frac x 3, 3 x 2, 2 x 2, 1 x 5, 4 x 3, ], \ x 11, left x 3, _ x 11, | x 8, right x 3, [] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp23406880" alttext="\left|\left[a_{1},a_{2},a_{3},a_{4}\right]_{f}\right|\leq\frac{C}{|a_{1}-a_{4}|}\left(\frac{1}{|a_{1}-a_{3}|}+\frac{1}{|a_{2}-a_{4}|}\right)\,." display="block"><semantics id="idp23407760"><mrow id="idp23407888"><mrow id="idp23408016"><mrow id="idp23408144"><mo id="idp23408272" fence="true">|</mo><msub id="idp23408768"><mrow id="idp23408896"><mo id="idp23409024">[</mo><mrow id="idp23409280"><msub id="idp23409408"><mi id="idp23409536">a</mi><mn id="idp23409792">1</mn></msub><mo id="idp23410048">,</mo><msub id="idp23410304"><mi id="idp23410432">a</mi><mn id="idp23410688">2</mn></msub><mo id="idp23410944">,</mo><msub id="idp23411200"><mi id="idp23411328">a</mi><mn id="idp23411584">3</mn></msub><mo id="idp23411840">,</mo><msub id="idp23412096"><mi id="idp23412224">a</mi><mn id="idp23412480">4</mn></msub></mrow><mo id="idp23412736">]</mo></mrow><mi id="idp23412992">f</mi></msub><mo id="idp23413248" fence="true">|</mo></mrow><mo id="idp23413744">≤</mo><mrow id="idp23414032"><mfrac id="idp23414160"><mi id="idp23414288">C</mi><mrow id="idp23414544"><mo id="idp23414672" fence="true">|</mo><mrow id="idp23415200"><msub id="idp23415328"><mi id="idp23415456">a</mi><mn id="idp23415712">1</mn></msub><mo id="idp23415968">-</mo><msub id="idp23416224"><mi id="idp23416352">a</mi><mn id="idp23416608">4</mn></msub></mrow><mo id="idp23416864" fence="true">|</mo></mrow></mfrac><mo id="idp23417392">⁢</mo><mrow id="idp23417680"><mo id="idp23417808">(</mo><mrow id="idp23418064"><mfrac id="idp23418192"><mn id="idp23418320">1</mn><mrow id="idp23418576"><mo id="idp23418704" fence="true">|</mo><mrow id="idp23419232"><msub id="idp23419360"><mi id="idp23419488">a</mi><mn id="idp23419744">1</mn></msub><mo id="idp23420000">-</mo><msub id="idp23420256"><mi id="idp23420384">a</mi><mn id="idp23420640">3</mn></msub></mrow><mo id="idp23420896" fence="true">|</mo></mrow></mfrac><mo id="idp23421424">+</mo><mfrac id="idp23421680"><mn id="idp23421808">1</mn><mrow id="idp23422064"><mo id="idp23422192" fence="true">|</mo><mrow id="idp23422720"><msub id="idp23422848"><mi id="idp23422976">a</mi><mn id="idp23423232">2</mn></msub><mo id="idp23423488">-</mo><msub id="idp23423744"><mi id="idp23423872">a</mi><mn id="idp23424128">4</mn></msub></mrow><mo id="idp23424384" fence="true">|</mo></mrow></mfrac></mrow><mo id="idp23424912">)</mo></mrow></mrow></mrow><mo id="idp23425168">.</mo></mrow><annotation-xml id="idp23425424" encoding="MathML-Content"><apply id="idp23425824"><leq id="idp23425952"/><apply id="idp23426080"><abs id="idp23426208"/><apply id="idp23426336"><csymbol id="idp23426464" cd="ambiguous">subscript</csymbol><apply id="idp23427024"><list id="idp23427152"/><apply id="idp23427280"><csymbol id="idp23427408" cd="ambiguous">subscript</csymbol><ci id="idp23427968">a</ci><cn id="idp23428224" type="integer">1</cn></apply><apply id="idp23428752"><csymbol id="idp23428880" cd="ambiguous">subscript</csymbol><ci id="idp23429440">a</ci><cn id="idp23429696" type="integer">2</cn></apply><apply id="idp23430224"><csymbol id="idp23430352" cd="ambiguous">subscript</csymbol><ci id="idp23430912">a</ci><cn id="idp23431168" type="integer">3</cn></apply><apply id="idp23431696"><csymbol id="idp23431824" cd="ambiguous">subscript</csymbol><ci id="idp23432384">a</ci><cn id="idp23432640" type="integer">4</cn></apply></apply><ci id="idp23433168">f</ci></apply></apply><apply id="idp23433424"><times id="idp23433552"/><apply id="idp23433680"><divide id="idp23433808"/><ci id="idp23433936">C</ci><apply id="idp23434192"><abs id="idp23434320"/><apply id="idp23434448"><minus id="idp23434576"/><apply id="idp23434704"><csymbol id="idp23434832" cd="ambiguous">subscript</csymbol><ci id="idp23435392">a</ci><cn id="idp23435648" type="integer">1</cn></apply><apply id="idp23436176"><csymbol id="idp23436304" cd="ambiguous">subscript</csymbol><ci id="idp23436864">a</ci><cn id="idp23437120" type="integer">4</cn></apply></apply></apply></apply><apply id="idp23437648"><plus id="idp23437776"/><apply id="idp23437904"><divide id="idp23438032"/><cn id="idp23438160" type="integer">1</cn><apply id="idp23438688"><abs id="idp23438816"/><apply id="idp23438944"><minus id="idp23439072"/><apply id="idp23439200"><csymbol id="idp23439328" cd="ambiguous">subscript</csymbol><ci id="idp23439888">a</ci><cn id="idp23440144" type="integer">1</cn></apply><apply id="idp23440672"><csymbol id="idp23440800" cd="ambiguous">subscript</csymbol><ci id="idp23441360">a</ci><cn id="idp23441616" type="integer">3</cn></apply></apply></apply></apply><apply id="idp23442144"><divide id="idp23442272"/><cn id="idp23442400" type="integer">1</cn><apply id="idp23442928"><abs id="idp23443056"/><apply id="idp23443184"><minus id="idp23443312"/><apply id="idp23443440"><csymbol id="idp23443568" cd="ambiguous">subscript</csymbol><ci id="idp23444128">a</ci><cn id="idp23444384" type="integer">2</cn></apply><apply id="idp23444912"><csymbol id="idp23445040" cd="ambiguous">subscript</csymbol><ci id="idp23445600">a</ci><cn id="idp23445856" type="integer">4</cn></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp23446384" encoding="application/x-tex">\left|\left[a_{1},a_{2},a_{3},a_{4}\right]_{f}\right|\leq\frac{C}{|a_{1}-a_{4}|}\left(\frac{1}{|a_{1}-a_{3}|}+\frac{1}{|a_{2}-a_{4}|}\right)\,.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp23557456"><h4>Hit idp23557456</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 75</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/247/f098490.xhtml#idp23557456</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:521517(000072%) VariableMap:[mathbf, c, B x 3, ell x 3, delta, +, (, ), ., infty x 3, frac, - x 2, 1 x 2, 0, displaystyle, p, ;, \ x 23, left x 6, _ x 5, ^ x 2, | x 14, right x 6] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 5 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp23557456" alttext="\displaystyle\delta\frac{1-\left|\left|B\right|\right|_{\infty}^{\ell}}{1-\left|\left|B\right|\right|_{\infty}}+\left|\left|B\right|\right|_{\infty}^{\ell}|\mathbf{c}_{{p_{\ell}}}(0)|\;." display="inline"><semantics id="idp23558384"><mrow id="idp23558512"><mrow id="idp23558640"><mrow id="idp23558768"><mi id="idp23558896">δ</mi><mo id="idp23559152">⁢</mo><mstyle id="idp23559408" displaystyle="true"><mfrac id="idp23559808"><mrow id="idp23559936"><mn id="idp23560064" mathvariant="normal">1</mn><mo id="idp23560592" mathvariant="normal">-</mo><msubsup id="idp23561120"><mrow id="idp23561248"><mo id="idp23561376" fence="true">||</mo><mi id="idp23561904">B</mi><mo id="idp23562160" fence="true">||</mo></mrow><mi id="idp23562688" mathvariant="normal">∞</mi><mi id="idp23563248" mathvariant="normal">ℓ</mi></msubsup></mrow><mrow id="idp23563808"><mn id="idp23563936" mathvariant="normal">1</mn><mo id="idp23564464" mathvariant="normal">-</mo><msub id="idp23564992"><mrow id="idp23565120"><mo id="idp23565248" fence="true">||</mo><mi id="idp23565776">B</mi><mo id="idp23566032" fence="true">||</mo></mrow><mi id="idp23566560" mathvariant="normal">∞</mi></msub></mrow></mfrac></mstyle></mrow><mo id="idp23567120" mathvariant="normal">+</mo><mrow id="idp23567648"><msubsup id="idp23567776"><mrow id="idp23567904"><mo id="idp23568032" fence="true">||</mo><mi id="idp23568560">B</mi><mo id="idp23568816" fence="true">||</mo></mrow><mi id="idp23569344" mathvariant="normal">∞</mi><mi id="idp23569904" mathvariant="normal">ℓ</mi></msubsup><mo id="idp23570464">⁢</mo><mrow id="idp23570752"><mo id="idp23570880" fence="true">|</mo><mrow id="idp23571408"><msub id="idp23571536"><mi id="idp23571664" mathvariant="normal">c</mi><msub id="idp23572192"><mi id="idp23572320">p</mi><mi id="idp23572576" mathvariant="normal">ℓ</mi></msub></msub><mo id="idp23573136">⁢</mo><mrow id="idp23573424"><mo id="idp23573552">(</mo><mn id="idp23573808" mathvariant="normal">0</mn><mo id="idp23574336">)</mo></mrow></mrow><mo id="idp23574592" fence="true">|</mo></mrow></mrow></mrow><mo id="idp23575120">.</mo></mrow><annotation-xml id="idp23575376" encoding="MathML-Content"><apply id="idp23575776"><plus id="idp23575904"/><apply id="idp23576032"><times id="idp23576160"/><ci id="idp23576288">δ</ci><apply id="idp23576576"><divide id="idp23576704"/><apply id="idp23576832"><minus id="idp23576960"/><cn id="idp23577088" type="integer">1</cn><apply id="idp23577616"><csymbol id="idp23577744" cd="ambiguous">superscript</csymbol><apply id="idp23578304"><csymbol id="idp23578432" cd="ambiguous">subscript</csymbol><apply id="idp23578992"><csymbol id="idp23579120" cd="latexml">norm</csymbol><ci id="idp23579680">B</ci></apply><infinity id="idp23579936"/></apply><ci id="idp23580064">ℓ</ci></apply></apply><apply id="idp23580352"><minus id="idp23580480"/><cn id="idp23580608" type="integer">1</cn><apply id="idp23581136"><csymbol id="idp23581264" cd="ambiguous">subscript</csymbol><apply id="idp23581824"><csymbol id="idp23581952" cd="latexml">norm</csymbol><ci id="idp23582512">B</ci></apply><infinity id="idp23582768"/></apply></apply></apply></apply><apply id="idp23582896"><times id="idp23583024"/><apply id="idp23583152"><csymbol id="idp23583280" cd="ambiguous">superscript</csymbol><apply id="idp23583840"><csymbol id="idp23583968" cd="ambiguous">subscript</csymbol><apply id="idp23584528"><csymbol id="idp23584656" cd="latexml">norm</csymbol><ci id="idp23585216">B</ci></apply><infinity id="idp23585472"/></apply><ci id="idp23585600">ℓ</ci></apply><apply id="idp23585888"><abs id="idp23586016"/><apply id="idp23586144"><times id="idp23586272"/><apply id="idp23586400"><csymbol id="idp23586528" cd="ambiguous">subscript</csymbol><ci id="idp23587088">c</ci><apply id="idp23587344"><csymbol id="idp23587472" cd="ambiguous">subscript</csymbol><ci id="idp23588032">p</ci><ci id="idp23588288">ℓ</ci></apply></apply><cn id="idp23588576" type="integer">0</cn></apply></apply></apply></apply></annotation-xml><annotation id="idp23589104" encoding="application/x-tex">\displaystyle\delta\frac{1-\left|\left|B\right|\right|_{\infty}^{\ell}}{1-\left|\left|B\right|\right|_{\infty}}+\left|\left|B\right|\right|_{\infty}^{\ell}|\mathbf{c}_{{p_{\ell}}}(0)|\;.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp23754880"><h4>Hit idp23754880</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 76</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/114/f045306.xhtml#idp23754880</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:530687(000051%) VariableMap:[boldsymbol x 6, N x 3, U, textstyle x 3, \ x 18, _ x 7, left x 2, ^ x 7, right x 2, Nz, e x 2, + x 3, l x 3, ( x 4, ) x 4, m, ., j, k x 4, ,, frac x 5, - x 4, 2 x 7, 1 x 6, q x 4, p x 2, :, | x 10, z, =] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp23754880" alttext="U^{{(N)}}_{{k,l}}:={\textstyle{\frac{1}{2m(N-1)}}}\left(|{\boldsymbol{{p}}}_{k}|^{2}+|{\boldsymbol{{p}}}_{l}|^{2}\right)-\textstyle{\frac{Nz^{2}e^{2}}{N-1}}\left({{\frac{1}{|{\boldsymbol{{q}}}_{k}|}}}+{{\frac{1}{|{\boldsymbol{{q}}}_{l}|}}}\right)+z^{2}e^{2}{\textstyle{\frac{1}{|{\boldsymbol{{q}}}_{k}-{\boldsymbol{{q}}}_{j}|}}}." display="block"><semantics id="idp23755952"><mrow id="idp23756080"><mrow id="idp23756208"><msubsup id="idp23756336"><mi id="idp23756464">U</mi><mrow id="idp23756720"><mi id="idp23756848">k</mi><mo id="idp23757104">,</mo><mi id="idp23757360">l</mi></mrow><mrow id="idp23757616"><mo id="idp23757744">(</mo><mi id="idp23758000">N</mi><mo id="idp23758256">)</mo></mrow></msubsup><mo id="idp23758512">:=</mo><mrow id="idp23758768"><mrow id="idp23758896"><mstyle id="idp23759024" displaystyle="false"><mfrac id="idp23759392"><mn id="idp23759520">1</mn><mrow id="idp23759776"><mn id="idp23759904">2</mn><mo id="idp23760160">⁢</mo><mi id="idp23760416">m</mi><mo id="idp23760672">⁢</mo><mrow id="idp23760960"><mo id="idp23761088">(</mo><mrow id="idp23761344"><mi id="idp23761472">N</mi><mo id="idp23761728">-</mo><mn id="idp23761984">1</mn></mrow><mo id="idp23762240">)</mo></mrow></mrow></mfrac></mstyle><mo id="idp23762496">⁢</mo><mrow id="idp23762784"><mo id="idp23762912">(</mo><mrow id="idp23763168"><msup id="idp23763296"><mrow id="idp23763424"><mo id="idp23763552" fence="true">|</mo><msub id="idp23764080"><mi id="idp23764208" mathvariant="bold-italic">p</mi><mi id="idp23764736">k</mi></msub><mo id="idp23764992" fence="true">|</mo></mrow><mn id="idp23765520">2</mn></msup><mo id="idp23765776">+</mo><msup id="idp23766032"><mrow id="idp23766160"><mo id="idp23766288" fence="true">|</mo><msub id="idp23766816"><mi id="idp23766944" mathvariant="bold-italic">p</mi><mi id="idp23767472">l</mi></msub><mo id="idp23767728" fence="true">|</mo></mrow><mn id="idp23768256">2</mn></msup></mrow><mo id="idp23768512">)</mo></mrow></mrow><mo id="idp23768768">-</mo><mrow id="idp23769024"><mstyle id="idp23769152" displaystyle="false"><mfrac id="idp23769552"><mrow id="idp23769680"><mi id="idp23769808">N</mi><mo id="idp23770064">⁢</mo><msup id="idp23770352"><mi id="idp23770480">z</mi><mn id="idp23770736">2</mn></msup><mo id="idp23770992">⁢</mo><msup id="idp23771280"><mi id="idp23771408">e</mi><mn id="idp23771664">2</mn></msup></mrow><mrow id="idp23771920"><mi id="idp23772048">N</mi><mo id="idp23772304">-</mo><mn id="idp23772560">1</mn></mrow></mfrac></mstyle><mo id="idp23772816">⁢</mo><mrow id="idp23773104"><mo id="idp23773232">(</mo><mrow id="idp23773488"><mstyle id="idp23773616" displaystyle="false"><mfrac id="idp23774016"><mn id="idp23774144">1</mn><mrow id="idp23774400"><mo id="idp23774528" fence="true">|</mo><msub id="idp23775056"><mi id="idp23775184" mathvariant="bold-italic">q</mi><mi id="idp23775712">k</mi></msub><mo id="idp23775968" fence="true">|</mo></mrow></mfrac></mstyle><mo id="idp23776496">+</mo><mstyle id="idp23776752" displaystyle="false"><mfrac id="idp23777152"><mn id="idp23777280">1</mn><mrow id="idp23777536"><mo id="idp23777664" fence="true">|</mo><msub id="idp23778192"><mi id="idp23778320" mathvariant="bold-italic">q</mi><mi id="idp23778848">l</mi></msub><mo id="idp23779104" fence="true">|</mo></mrow></mfrac></mstyle></mrow><mo id="idp23779632">)</mo></mrow></mrow><mo id="idp23779888">+</mo><mrow id="idp23780144"><msup id="idp23780272"><mi id="idp23780400">z</mi><mn id="idp23780656">2</mn></msup><mo id="idp23780912">⁢</mo><msup id="idp23781200"><mi id="idp23781328">e</mi><mn id="idp23781584">2</mn></msup><mo id="idp23781840">⁢</mo><mstyle id="idp23782128" displaystyle="false"><mfrac id="idp23782528"><mn id="idp23782656">1</mn><mrow id="idp23782912"><mo id="idp23783040" fence="true">|</mo><mrow id="idp23783568"><msub id="idp23783696"><mi id="idp23783824" mathvariant="bold-italic">q</mi><mi id="idp23784352">k</mi></msub><mo id="idp23784608">-</mo><msub id="idp23784864"><mi id="idp23784992" mathvariant="bold-italic">q</mi><mi id="idp23785520">j</mi></msub></mrow><mo id="idp23785776" fence="true">|</mo></mrow></mfrac></mstyle></mrow></mrow></mrow><mo id="idp23786304">.</mo></mrow><annotation-xml id="idp23786560" encoding="MathML-Content"><apply id="idp23786960"><csymbol id="idp23787088" cd="latexml">assign</csymbol><apply id="idp23787648"><csymbol id="idp23787776" cd="ambiguous">subscript</csymbol><apply id="idp23788336"><csymbol id="idp23788464" cd="ambiguous">superscript</csymbol><ci id="idp23789024">U</ci><ci id="idp23789280">N</ci></apply><apply id="idp23789536"><list id="idp23789664"/><ci id="idp23789792">k</ci><ci id="idp23790048">l</ci></apply></apply><apply id="idp23790304"><plus id="idp23790432"/><apply id="idp23790560"><minus id="idp23790688"/><apply id="idp23790816"><times id="idp23790944"/><apply id="idp23791072"><divide id="idp23791200"/><cn id="idp23791328" type="integer">1</cn><apply id="idp23791856"><times id="idp23791984"/><cn id="idp23792112" type="integer">2</cn><ci id="idp23792640">m</ci><apply id="idp23792896"><minus id="idp23793024"/><ci id="idp23793152">N</ci><cn id="idp23793408" type="integer">1</cn></apply></apply></apply><apply id="idp23793936"><plus id="idp23794064"/><apply id="idp23794192"><csymbol id="idp23794320" cd="ambiguous">superscript</csymbol><apply id="idp23794880"><abs id="idp23795008"/><apply id="idp23795136"><csymbol id="idp23795264" cd="ambiguous">subscript</csymbol><ci id="idp23795824">p</ci><ci id="idp23796080">k</ci></apply></apply><cn id="idp23796336" type="integer">2</cn></apply><apply id="idp23796864"><csymbol id="idp23796992" cd="ambiguous">superscript</csymbol><apply id="idp23797552"><abs id="idp23797680"/><apply id="idp23797808"><csymbol id="idp23797936" cd="ambiguous">subscript</csymbol><ci id="idp23798496">p</ci><ci id="idp23798752">l</ci></apply></apply><cn id="idp23799008" type="integer">2</cn></apply></apply></apply><apply id="idp23799536"><times id="idp23799664"/><apply id="idp23799792"><divide id="idp23799920"/><apply id="idp23800048"><times id="idp23800176"/><ci id="idp23800304">N</ci><apply id="idp23800560"><csymbol id="idp23800688" cd="ambiguous">superscript</csymbol><ci id="idp23801248">z</ci><cn id="idp23801504" type="integer">2</cn></apply><apply id="idp23802032"><csymbol id="idp23802160" cd="ambiguous">superscript</csymbol><ci id="idp23802720">e</ci><cn id="idp23802976" type="integer">2</cn></apply></apply><apply id="idp23803504"><minus id="idp23803632"/><ci id="idp23803760">N</ci><cn id="idp23804016" type="integer">1</cn></apply></apply><apply id="idp23804544"><plus id="idp23804672"/><apply id="idp23804800"><divide id="idp23804928"/><cn id="idp23805056" type="integer">1</cn><apply id="idp23805584"><abs id="idp23805712"/><apply id="idp23805840"><csymbol id="idp23805968" cd="ambiguous">subscript</csymbol><ci id="idp23806528">q</ci><ci id="idp23806784">k</ci></apply></apply></apply><apply id="idp23807040"><divide id="idp23807168"/><cn id="idp23807296" type="integer">1</cn><apply id="idp23807824"><abs id="idp23807952"/><apply id="idp23808080"><csymbol id="idp23808208" cd="ambiguous">subscript</csymbol><ci id="idp23808768">q</ci><ci id="idp23809024">l</ci></apply></apply></apply></apply></apply></apply><apply id="idp23809280"><times id="idp23809408"/><apply id="idp23809536"><csymbol id="idp23809664" cd="ambiguous">superscript</csymbol><ci id="idp23810224">z</ci><cn id="idp23810480" type="integer">2</cn></apply><apply id="idp23811008"><csymbol id="idp23811136" cd="ambiguous">superscript</csymbol><ci id="idp23811696">e</ci><cn id="idp23811952" type="integer">2</cn></apply><apply id="idp23812480"><divide id="idp23812608"/><cn id="idp23812736" type="integer">1</cn><apply id="idp23813264"><abs id="idp23813392"/><apply id="idp23813520"><minus id="idp23813648"/><apply id="idp23813776"><csymbol id="idp23813904" cd="ambiguous">subscript</csymbol><ci id="idp23814464">q</ci><ci id="idp23814720">k</ci></apply><apply id="idp23814976"><csymbol id="idp23815104" cd="ambiguous">subscript</csymbol><ci id="idp23815664">q</ci><ci id="idp23815920">j</ci></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp23816176" encoding="application/x-tex">U^{{(N)}}_{{k,l}}:={\textstyle{\frac{1}{2m(N-1)}}}\left(|{\boldsymbol{{p}}}_{k}|^{2}+|{\boldsymbol{{p}}}_{l}|^{2}\right)-\textstyle{\frac{Nz^{2}e^{2}}{N-1}}\left({{\frac{1}{|{\boldsymbol{{q}}}_{k}|}}}+{{\frac{1}{|{\boldsymbol{{q}}}_{l}|}}}\right)+z^{2}e^{2}{\textstyle{\frac{1}{|{\boldsymbol{{q}}}_{k}-{\boldsymbol{{q}}}_{j}|}}}.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp24447632"><h4>Hit idp24447632</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 77</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/133/f052880.xhtml#idp24447632</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:628869(000082%) VariableMap:[F x 3, rm, cap, O, H x 3, varepsilon x 5, vol, gamma x 3, Q, P, S x 2, \ x 12, _ x 11, ^ x 7, n x 2, * x 3, + x 2, ( x 4, ) x 4, ., , x 4, frac, - x 4, prime, 1, t x 6, r, q x 3, | x 2, =] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '|' but has only 2 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp24447632" alttext="n^{{\prime}}_{{\varepsilon,t_{F},t_{H}}}((S_{{\gamma^{*}}})_{{t_{F},\varepsilon t_{H}}},\gamma^{*})=\frac{\varepsilon^{{-q}}}{|Q|}{\rm vol}_{{n-r}}(P_{{\gamma^{*}}}\cap S)+O(t_{F}\varepsilon^{{-q}}+t_{H}\varepsilon^{{1-q}})." display="block"><semantics id="idp24448592"><mrow id="idp24448720"><mrow id="idp24448848"><mrow id="idp24448976"><msubsup id="idp24449104"><mi id="idp24449232">n</mi><mrow id="idp24449488"><mi id="idp24449616">ε</mi><mo id="idp24449872">,</mo><msub id="idp24450128"><mi id="idp24450256">t</mi><mi id="idp24450512">F</mi></msub><mo id="idp24450768">,</mo><msub id="idp24451024"><mi id="idp24451152">t</mi><mi id="idp24451408">H</mi></msub></mrow><mo id="idp24451664">′</mo></msubsup><mo id="idp24451920">⁢</mo><mrow id="idp24452208"><mo id="idp24452336">(</mo><mrow id="idp24452592"><msub id="idp24452720"><mrow id="idp24452848"><mo id="idp24452976">(</mo><msub id="idp24453232"><mi id="idp24453360">S</mi><msup id="idp24453616"><mi id="idp24453744">γ</mi><mo id="idp24454032">*</mo></msup></msub><mo id="idp24454288">)</mo></mrow><mrow id="idp24454544"><msub id="idp24454672"><mi id="idp24454800">t</mi><mi id="idp24455056">F</mi></msub><mo id="idp24455312">,</mo><mrow id="idp24455568"><mi id="idp24455696">ε</mi><mo id="idp24455984">⁢</mo><msub id="idp24456272"><mi id="idp24456400">t</mi><mi id="idp24456656">H</mi></msub></mrow></mrow></msub><mo id="idp24456912">,</mo><msup id="idp24457168"><mi id="idp24457296">γ</mi><mo id="idp24457584">*</mo></msup></mrow><mo id="idp24457840">)</mo></mrow></mrow><mo id="idp24458096">=</mo><mrow id="idp24458352"><mrow id="idp24458480"><mfrac id="idp24458608"><msup id="idp24458736"><mi id="idp24458864">ε</mi><mrow id="idp24459152"><mo id="idp24459280">-</mo><mi id="idp24459536">q</mi></mrow></msup><mrow id="idp24459792"><mo id="idp24459920" fence="true">|</mo><mi id="idp24460448">Q</mi><mo id="idp24460704" fence="true">|</mo></mrow></mfrac><mo id="idp24461232">⁢</mo><msub id="idp24461520"><mi id="idp24461648">vol</mi><mrow id="idp24461904"><mi id="idp24462032">n</mi><mo id="idp24462288">-</mo><mi id="idp24462544">r</mi></mrow></msub><mo id="idp24462800">⁢</mo><mrow id="idp24463088"><mo id="idp24463216">(</mo><mrow id="idp24463472"><msub id="idp24463600"><mi id="idp24463728">P</mi><msup id="idp24463984"><mi id="idp24464112">γ</mi><mo id="idp24464400">*</mo></msup></msub><mo id="idp24464656">∩</mo><mi id="idp24464944">S</mi></mrow><mo id="idp24465200">)</mo></mrow></mrow><mo id="idp24465456">+</mo><mrow id="idp24465712"><mi id="idp24465840">O</mi><mo id="idp24466096">⁢</mo><mrow id="idp24466384"><mo id="idp24466512">(</mo><mrow id="idp24466768"><mrow id="idp24466896"><msub id="idp24467024"><mi id="idp24467152">t</mi><mi id="idp24467408">F</mi></msub><mo id="idp24467664">⁢</mo><msup id="idp24467952"><mi id="idp24468080">ε</mi><mrow id="idp24468368"><mo id="idp24468496">-</mo><mi id="idp24468752">q</mi></mrow></msup></mrow><mo id="idp24469008">+</mo><mrow id="idp24469264"><msub id="idp24469392"><mi id="idp24469520">t</mi><mi id="idp24469776">H</mi></msub><mo id="idp24470032">⁢</mo><msup id="idp24470320"><mi id="idp24470448">ε</mi><mrow id="idp24470736"><mn id="idp24470864">1</mn><mo id="idp24471120">-</mo><mi id="idp24471376">q</mi></mrow></msup></mrow></mrow><mo id="idp24471632">)</mo></mrow></mrow></mrow></mrow><mo id="idp24471888">.</mo></mrow><annotation-xml id="idp24472144" encoding="MathML-Content"><apply id="idp24472544"><eq id="idp24472672"/><apply id="idp24472800"><times id="idp24472928"/><apply id="idp24473056"><csymbol id="idp24473184" cd="ambiguous">subscript</csymbol><apply id="idp24473744"><csymbol id="idp24473872" cd="ambiguous">superscript</csymbol><ci id="idp24474432">n</ci><ci id="idp24474688">′</ci></apply><apply id="idp24474976"><list id="idp24475104"/><ci id="idp24475232">ε</ci><apply id="idp24475520"><csymbol id="idp24475648" cd="ambiguous">subscript</csymbol><ci id="idp24476208">t</ci><ci id="idp24476464">F</ci></apply><apply id="idp24476720"><csymbol id="idp24476848" cd="ambiguous">subscript</csymbol><ci id="idp24477408">t</ci><ci id="idp24477664">H</ci></apply></apply></apply><apply id="idp24477920"><interval id="idp24478048" closure="open"/><apply id="idp24478448"><csymbol id="idp24478576" cd="ambiguous">subscript</csymbol><apply id="idp24479136"><csymbol id="idp24479264" cd="ambiguous">subscript</csymbol><ci id="idp24479824">S</ci><apply id="idp24480080"><csymbol id="idp24480208" cd="ambiguous">superscript</csymbol><ci id="idp24480768">γ</ci><times id="idp24481056"/></apply></apply><apply id="idp24481184"><list id="idp24481312"/><apply id="idp24481440"><csymbol id="idp24481568" cd="ambiguous">subscript</csymbol><ci id="idp24482128">t</ci><ci id="idp24482384">F</ci></apply><apply id="idp24482640"><times id="idp24482768"/><ci id="idp24482896">ε</ci><apply id="idp24483184"><csymbol id="idp24483312" cd="ambiguous">subscript</csymbol><ci id="idp24483872">t</ci><ci id="idp24484128">H</ci></apply></apply></apply></apply><apply id="idp24484384"><csymbol id="idp24484512" cd="ambiguous">superscript</csymbol><ci id="idp24485072">γ</ci><times id="idp24485360"/></apply></apply></apply><apply id="idp24485488"><plus id="idp24485616"/><apply id="idp24485744"><times id="idp24485872"/><apply id="idp24486000"><divide id="idp24486128"/><apply id="idp24486256"><csymbol id="idp24486384" cd="ambiguous">superscript</csymbol><ci id="idp24486944">ε</ci><apply id="idp24487232"><minus id="idp24487360"/><ci id="idp24487488">q</ci></apply></apply><apply id="idp24487744"><abs id="idp24487872"/><ci id="idp24488000">Q</ci></apply></apply><apply id="idp24488256"><csymbol id="idp24488384" cd="ambiguous">subscript</csymbol><ci id="idp24488944">vol</ci><apply id="idp24489200"><minus id="idp24489328"/><ci id="idp24489456">n</ci><ci id="idp24489712">r</ci></apply></apply><apply id="idp24489968"><intersect id="idp24490096"/><apply id="idp24490224"><csymbol id="idp24490352" cd="ambiguous">subscript</csymbol><ci id="idp24490912">P</ci><apply id="idp24491168"><csymbol id="idp24491296" cd="ambiguous">superscript</csymbol><ci id="idp24491856">γ</ci><times id="idp24492144"/></apply></apply><ci id="idp24492272">S</ci></apply></apply><apply id="idp24492528"><times id="idp24492656"/><ci id="idp24492784">O</ci><apply id="idp24493040"><plus id="idp24493168"/><apply id="idp24493296"><times id="idp24493424"/><apply id="idp24493552"><csymbol id="idp24493680" cd="ambiguous">subscript</csymbol><ci id="idp24494240">t</ci><ci id="idp24494496">F</ci></apply><apply id="idp24494752"><csymbol id="idp24494880" cd="ambiguous">superscript</csymbol><ci id="idp24495440">ε</ci><apply id="idp24495728"><minus id="idp24495856"/><ci id="idp24495984">q</ci></apply></apply></apply><apply id="idp24496240"><times id="idp24496368"/><apply id="idp24496496"><csymbol id="idp24496624" cd="ambiguous">subscript</csymbol><ci id="idp24497184">t</ci><ci id="idp24497440">H</ci></apply><apply id="idp24497696"><csymbol id="idp24497824" cd="ambiguous">superscript</csymbol><ci id="idp24498384">ε</ci><apply id="idp24498672"><minus id="idp24498800"/><cn id="idp24498928" type="integer">1</cn><ci id="idp24499456">q</ci></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp24499712" encoding="application/x-tex">n^{{\prime}}_{{\varepsilon,t_{F},t_{H}}}((S_{{\gamma^{*}}})_{{t_{F},\varepsilon t_{H}}},\gamma^{*})=\frac{\varepsilon^{{-q}}}{|Q|}{\rm vol}_{{n-r}}(P_{{\gamma^{*}}}\cap S)+O(t_{F}\varepsilon^{{-q}}+t_{H}\varepsilon^{{1-q}}).</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp25117504"><h4>Hit idp25117504</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 78</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/114/f045306.xhtml#idp25117504</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:711969(000068%) VariableMap:[Gm, boldsymbol x 6, N x 3, U, textstyle x 3, \ x 18, _ x 7, left x 2, ^ x 4, right x 2, + x 2, l x 3, ( x 4, ) x 4, m, ., j, k x 4, ,, frac x 5, - x 5, 2 x 4, 1 x 6, q x 4, p x 2, :, GMm, | x 10, =] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp25117504" alttext="U^{{(N)}}_{{k,l}}:={\textstyle{\frac{1}{2m(N-1)}}}\left(|{\boldsymbol{{p}}}_{k}|^{2}+|{\boldsymbol{{p}}}_{l}|^{2}\right)-\textstyle{\frac{GMm}{N-1}}\left({{\frac{1}{|{\boldsymbol{{q}}}_{k}|}}}+{{\frac{1}{|{\boldsymbol{{q}}}_{l}|}}}\right)-Gm^{2}{\textstyle{\frac{1}{|{\boldsymbol{{q}}}_{k}-{\boldsymbol{{q}}}_{j}|}}}." display="block"><semantics id="idp25118560"><mrow id="idp25118688"><mrow id="idp25118816"><msubsup id="idp25118944"><mi id="idp25119072">U</mi><mrow id="idp25119328"><mi id="idp25119456">k</mi><mo id="idp25119712">,</mo><mi id="idp25119968">l</mi></mrow><mrow id="idp25120224"><mo id="idp25120352">(</mo><mi id="idp25120608">N</mi><mo id="idp25120864">)</mo></mrow></msubsup><mo id="idp25121120">:=</mo><mrow id="idp25121376"><mrow id="idp25121504"><mstyle id="idp25121632" displaystyle="false"><mfrac id="idp25122000"><mn id="idp25122128">1</mn><mrow id="idp25122384"><mn id="idp25122512">2</mn><mo id="idp25122768">⁢</mo><mi id="idp25123024">m</mi><mo id="idp25123280">⁢</mo><mrow id="idp25123568"><mo id="idp25123696">(</mo><mrow id="idp25123952"><mi id="idp25124080">N</mi><mo id="idp25124336">-</mo><mn id="idp25124592">1</mn></mrow><mo id="idp25124848">)</mo></mrow></mrow></mfrac></mstyle><mo id="idp25125104">⁢</mo><mrow id="idp25125392"><mo id="idp25125520">(</mo><mrow id="idp25125776"><msup id="idp25125904"><mrow id="idp25126032"><mo id="idp25126160" fence="true">|</mo><msub id="idp25126688"><mi id="idp25126816" mathvariant="bold-italic">p</mi><mi id="idp25127344">k</mi></msub><mo id="idp25127600" fence="true">|</mo></mrow><mn id="idp25128128">2</mn></msup><mo id="idp25128384">+</mo><msup id="idp25128640"><mrow id="idp25128768"><mo id="idp25128896" fence="true">|</mo><msub id="idp25129424"><mi id="idp25129552" mathvariant="bold-italic">p</mi><mi id="idp25130080">l</mi></msub><mo id="idp25130336" fence="true">|</mo></mrow><mn id="idp25130864">2</mn></msup></mrow><mo id="idp25131120">)</mo></mrow></mrow><mo id="idp25131376">-</mo><mrow id="idp25131632"><mstyle id="idp25131760" displaystyle="false"><mfrac id="idp25132160"><mrow id="idp25132288"><mi id="idp25132416">G</mi><mo id="idp25132672">⁢</mo><mi id="idp25132960">M</mi><mo id="idp25133216">⁢</mo><mi id="idp25133504">m</mi></mrow><mrow id="idp25133760"><mi id="idp25133888">N</mi><mo id="idp25134144">-</mo><mn id="idp25134400">1</mn></mrow></mfrac></mstyle><mo id="idp25134656">⁢</mo><mrow id="idp25134944"><mo id="idp25135072">(</mo><mrow id="idp25135328"><mstyle id="idp25135456" displaystyle="false"><mfrac id="idp25135856"><mn id="idp25135984">1</mn><mrow id="idp25136240"><mo id="idp25136368" fence="true">|</mo><msub id="idp25136896"><mi id="idp25137024" mathvariant="bold-italic">q</mi><mi id="idp25137552">k</mi></msub><mo id="idp25137808" fence="true">|</mo></mrow></mfrac></mstyle><mo id="idp25138336">+</mo><mstyle id="idp25138592" displaystyle="false"><mfrac id="idp25138992"><mn id="idp25139120">1</mn><mrow id="idp25139376"><mo id="idp25139504" fence="true">|</mo><msub id="idp25140032"><mi id="idp25140160" mathvariant="bold-italic">q</mi><mi id="idp25140688">l</mi></msub><mo id="idp25140944" fence="true">|</mo></mrow></mfrac></mstyle></mrow><mo id="idp25141472">)</mo></mrow></mrow><mo id="idp25141728">-</mo><mrow id="idp25141984"><mi id="idp25142112">G</mi><mo id="idp25142368">⁢</mo><msup id="idp25142656"><mi id="idp25142784">m</mi><mn id="idp25143040">2</mn></msup><mo id="idp25143296">⁢</mo><mstyle id="idp25143584" displaystyle="false"><mfrac id="idp25143984"><mn id="idp25144112">1</mn><mrow id="idp25144368"><mo id="idp25144496" fence="true">|</mo><mrow id="idp25145024"><msub id="idp25145152"><mi id="idp25145280" mathvariant="bold-italic">q</mi><mi id="idp25145808">k</mi></msub><mo id="idp25146064">-</mo><msub id="idp25146320"><mi id="idp25146448" mathvariant="bold-italic">q</mi><mi id="idp25146976">j</mi></msub></mrow><mo id="idp25147232" fence="true">|</mo></mrow></mfrac></mstyle></mrow></mrow></mrow><mo id="idp25147760">.</mo></mrow><annotation-xml id="idp25148016" encoding="MathML-Content"><apply id="idp25148416"><csymbol id="idp25148544" cd="latexml">assign</csymbol><apply id="idp25149104"><csymbol id="idp25149232" cd="ambiguous">subscript</csymbol><apply id="idp25149792"><csymbol id="idp25149920" cd="ambiguous">superscript</csymbol><ci id="idp25150480">U</ci><ci id="idp25150736">N</ci></apply><apply id="idp25150992"><list id="idp25151120"/><ci id="idp25151248">k</ci><ci id="idp25151504">l</ci></apply></apply><apply id="idp25151760"><minus id="idp25151888"/><apply id="idp25152016"><times id="idp25152144"/><apply id="idp25152272"><divide id="idp25152400"/><cn id="idp25152528" type="integer">1</cn><apply id="idp25153056"><times id="idp25153184"/><cn id="idp25153312" type="integer">2</cn><ci id="idp25153840">m</ci><apply id="idp25154096"><minus id="idp25154224"/><ci id="idp25154352">N</ci><cn id="idp25154608" type="integer">1</cn></apply></apply></apply><apply id="idp25155136"><plus id="idp25155264"/><apply id="idp25155392"><csymbol id="idp25155520" cd="ambiguous">superscript</csymbol><apply id="idp25156080"><abs id="idp25156208"/><apply id="idp25156336"><csymbol id="idp25156464" cd="ambiguous">subscript</csymbol><ci id="idp25157024">p</ci><ci id="idp25157280">k</ci></apply></apply><cn id="idp25157536" type="integer">2</cn></apply><apply id="idp25158064"><csymbol id="idp25158192" cd="ambiguous">superscript</csymbol><apply id="idp25158752"><abs id="idp25158880"/><apply id="idp25159008"><csymbol id="idp25159136" cd="ambiguous">subscript</csymbol><ci id="idp25159696">p</ci><ci id="idp25159952">l</ci></apply></apply><cn id="idp25160208" type="integer">2</cn></apply></apply></apply><apply id="idp25160736"><times id="idp25160864"/><apply id="idp25160992"><divide id="idp25161120"/><apply id="idp25161248"><times id="idp25161376"/><ci id="idp25161504">G</ci><ci id="idp25161760">M</ci><ci id="idp25162016">m</ci></apply><apply id="idp25162272"><minus id="idp25162400"/><ci id="idp25162528">N</ci><cn id="idp25162784" type="integer">1</cn></apply></apply><apply id="idp25163312"><plus id="idp25163440"/><apply id="idp25163568"><divide id="idp25163696"/><cn id="idp25163824" type="integer">1</cn><apply id="idp25164352"><abs id="idp25164480"/><apply id="idp25164608"><csymbol id="idp25164736" cd="ambiguous">subscript</csymbol><ci id="idp25165296">q</ci><ci id="idp25165552">k</ci></apply></apply></apply><apply id="idp25165808"><divide id="idp25165936"/><cn id="idp25166064" type="integer">1</cn><apply id="idp25166592"><abs id="idp25166720"/><apply id="idp25166848"><csymbol id="idp25166976" cd="ambiguous">subscript</csymbol><ci id="idp25167536">q</ci><ci id="idp25167792">l</ci></apply></apply></apply></apply></apply><apply id="idp25168048"><times id="idp25168176"/><ci id="idp25168304">G</ci><apply id="idp25168560"><csymbol id="idp25168688" cd="ambiguous">superscript</csymbol><ci id="idp25169248">m</ci><cn id="idp25169504" type="integer">2</cn></apply><apply id="idp25170032"><divide id="idp25170160"/><cn id="idp25170288" type="integer">1</cn><apply id="idp25170816"><abs id="idp25170944"/><apply id="idp25171072"><minus id="idp25171200"/><apply id="idp25171328"><csymbol id="idp25171456" cd="ambiguous">subscript</csymbol><ci id="idp25172016">q</ci><ci id="idp25172272">k</ci></apply><apply id="idp25172528"><csymbol id="idp25172656" cd="ambiguous">subscript</csymbol><ci id="idp25173216">q</ci><ci id="idp25173472">j</ci></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp25173728" encoding="application/x-tex">U^{{(N)}}_{{k,l}}:={\textstyle{\frac{1}{2m(N-1)}}}\left(|{\boldsymbol{{p}}}_{k}|^{2}+|{\boldsymbol{{p}}}_{l}|^{2}\right)-\textstyle{\frac{GMm}{N-1}}\left({{\frac{1}{|{\boldsymbol{{q}}}_{k}|}}}+{{\frac{1}{|{\boldsymbol{{q}}}_{l}|}}}\right)-Gm^{2}{\textstyle{\frac{1}{|{\boldsymbol{{q}}}_{k}-{\boldsymbol{{q}}}_{j}|}}}.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp25510016"><h4>Hit idp25510016</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 79</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/205/f081876.xhtml#idp25510016</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:776205(000050%) VariableMap:[f x 2, dz x 2, int x 2, leq, +, ., partial x 3, infty x 2, xx, - x 2, frac x 2, prime x 3, t x 3, displaystyle, \ x 18, _ x 10, | x 10, ^ x 7, z x 2, X x 3, y x 4, x x 7] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp25510016" alttext="\displaystyle\leq\frac{\| f^{{\prime}}\| _{\infty}}{y-x}\int _{x}^{y}|\partial _{{xx}}X^{z}_{t}|dz+|\partial _{x}X^{x}_{t}|\frac{\| f^{{\prime\prime}}\| _{\infty}}{y-x}\int _{x}^{y}|\partial _{x}X^{z}_{t}|dz." display="inline"><semantics id="idp25510960"><mrow id="idp25511088"><mrow id="idp25511216"><none id="idp25511344"/><mo id="idp25511472">≤</mo><mrow id="idp25511728"><mstyle id="idp25511856" displaystyle="true"><mfrac id="idp25512224"><msub id="idp25512352"><mrow id="idp25512480"><mo id="idp25512608" fence="true">∥</mo><msup id="idp25513168"><mi id="idp25513296">f</mi><mo id="idp25513552">′</mo></msup><mo id="idp25513840" fence="true">∥</mo></mrow><mi id="idp25514400" mathvariant="normal">∞</mi></msub><mrow id="idp25514960"><mi id="idp25515088">y</mi><mo id="idp25515344">-</mo><mi id="idp25515600">x</mi></mrow></mfrac></mstyle><mo id="idp25515856">⁢</mo><mrow id="idp25516144"><mstyle id="idp25516272" displaystyle="true"><msubsup id="idp25516672"><mo id="idp25516800">∫</mo><mi id="idp25517088">x</mi><mi id="idp25517344">y</mi></msubsup></mstyle><mrow id="idp25517600"><mrow id="idp25517728"><mo id="idp25517856" fence="true">|</mo><mrow id="idp25518384"><mrow id="idp25518512"><msub id="idp25518640"><mo id="idp25518768">∂</mo><mrow id="idp25519056"><mi id="idp25519184">x</mi><mo id="idp25519440">⁢</mo><mi id="idp25519728">x</mi></mrow></msub><mo id="idp25519984">⁡</mo><mrow id="idp25520272"><msubsup id="idp25520400"><mi id="idp25520528">X</mi><mi id="idp25520784">t</mi><mi id="idp25521040">z</mi></msubsup><mo id="idp25521296">⁢</mo><mrow id="idp25521584"><mo id="idp25521712" fence="true">|</mo><mrow id="idp25522240"><mrow id="idp25522368"><mi id="idp25522496">d</mi><mo id="idp25522752">⁢</mo><mi id="idp25523040">z</mi></mrow><mo id="idp25523296">+</mo></mrow><mo id="idp25523552" fence="true">|</mo></mrow></mrow></mrow><mo id="idp25524080">⁢</mo><mrow id="idp25524368"><msub id="idp25524496"><mo id="idp25524624">∂</mo><mi id="idp25524912">x</mi></msub><mo id="idp25525168">⁡</mo><mrow id="idp25525456"><msubsup id="idp25525584"><mi id="idp25525712">X</mi><mi id="idp25525968">t</mi><mi id="idp25526224">x</mi></msubsup><mo id="idp25526480">⁢</mo><mrow id="idp25526768"><mo id="idp25526896" fence="true">|</mo><mrow id="idp25527424"><mstyle id="idp25527552" displaystyle="true"><mfrac id="idp25527952"><msub id="idp25528080"><mrow id="idp25528208"><mo id="idp25528336" fence="true">∥</mo><msup id="idp25528896"><mi id="idp25529024">f</mi><mi id="idp25529280">′′</mi></msup><mo id="idp25529568" fence="true">∥</mo></mrow><mi id="idp25530128" mathvariant="normal">∞</mi></msub><mrow id="idp25530688"><mi id="idp25530816">y</mi><mo id="idp25531072">-</mo><mi id="idp25531328">x</mi></mrow></mfrac></mstyle><mo id="idp25531584">⁢</mo><mstyle id="idp25531872" displaystyle="true"><msubsup id="idp25532272"><mo id="idp25532400">∫</mo><mi id="idp25532688">x</mi><mi id="idp25532944">y</mi></msubsup></mstyle></mrow><mo id="idp25533200" fence="true">|</mo></mrow></mrow></mrow><mo id="idp25533728">⁢</mo><mrow id="idp25534016"><msub id="idp25534144"><mo id="idp25534272">∂</mo><mi id="idp25534560">x</mi></msub><mo id="idp25534816">⁡</mo><msubsup id="idp25535104"><mi id="idp25535232">X</mi><mi id="idp25535488">t</mi><mi id="idp25535744">z</mi></msubsup></mrow></mrow><mo id="idp25536000" fence="true">|</mo></mrow><mo id="idp25536528">⁢</mo><mi id="idp25536816">d</mi><mo id="idp25537072">⁢</mo><mi id="idp25537360">z</mi></mrow></mrow></mrow></mrow><mo id="idp25537616">.</mo></mrow><annotation-xml id="idp25537872" encoding="MathML-Content"><apply id="idp25538272"><leq id="idp25538400"/><csymbol id="idp25538528" cd="latexml">absent</csymbol><apply id="idp25539088"><times id="idp25539216"/><apply id="idp25539344"><divide id="idp25539472"/><apply id="idp25539600"><csymbol id="idp25539728" cd="ambiguous">subscript</csymbol><apply id="idp25540288"><csymbol id="idp25540416" cd="latexml">norm</csymbol><apply id="idp25540976"><csymbol id="idp25541104" cd="ambiguous">superscript</csymbol><ci id="idp25541664">f</ci><ci id="idp25541920">′</ci></apply></apply><infinity id="idp25542208"/></apply><apply id="idp25542336"><minus id="idp25542464"/><ci id="idp25542592">y</ci><ci id="idp25542848">x</ci></apply></apply><apply id="idp25543104"><apply id="idp25543232"><csymbol id="idp25543360" cd="ambiguous">superscript</csymbol><apply id="idp25543920"><csymbol id="idp25544048" cd="ambiguous">subscript</csymbol><int id="idp25544608"/><ci id="idp25544736">x</ci></apply><ci id="idp25544992">y</ci></apply><apply id="idp25545248"><times id="idp25545376"/><apply id="idp25545504"><abs id="idp25545632"/><apply id="idp25545760"><times id="idp25545888"/><apply id="idp25546016"><apply id="idp25546144"><csymbol id="idp25546272" cd="ambiguous">subscript</csymbol><partialdiff id="idp25546832"/><apply id="idp25546960"><times id="idp25547088"/><ci id="idp25547216">x</ci><ci id="idp25547472">x</ci></apply></apply><apply id="idp25547728"><times id="idp25547856"/><apply id="idp25547984"><csymbol id="idp25548112" cd="ambiguous">subscript</csymbol><apply id="idp25548672"><csymbol id="idp25548800" cd="ambiguous">superscript</csymbol><ci id="idp25549360">X</ci><ci id="idp25549616">z</ci></apply><ci id="idp25549872">t</ci></apply><apply id="idp25550128"><abs id="idp25550256"/><apply id="idp25550384"><csymbol id="idp25550512" cd="latexml">limit-from</csymbol><apply id="idp25551072"><times id="idp25551200"/><ci id="idp25551328">d</ci><ci id="idp25551584">z</ci></apply><plus id="idp25551840"/></apply></apply></apply></apply><apply id="idp25551968"><apply id="idp25552096"><csymbol id="idp25552224" cd="ambiguous">subscript</csymbol><partialdiff id="idp25552784"/><ci id="idp25552912">x</ci></apply><apply id="idp25553168"><times id="idp25553296"/><apply id="idp25553424"><csymbol id="idp25553552" cd="ambiguous">subscript</csymbol><apply id="idp25554112"><csymbol id="idp25554240" cd="ambiguous">superscript</csymbol><ci id="idp25554800">X</ci><ci id="idp25555056">x</ci></apply><ci id="idp25555312">t</ci></apply><apply id="idp25555568"><abs id="idp25555696"/><apply id="idp25555824"><times id="idp25555952"/><apply id="idp25556080"><divide id="idp25556208"/><apply id="idp25556336"><csymbol id="idp25556464" cd="ambiguous">subscript</csymbol><apply id="idp25557024"><csymbol id="idp25557152" cd="latexml">norm</csymbol><apply id="idp25557712"><csymbol id="idp25557840" cd="ambiguous">superscript</csymbol><ci id="idp25558400">f</ci><ci id="idp25558656">′′</ci></apply></apply><infinity id="idp25558944"/></apply><apply id="idp25559072"><minus id="idp25559200"/><ci id="idp25559328">y</ci><ci id="idp25559584">x</ci></apply></apply><apply id="idp25559840"><csymbol id="idp25559968" cd="ambiguous">superscript</csymbol><apply id="idp25560528"><csymbol id="idp25560656" cd="ambiguous">subscript</csymbol><int id="idp25561216"/><ci id="idp25561344">x</ci></apply><ci id="idp25561600">y</ci></apply></apply></apply></apply></apply><apply id="idp25561856"><apply id="idp25561984"><csymbol id="idp25562112" cd="ambiguous">subscript</csymbol><partialdiff id="idp25562672"/><ci id="idp25562800">x</ci></apply><apply id="idp25563056"><csymbol id="idp25563184" cd="ambiguous">subscript</csymbol><apply id="idp25563744"><csymbol id="idp25563872" cd="ambiguous">superscript</csymbol><ci id="idp25564432">X</ci><ci id="idp25564688">z</ci></apply><ci id="idp25564944">t</ci></apply></apply></apply></apply><ci id="idp25565200">d</ci><ci id="idp25565456">z</ci></apply></apply></apply></apply></annotation-xml><annotation id="idp25565712" encoding="application/x-tex">\displaystyle\leq\frac{\| f^{{\prime}}\| _{\infty}}{y-x}\int _{x}^{y}|\partial _{{xx}}X^{z}_{t}|dz+|\partial _{x}X^{x}_{t}|\frac{\| f^{{\prime\prime}}\| _{\infty}}{y-x}\int _{x}^{y}|\partial _{x}X^{z}_{t}|dz.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp26237216"><h4>Hit idp26237216</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 80</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/207/f082464.xhtml#idp26237216</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:830949(000038%) VariableMap:[E x 2, +, N x 2, ( x 5, ) x 5, ., omega x 3, - x 5, frac x 5, lambda x 3, v x 2, 2 x 9, 1 x 4, Q x 2, displaystyle, nabla x 2, 4, p x 2, \ x 22, _ x 5, left x 2, ^ x 5, | x 8, right x 2, =] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 5 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp26237216" alttext="\displaystyle=\frac{1}{\omega _{{2}}}\left|\frac{E(v)}{E(Q)}-(\omega _{{1}}\lambda^{{2}}-\omega _{{2}}\lambda^{{\frac{N(p-1)}{2}}})\right|+\frac{N(p-1)}{4}\left|\frac{\|\nabla v\| _{{2}}^{{2}}}{\|\nabla Q\| _{{2}}^{{2}}}-\lambda^{{2}}\right|." display="inline"><semantics id="idp26238192"><mrow id="idp26238320"><mrow id="idp26238448"><none id="idp26238576"/><mo id="idp26238704">=</mo><mrow id="idp26238960"><mrow id="idp26239088"><mstyle id="idp26239216" displaystyle="true"><mfrac id="idp26239584"><mn id="idp26239712">1</mn><msub id="idp26239968"><mi id="idp26240096">ω</mi><mn id="idp26240352">2</mn></msub></mfrac></mstyle><mo id="idp26240608">⁢</mo><mrow id="idp26240896"><mo id="idp26241024" fence="true">|</mo><mrow id="idp26241552"><mstyle id="idp26241680" displaystyle="true"><mfrac id="idp26242080"><mrow id="idp26242208"><mi id="idp26242336">E</mi><mo id="idp26242592">⁢</mo><mrow id="idp26242880"><mo id="idp26243008">(</mo><mi id="idp26243264">v</mi><mo id="idp26243520">)</mo></mrow></mrow><mrow id="idp26243776"><mi id="idp26243904">E</mi><mo id="idp26244160">⁢</mo><mrow id="idp26244448"><mo id="idp26244576">(</mo><mi id="idp26244832">Q</mi><mo id="idp26245088">)</mo></mrow></mrow></mfrac></mstyle><mo id="idp26245344">-</mo><mrow id="idp26245600"><mo id="idp26245728">(</mo><mrow id="idp26245984"><mrow id="idp26246112"><msub id="idp26246240"><mi id="idp26246368">ω</mi><mn id="idp26246656">1</mn></msub><mo id="idp26246912">⁢</mo><msup id="idp26247200"><mi id="idp26247328">λ</mi><mn id="idp26247616">2</mn></msup></mrow><mo id="idp26247872">-</mo><mrow id="idp26248128"><msub id="idp26248256"><mi id="idp26248384">ω</mi><mn id="idp26248672">2</mn></msub><mo id="idp26248928">⁢</mo><msup id="idp26249216"><mi id="idp26249344">λ</mi><mfrac id="idp26249632"><mrow id="idp26249760"><mi id="idp26249888">N</mi><mo id="idp26250144">⁢</mo><mrow id="idp26250432"><mo id="idp26250560">(</mo><mrow id="idp26250816"><mi id="idp26250944">p</mi><mo id="idp26251200">-</mo><mn id="idp26251456">1</mn></mrow><mo id="idp26251712">)</mo></mrow></mrow><mn id="idp26251968">2</mn></mfrac></msup></mrow></mrow><mo id="idp26252224">)</mo></mrow></mrow><mo id="idp26252480" fence="true">|</mo></mrow></mrow><mo id="idp26253008">+</mo><mrow id="idp26253264"><mstyle id="idp26253392" displaystyle="true"><mfrac id="idp26253792"><mrow id="idp26253920"><mi id="idp26254048">N</mi><mo id="idp26254304">⁢</mo><mrow id="idp26254592"><mo id="idp26254720">(</mo><mrow id="idp26254976"><mi id="idp26255104">p</mi><mo id="idp26255360">-</mo><mn id="idp26255616">1</mn></mrow><mo id="idp26255872">)</mo></mrow></mrow><mn id="idp26256128">4</mn></mfrac></mstyle><mo id="idp26256384">⁢</mo><mrow id="idp26256672"><mo id="idp26256800" fence="true">|</mo><mrow id="idp26257328"><mstyle id="idp26257456" displaystyle="true"><mfrac id="idp26257856"><msubsup id="idp26257984"><mrow id="idp26258112"><mo id="idp26258240" fence="true">∥</mo><mrow id="idp26258800"><mo id="idp26258928">∇</mo><mo id="idp26259216">⁡</mo><mi id="idp26259504">v</mi></mrow><mo id="idp26259760" fence="true">∥</mo></mrow><mn id="idp26260320">2</mn><mn id="idp26260576">2</mn></msubsup><msubsup id="idp26260832"><mrow id="idp26260960"><mo id="idp26261088" fence="true">∥</mo><mrow id="idp26261648"><mo id="idp26261776">∇</mo><mo id="idp26262064">⁡</mo><mi id="idp26262352">Q</mi></mrow><mo id="idp26262608" fence="true">∥</mo></mrow><mn id="idp26263168">2</mn><mn id="idp26263424">2</mn></msubsup></mfrac></mstyle><mo id="idp26263680">-</mo><msup id="idp26263936"><mi id="idp26264064">λ</mi><mn id="idp26264352">2</mn></msup></mrow><mo id="idp26264608" fence="true">|</mo></mrow></mrow></mrow></mrow><mo id="idp26265136">.</mo></mrow><annotation-xml id="idp26265392" encoding="MathML-Content"><apply id="idp26265792"><eq id="idp26265920"/><csymbol id="idp26266048" cd="latexml">absent</csymbol><apply id="idp26266608"><plus id="idp26266736"/><apply id="idp26266864"><times id="idp26266992"/><apply id="idp26267120"><divide id="idp26267248"/><cn id="idp26267376" type="integer">1</cn><apply id="idp26267904"><csymbol id="idp26268032" cd="ambiguous">subscript</csymbol><ci id="idp26268592">ω</ci><cn id="idp26268880" type="integer">2</cn></apply></apply><apply id="idp26269408"><abs id="idp26269536"/><apply id="idp26269664"><minus id="idp26269792"/><apply id="idp26269920"><divide id="idp26270048"/><apply id="idp26270176"><times id="idp26270304"/><ci id="idp26270432">E</ci><ci id="idp26270688">v</ci></apply><apply id="idp26270944"><times id="idp26271072"/><ci id="idp26271200">E</ci><ci id="idp26271456">Q</ci></apply></apply><apply id="idp26271712"><minus id="idp26271840"/><apply id="idp26271968"><times id="idp26272096"/><apply id="idp26272224"><csymbol id="idp26272352" cd="ambiguous">subscript</csymbol><ci id="idp26272912">ω</ci><cn id="idp26273200" type="integer">1</cn></apply><apply id="idp26273728"><csymbol id="idp26273856" cd="ambiguous">superscript</csymbol><ci id="idp26274416">λ</ci><cn id="idp26274704" type="integer">2</cn></apply></apply><apply id="idp26275232"><times id="idp26275360"/><apply id="idp26275488"><csymbol id="idp26275616" cd="ambiguous">subscript</csymbol><ci id="idp26276176">ω</ci><cn id="idp26276464" type="integer">2</cn></apply><apply id="idp26276992"><csymbol id="idp26277120" cd="ambiguous">superscript</csymbol><ci id="idp26277680">λ</ci><apply id="idp26277968"><divide id="idp26278096"/><apply id="idp26278224"><times id="idp26278352"/><ci id="idp26278480">N</ci><apply id="idp26278736"><minus id="idp26278864"/><ci id="idp26278992">p</ci><cn id="idp26279248" type="integer">1</cn></apply></apply><cn id="idp26279776" type="integer">2</cn></apply></apply></apply></apply></apply></apply></apply><apply id="idp26280304"><times id="idp26280432"/><apply id="idp26280560"><divide id="idp26280688"/><apply id="idp26280816"><times id="idp26280944"/><ci id="idp26281072">N</ci><apply id="idp26281328"><minus id="idp26281456"/><ci id="idp26281584">p</ci><cn id="idp26281840" type="integer">1</cn></apply></apply><cn id="idp26282368" type="integer">4</cn></apply><apply id="idp26282896"><abs id="idp26283024"/><apply id="idp26283152"><minus id="idp26283280"/><apply id="idp26283408"><divide id="idp26283536"/><apply id="idp26283664"><csymbol id="idp26283792" cd="ambiguous">superscript</csymbol><apply id="idp26284352"><csymbol id="idp26284480" cd="ambiguous">subscript</csymbol><apply id="idp26285040"><csymbol id="idp26285168" cd="latexml">norm</csymbol><apply id="idp26285728"><ci id="idp26285856">∇</ci><ci id="idp26286144">v</ci></apply></apply><cn id="idp26286400" type="integer">2</cn></apply><cn id="idp26286928" type="integer">2</cn></apply><apply id="idp26287456"><csymbol id="idp26287584" cd="ambiguous">superscript</csymbol><apply id="idp26288144"><csymbol id="idp26288272" cd="ambiguous">subscript</csymbol><apply id="idp26288832"><csymbol id="idp26288960" cd="latexml">norm</csymbol><apply id="idp26289520"><ci id="idp26289648">∇</ci><ci id="idp26289936">Q</ci></apply></apply><cn id="idp26290192" type="integer">2</cn></apply><cn id="idp26290720" type="integer">2</cn></apply></apply><apply id="idp26291248"><csymbol id="idp26291376" cd="ambiguous">superscript</csymbol><ci id="idp26291936">λ</ci><cn id="idp26292224" type="integer">2</cn></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp26292752" encoding="application/x-tex">\displaystyle=\frac{1}{\omega _{{2}}}\left|\frac{E(v)}{E(Q)}-(\omega _{{1}}\lambda^{{2}}-\omega _{{2}}\lambda^{{\frac{N(p-1)}{2}}})\right|+\frac{N(p-1)}{4}\left|\frac{\|\nabla v\| _{{2}}^{{2}}}{\|\nabla Q\| _{{2}}^{{2}}}-\lambda^{{2}}\right|.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp26265392"><h4>Hit idp26265392</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 81</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/63/f024985.xhtml#idp26265392</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:868036(000049%) VariableMap:[M, I, infty x 2, U x 2, \ x 18, _ x 7, ^ x 3, Z, varrho x 3, +, mu x 3, kp, ( x 2, cdot x 2, ) x 2, frac, - x 4, u, 1 x 2, 0 x 4, mathcal x 2, displaystyle, p, ; x 2, | x 6] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp26265392" alttext="\displaystyle\varrho _{0}^{{-1}}\| u_{0}-\frac{I_{\infty}}{\mu^{{kp}}M_{p}}{\mathcal{U}}(\mu;\cdot)\|+\varrho _{0}^{{-1}}|\varrho _{0}-Z_{\infty}|\|{\mathcal{U}}(\mu;\cdot)\|" display="inline"><semantics id="idp26266304"><mrow id="idp26266432"><mrow id="idp26266560"><msubsup id="idp26266688"><mi id="idp26266816">ϱ</mi><mn id="idp26267072">0</mn><mrow id="idp26267328"><mo id="idp26267456">-</mo><mn id="idp26267712">1</mn></mrow></msubsup><mo id="idp26267968">⁢</mo><mrow id="idp26268224"><mo id="idp26268352" fence="true">∥</mo><mrow id="idp26268912"><msub id="idp26269040"><mi id="idp26269168">u</mi><mn id="idp26269424">0</mn></msub><mo id="idp26269680">-</mo><mrow id="idp26269936"><mstyle id="idp26270064" displaystyle="true"><mfrac id="idp26270464"><msub id="idp26270592"><mi id="idp26270720">I</mi><mi id="idp26270976" mathvariant="normal">∞</mi></msub><mrow id="idp26271536"><msup id="idp26271664"><mi id="idp26271792">μ</mi><mrow id="idp26272080"><mi id="idp26272208">k</mi><mo id="idp26272464">⁢</mo><mi id="idp26272752">p</mi></mrow></msup><mo id="idp26273008">⁢</mo><msub id="idp26273296"><mi id="idp26273424">M</mi><mi id="idp26273680">p</mi></msub></mrow></mfrac></mstyle><mo id="idp26273936">⁢</mo><mi id="idp26274224" mathvariant="script">U</mi><mo id="idp26274752">⁢</mo><mrow id="idp26275040"><mo id="idp26275168">(</mo><mi id="idp26275424">μ</mi><mo id="idp26275712">)</mo></mrow></mrow></mrow><mo id="idp26275968" fence="true">∥</mo></mrow></mrow><mo id="idp26276528">+</mo><mrow id="idp26276784"><msubsup id="idp26276912"><mi id="idp26277040">ϱ</mi><mn id="idp26277328">0</mn><mrow id="idp26277584"><mo id="idp26277712">-</mo><mn id="idp26277968">1</mn></mrow></msubsup><mo id="idp26278224">⁢</mo><mrow id="idp26278512"><mo id="idp26278640" fence="true">|</mo><mrow id="idp26279168"><msub id="idp26279296"><mi id="idp26279424">ϱ</mi><mn id="idp26279712">0</mn></msub><mo id="idp26279968">-</mo><msub id="idp26280224"><mi id="idp26280352">Z</mi><mi id="idp26280608" mathvariant="normal">∞</mi></msub></mrow><mo id="idp26281168" fence="true">|</mo></mrow><mo id="idp26281696">⁢</mo><mrow id="idp26281984"><mo id="idp26282112" fence="true">∥</mo><mrow id="idp26282672"><mi id="idp26282800" mathvariant="script">U</mi><mo id="idp26283328">⁢</mo><mrow id="idp26283616"><mo id="idp26283744">(</mo><mi id="idp26284000">μ</mi><mo id="idp26284288">)</mo></mrow></mrow><mo id="idp26284544" fence="true">∥</mo></mrow></mrow></mrow><annotation-xml id="idp26285104" encoding="MathML-Content"><apply id="idp26285504"><plus id="idp26285632"/><apply id="idp26285760"><times id="idp26285888"/><apply id="idp26286016"><csymbol id="idp26286144" cd="ambiguous">superscript</csymbol><apply id="idp26286704"><csymbol id="idp26286832" cd="ambiguous">subscript</csymbol><ci id="idp26287392">ϱ</ci><cn id="idp26287680" type="integer">0</cn></apply><apply id="idp26288208"><minus id="idp26288336"/><cn id="idp26288464" type="integer">1</cn></apply></apply><apply id="idp26288992"><csymbol id="idp26289120" cd="latexml">norm</csymbol><apply id="idp26289680"><minus id="idp26289808"/><apply id="idp26289936"><csymbol id="idp26290064" cd="ambiguous">subscript</csymbol><ci id="idp26290624">u</ci><cn id="idp26290880" type="integer">0</cn></apply><apply id="idp26291408"><times id="idp26291536"/><apply id="idp26291664"><divide id="idp26291792"/><apply id="idp26291920"><csymbol id="idp26292048" cd="ambiguous">subscript</csymbol><ci id="idp26292608">I</ci><infinity id="idp26292864"/></apply><apply id="idp26292992"><times id="idp26293120"/><apply id="idp26293248"><csymbol id="idp26293376" cd="ambiguous">superscript</csymbol><ci id="idp26293936">μ</ci><apply id="idp26294224"><times id="idp26294352"/><ci id="idp26294480">k</ci><ci id="idp26294736">p</ci></apply></apply><apply id="idp26294992"><csymbol id="idp26295120" cd="ambiguous">subscript</csymbol><ci id="idp26295680">M</ci><ci id="idp26295936">p</ci></apply></apply></apply><ci id="idp26296192">U</ci><ci id="idp26296448">μ</ci></apply></apply></apply></apply><apply id="idp26296736"><times id="idp26296864"/><apply id="idp26296992"><csymbol id="idp26297120" cd="ambiguous">superscript</csymbol><apply id="idp26297680"><csymbol id="idp26297808" cd="ambiguous">subscript</csymbol><ci id="idp26298368">ϱ</ci><cn id="idp26298656" type="integer">0</cn></apply><apply id="idp26299184"><minus id="idp26299312"/><cn id="idp26299440" type="integer">1</cn></apply></apply><apply id="idp26299968"><abs id="idp26300096"/><apply id="idp26300224"><minus id="idp26300352"/><apply id="idp26300480"><csymbol id="idp26300608" cd="ambiguous">subscript</csymbol><ci id="idp26301168">ϱ</ci><cn id="idp26301456" type="integer">0</cn></apply><apply id="idp26301984"><csymbol id="idp26302112" cd="ambiguous">subscript</csymbol><ci id="idp26302672">Z</ci><infinity id="idp26302928"/></apply></apply></apply><apply id="idp26303056"><csymbol id="idp26303184" cd="latexml">norm</csymbol><apply id="idp26303744"><times id="idp26303872"/><ci id="idp26304000">U</ci><ci id="idp26304256">μ</ci></apply></apply></apply></apply></annotation-xml><annotation id="idp26304544" encoding="application/x-tex">\displaystyle\varrho _{0}^{{-1}}\| u_{0}-\frac{I_{\infty}}{\mu^{{kp}}M_{p}}{\mathcal{U}}(\mu;\cdot)\|+\varrho _{0}^{{-1}}|\varrho _{0}-Z_{\infty}|\|{\mathcal{U}}(\mu;\cdot)\|</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp27443856"><h4>Hit idp27443856</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 82</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/16/f006296.xhtml#idp27443856</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:997826(000070%) VariableMap:[F x 2, c, +, ( x 6, ) x 6, K x 2, frac, 2, 1 x 2, chi, \ x 4, left, _ x 3, | x 8, right, =, x x 4] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 3 Expects 1 occurences for 'infty' but has only 0 Expects 2 occurences for '-' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp27443856" alttext="\chi _{1}(|x|)=\frac{c}{|x|}\left(K_{1}(F)(|x|)+K_{2}(F)(|x|)\right)" display="block"><semantics id="idp27444656"><mrow id="idp27444784"><mrow id="idp27444912"><msub id="idp27445040"><mi id="idp27445168">χ</mi><mn id="idp27445424">1</mn></msub><mo id="idp27445680">⁢</mo><mrow id="idp27445936"><mo id="idp27446064">(</mo><mrow id="idp27446320"><mo id="idp27446448" fence="true">|</mo><mi id="idp27446976">x</mi><mo id="idp27447232" fence="true">|</mo></mrow><mo id="idp27447760">)</mo></mrow></mrow><mo id="idp27448016">=</mo><mrow id="idp27448272"><mfrac id="idp27448400"><mi id="idp27448528">c</mi><mrow id="idp27448784"><mo id="idp27448912" fence="true">|</mo><mi id="idp27449440">x</mi><mo id="idp27449696" fence="true">|</mo></mrow></mfrac><mo id="idp27450224">⁢</mo><mrow id="idp27450512"><mo id="idp27450640">(</mo><mrow id="idp27450896"><mrow id="idp27451024"><msub id="idp27451152"><mi id="idp27451280">K</mi><mn id="idp27451584">1</mn></msub><mo id="idp27451840">⁢</mo><mrow id="idp27452128"><mo id="idp27452256">(</mo><mi id="idp27452512">F</mi><mo id="idp27452768">)</mo></mrow><mo id="idp27453024">⁢</mo><mrow id="idp27453312"><mo id="idp27453440">(</mo><mrow id="idp27453696"><mo id="idp27453824" fence="true">|</mo><mi id="idp27454352">x</mi><mo id="idp27454608" fence="true">|</mo></mrow><mo id="idp27455136">)</mo></mrow></mrow><mo id="idp27455392">+</mo><mrow id="idp27455648"><msub id="idp27455776"><mi id="idp27455904">K</mi><mn id="idp27456160">2</mn></msub><mo id="idp27456416">⁢</mo><mrow id="idp27456704"><mo id="idp27456832">(</mo><mi id="idp27457088">F</mi><mo id="idp27457344">)</mo></mrow><mo id="idp27457600">⁢</mo><mrow id="idp27457888"><mo id="idp27458016">(</mo><mrow id="idp27458272"><mo id="idp27458400" fence="true">|</mo><mi id="idp27458928">x</mi><mo id="idp27459184" fence="true">|</mo></mrow><mo id="idp27459712">)</mo></mrow></mrow></mrow><mo id="idp27459968">)</mo></mrow></mrow></mrow><annotation-xml id="idp27460224" encoding="MathML-Content"><apply id="idp27460624"><eq id="idp27460752"/><apply id="idp27460880"><times id="idp27461008"/><apply id="idp27461136"><csymbol id="idp27461264" cd="ambiguous">subscript</csymbol><ci id="idp27461824">χ</ci><cn id="idp27462112" type="integer">1</cn></apply><apply id="idp27462640"><abs id="idp27462768"/><ci id="idp27462896">x</ci></apply></apply><apply id="idp27463152"><times id="idp27463280"/><apply id="idp27463408"><divide id="idp27463536"/><ci id="idp27463664">c</ci><apply id="idp27463920"><abs id="idp27464048"/><ci id="idp27464176">x</ci></apply></apply><apply id="idp27464432"><plus id="idp27464560"/><apply id="idp27464688"><times id="idp27464816"/><apply id="idp27464944"><csymbol id="idp27465072" cd="ambiguous">subscript</csymbol><ci id="idp27465632">K</ci><cn id="idp27465888" type="integer">1</cn></apply><ci id="idp27466416">F</ci><apply id="idp27466672"><abs id="idp27466800"/><ci id="idp27466928">x</ci></apply></apply><apply id="idp27467184"><times id="idp27467312"/><apply id="idp27467440"><csymbol id="idp27467568" cd="ambiguous">subscript</csymbol><ci id="idp27468128">K</ci><cn id="idp27468384" type="integer">2</cn></apply><ci id="idp27468912">F</ci><apply id="idp27469168"><abs id="idp27469296"/><ci id="idp27469424">x</ci></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp27469680" encoding="application/x-tex">\chi _{1}(|x|)=\frac{c}{|x|}\left(K_{1}(F)(|x|)+K_{2}(F)(|x|)\right)</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp27648192"><h4>Hit idp27648192</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 83</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/14/f005243.xhtml#idp27648192</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1261757(000045%) VariableMap:[A, +, (, ), m x 2, frac x 2, -, T, 2 x 2, 1 x 3, displaystyle, \ x 9, _ x 6, ^, | x 6, bigg x 2, =, x x 6] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 2 occurences for '-' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp27648192" alttext="\displaystyle=\frac{1}{\| x_{1}-x_{2}\|}\bigg|\frac{x_{m}^{T}}{\| x_{m}\|}A(x_{1}+x_{2})\bigg|" display="inline"><semantics id="idp27649024"><mrow id="idp27649152"><none id="idp27649280"/><mo id="idp27649408">=</mo><mrow id="idp27649664"><mstyle id="idp27649792" displaystyle="true"><mfrac id="idp27650160"><mn id="idp27650288">1</mn><mrow id="idp27650544"><mo id="idp27650672" fence="true">∥</mo><mrow id="idp27651200"><msub id="idp27651328"><mi id="idp27651456">x</mi><mn id="idp27651712">1</mn></msub><mo id="idp27651968">-</mo><msub id="idp27652224"><mi id="idp27652352">x</mi><mn id="idp27652608">2</mn></msub></mrow><mo id="idp27652864" fence="true">∥</mo></mrow></mfrac></mstyle><mo id="idp27653424">⁢</mo><mrow id="idp27653712"><mo id="idp27653840" fence="true">|</mo><mrow id="idp27654368"><mstyle id="idp27654496" displaystyle="true"><mfrac id="idp27654896"><msubsup id="idp27655024"><mi id="idp27655152">x</mi><mi id="idp27655408">m</mi><mi id="idp27655664">T</mi></msubsup><mrow id="idp27655920"><mo id="idp27656048" fence="true">∥</mo><msub id="idp27656608"><mi id="idp27656736">x</mi><mi id="idp27656992">m</mi></msub><mo id="idp27657248" fence="true">∥</mo></mrow></mfrac></mstyle><mo id="idp27657808">⁢</mo><mi id="idp27658096">A</mi><mo id="idp27658352">⁢</mo><mrow id="idp27658640"><mo id="idp27658768">(</mo><mrow id="idp27659024"><msub id="idp27659152"><mi id="idp27659280">x</mi><mn id="idp27659536">1</mn></msub><mo id="idp27659792">+</mo><msub id="idp27660048"><mi id="idp27660176">x</mi><mn id="idp27660432">2</mn></msub></mrow><mo id="idp27660688">)</mo></mrow></mrow><mo id="idp27660944" fence="true">|</mo></mrow></mrow></mrow><annotation-xml id="idp27661472" encoding="MathML-Content"><apply id="idp27661872"><eq id="idp27662000"/><csymbol id="idp27662128" cd="latexml">absent</csymbol><apply id="idp27662688"><times id="idp27662816"/><apply id="idp27662944"><divide id="idp27663072"/><cn id="idp27663200" type="integer">1</cn><apply id="idp27663728"><csymbol id="idp27663856" cd="latexml">norm</csymbol><apply id="idp27664416"><minus id="idp27664544"/><apply id="idp27664672"><csymbol id="idp27664800" cd="ambiguous">subscript</csymbol><ci id="idp27665360">x</ci><cn id="idp27665616" type="integer">1</cn></apply><apply id="idp27666144"><csymbol id="idp27666272" cd="ambiguous">subscript</csymbol><ci id="idp27666832">x</ci><cn id="idp27667088" type="integer">2</cn></apply></apply></apply></apply><apply id="idp27667616"><abs id="idp27667744"/><apply id="idp27667872"><times id="idp27668000"/><apply id="idp27668128"><divide id="idp27668256"/><apply id="idp27668384"><csymbol id="idp27668512" cd="ambiguous">superscript</csymbol><apply id="idp27669072"><csymbol id="idp27669200" cd="ambiguous">subscript</csymbol><ci id="idp27669760">x</ci><ci id="idp27670016">m</ci></apply><ci id="idp27670272">T</ci></apply><apply id="idp27670528"><csymbol id="idp27670656" cd="latexml">norm</csymbol><apply id="idp27671216"><csymbol id="idp27671344" cd="ambiguous">subscript</csymbol><ci id="idp27671904">x</ci><ci id="idp27672160">m</ci></apply></apply></apply><ci id="idp27672416">A</ci><apply id="idp27672672"><plus id="idp27672800"/><apply id="idp27672928"><csymbol id="idp27673056" cd="ambiguous">subscript</csymbol><ci id="idp27673616">x</ci><cn id="idp27673872" type="integer">1</cn></apply><apply id="idp27674400"><csymbol id="idp27674528" cd="ambiguous">subscript</csymbol><ci id="idp27675088">x</ci><cn id="idp27675344" type="integer">2</cn></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp27675872" encoding="application/x-tex">\displaystyle=\frac{1}{\| x_{1}-x_{2}\|}\bigg|\frac{x_{m}^{T}}{\| x_{m}\|}A(x_{1}+x_{2})\bigg|</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp27942288"><h4>Hit idp27942288</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 84</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/60/f023872.xhtml#idp27942288</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1055544(000080%) VariableMap:[dt, sum, , infty x 2, lambda x 7, W x 2, gamma x 2, times, psi x 4, \ x 49, _ x 9, left x 5, ^ x 4, right x 5, Re, text, b, c x 2, widetilde, leq, int, a x 3, delta, n x 4, + x 8, ( x 14, ) x 14, omega x 3, , x 5, - x 5, frac x 7, 2 x 5, 1 x 5, t x 4, sin, p x 2, ;, | x 12, pi x 3, =, y, x x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp27942288" alttext="\left|\int _{x}^{y}\text{Re \;}\frac{c\sin(2\omega t+\delta)p_{+}(t,\lambda)p_{-}(t,\lambda)}{(t+1)^{{\gamma}}W(\psi _{+}(\lambda),\psi _{-}(\lambda))}dt\right|\leq\frac{|c|a}{\pi|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\\ \times\left(\sum _{{n=-\infty}}^{{\infty}}|\widetilde{b}_{n}(\lambda)|\left(\frac{1}{\left|\frac{2a\omega}{\pi}+2n\right|}+\frac{1}{\left|\frac{2a\omega}{\pi}-2n\right|}\right)\right)\frac{1}{(x+1)^{{\gamma}}}," display="block"><semantics id="idp27941408"><mrow id="idp27941536"><mrow id="idp27941664"><mrow id="idp27941792"><mo id="idp27941920" fence="true">|</mo><mrow id="idp27943584"><msubsup id="idp27943712"><mo id="idp27943840">∫</mo><mi id="idp27944096">x</mi><mi id="idp27944352">y</mi></msubsup><mrow id="idp27944608"><mtext id="idp27944736">Re  </mtext><mo id="idp27945024">⁢</mo><mfrac id="idp27945312"><mrow id="idp27945440"><mi id="idp27945568">c</mi><mo id="idp27945824">⁢</mo><mrow id="idp27946112"><mi id="idp27946240">sin</mi><mo id="idp27946496">⁡</mo><mrow id="idp27946784"><mo id="idp27946912">(</mo><mrow id="idp27947168"><mrow id="idp27947296"><mn id="idp27947424">2</mn><mo id="idp27947680">⁢</mo><mi id="idp27947968">ω</mi><mo id="idp27948256">⁢</mo><mi id="idp27948544">t</mi></mrow><mo id="idp27948800">+</mo><mi id="idp27949056">δ</mi></mrow><mo id="idp27949344">)</mo></mrow></mrow><mo id="idp27949600">⁢</mo><msub id="idp27949888"><mi id="idp27950016">p</mi><mo id="idp27950272">+</mo></msub><mo id="idp27950528">⁢</mo><mrow id="idp27950816"><mo id="idp27950944">(</mo><mrow id="idp27951200"><mi id="idp27951328">t</mi><mo id="idp27951584">,</mo><mi id="idp27951840">λ</mi></mrow><mo id="idp27952128">)</mo></mrow><mo id="idp27952384">⁢</mo><msub id="idp27952672"><mi id="idp27952800">p</mi><mo id="idp27953056">-</mo></msub><mo id="idp27953312">⁢</mo><mrow id="idp27953600"><mo id="idp27953728">(</mo><mrow id="idp27953984"><mi id="idp27954112">t</mi><mo id="idp27954368">,</mo><mi id="idp27954624">λ</mi></mrow><mo id="idp27954912">)</mo></mrow></mrow><mrow id="idp27955168"><msup id="idp27955296"><mrow id="idp27955424"><mo id="idp27955552">(</mo><mrow id="idp27955808"><mi id="idp27955936">t</mi><mo id="idp27956192">+</mo><mn id="idp27956448">1</mn></mrow><mo id="idp27956704">)</mo></mrow><mi id="idp27956960">γ</mi></msup><mo id="idp27957248">⁢</mo><mi id="idp27957536">W</mi><mo id="idp27957792">⁢</mo><mrow id="idp27958080"><mo id="idp27958208">(</mo><mrow id="idp27958464"><mrow id="idp27958592"><msub id="idp27958720"><mi id="idp27958848">ψ</mi><mo id="idp27959136">+</mo></msub><mo id="idp27959392">⁢</mo><mrow id="idp27959680"><mo id="idp27959808">(</mo><mi id="idp27960064">λ</mi><mo id="idp27960352">)</mo></mrow></mrow><mo id="idp27960608">,</mo><mrow id="idp27960864"><msub id="idp27960992"><mi id="idp27961120">ψ</mi><mo id="idp27961408">-</mo></msub><mo id="idp27961664">⁢</mo><mrow id="idp27961952"><mo id="idp27962080">(</mo><mi id="idp27962336">λ</mi><mo id="idp27962624">)</mo></mrow></mrow></mrow><mo id="idp27962880">)</mo></mrow></mrow></mfrac><mo id="idp27963136">⁢</mo><mi id="idp27963424">d</mi><mo id="idp27963680">⁢</mo><mi id="idp27963968">t</mi></mrow></mrow><mo id="idp27964224" fence="true">|</mo></mrow><mo id="idp27964752">≤</mo><mrow id="idp27965040"><mrow id="idp27965168"><mfrac id="idp27965296"><mrow id="idp27965424"><mrow id="idp27965552"><mo id="idp27965680" fence="true">|</mo><mi id="idp27966208">c</mi><mo id="idp27966464" fence="true">|</mo></mrow><mo id="idp27966992">⁢</mo><mi id="idp27967280">a</mi></mrow><mrow id="idp27967536"><mi id="idp27967664">π</mi><mo id="idp27967952">⁢</mo><mrow id="idp27968240"><mo id="idp27968368" fence="true">|</mo><mrow id="idp27968896"><mi id="idp27969024">W</mi><mo id="idp27969280">⁢</mo><mrow id="idp27969568"><mo id="idp27969696">(</mo><mrow id="idp27969952"><mrow id="idp27970080"><msub id="idp27970208"><mi id="idp27970336">ψ</mi><mo id="idp27970624">+</mo></msub><mo id="idp27970880">⁢</mo><mrow id="idp27971168"><mo id="idp27971296">(</mo><mi id="idp27971552">λ</mi><mo id="idp27971840">)</mo></mrow></mrow><mo id="idp27972096">,</mo><mrow id="idp27972352"><msub id="idp27972480"><mi id="idp27972608">ψ</mi><mo id="idp27972896">-</mo></msub><mo id="idp27973152">⁢</mo><mrow id="idp27973440"><mo id="idp27973568">(</mo><mi id="idp27973824">λ</mi><mo id="idp27974112">)</mo></mrow></mrow></mrow><mo id="idp27974368">)</mo></mrow></mrow><mo id="idp27974624" fence="true">|</mo></mrow></mrow></mfrac><mo id="idp27975152">×</mo><mrow id="idp27975440"><mo id="idp27975568">(</mo><mrow id="idp27975824"><mover id="idp27975952"><munder id="idp27976080"><mo id="idp27976208" movablelimits="false">∑</mo><mrow id="idp27976768"><mi id="idp27976896">n</mi><mo id="idp27977152" movablelimits="false">=</mo><mrow id="idp27977680"><mo id="idp27977808" movablelimits="false">-</mo><mi id="idp27978336" mathvariant="normal">∞</mi></mrow></mrow></munder><mi id="idp27978896" mathvariant="normal">∞</mi></mover><mrow id="idp27979456"><mrow id="idp27979584"><mo id="idp27979712" fence="true">|</mo><mrow id="idp27980240"><msub id="idp27980368"><mover id="idp27980496" accent="true"><mi id="idp27980896">b</mi><mo id="idp27981152">~</mo></mover><mi id="idp27981408">n</mi></msub><mo id="idp27981664">⁢</mo><mrow id="idp27981952"><mo id="idp27982080">(</mo><mi id="idp27982336">λ</mi><mo id="idp27982624">)</mo></mrow></mrow><mo id="idp27982880" fence="true">|</mo></mrow><mo id="idp27983408">⁢</mo><mrow id="idp27983696"><mo id="idp27983824">(</mo><mrow id="idp27984080"><mfrac id="idp27984208"><mn id="idp27984336">1</mn><mrow id="idp27984592"><mo id="idp27984720" fence="true">|</mo><mrow id="idp27985248"><mfrac id="idp27985376"><mrow id="idp27985504"><mn id="idp27985632">2</mn><mo id="idp27985888">⁢</mo><mi id="idp27986176">a</mi><mo id="idp27986432">⁢</mo><mi id="idp27986720">ω</mi></mrow><mi id="idp27987008">π</mi></mfrac><mo id="idp27987296">+</mo><mrow id="idp27987552"><mn id="idp27987680">2</mn><mo id="idp27987936">⁢</mo><mi id="idp27988224">n</mi></mrow></mrow><mo id="idp27988480" fence="true">|</mo></mrow></mfrac><mo id="idp27989008">+</mo><mfrac id="idp27989264"><mn id="idp27989392">1</mn><mrow id="idp27989648"><mo id="idp27989776" fence="true">|</mo><mrow id="idp27990304"><mfrac id="idp27990432"><mrow id="idp27990560"><mn id="idp27990688">2</mn><mo id="idp27990944">⁢</mo><mi id="idp27991232">a</mi><mo id="idp27991488">⁢</mo><mi id="idp27991776">ω</mi></mrow><mi id="idp27992064">π</mi></mfrac><mo id="idp27992352">-</mo><mrow id="idp27992608"><mn id="idp27992736">2</mn><mo id="idp27992992">⁢</mo><mi id="idp27993280">n</mi></mrow></mrow><mo id="idp27993536" fence="true">|</mo></mrow></mfrac></mrow><mo id="idp27994064">)</mo></mrow></mrow></mrow><mo id="idp27994320">)</mo></mrow></mrow><mo id="idp27994576">⁢</mo><mfrac id="idp27994864"><mn id="idp27994992">1</mn><msup id="idp27995248"><mrow id="idp27995376"><mo id="idp27995504">(</mo><mrow id="idp27995760"><mi id="idp27995888">x</mi><mo id="idp27996144">+</mo><mn id="idp27996400">1</mn></mrow><mo id="idp27996656">)</mo></mrow><mi id="idp27996912">γ</mi></msup></mfrac></mrow></mrow><mo id="idp27997200">,</mo></mrow><annotation-xml id="idp27997456" encoding="MathML-Content"><apply id="idp27997856"><leq id="idp27997984"/><apply id="idp27998112"><abs id="idp27998240"/><apply id="idp27998368"><apply id="idp27998496"><csymbol id="idp27998624" cd="ambiguous">superscript</csymbol><apply id="idp27999184"><csymbol id="idp27999312" cd="ambiguous">subscript</csymbol><int id="idp27999872"/><ci id="idp28000000">x</ci></apply><ci id="idp28000256">y</ci></apply><apply id="idp28000512"><times id="idp28000640"/><mtext id="idp28000768">Re  </mtext><apply id="idp28001056"><divide id="idp28001184"/><apply id="idp28001312"><times id="idp28001440"/><ci id="idp28001568">c</ci><apply id="idp28001824"><sin id="idp28001952"/><apply id="idp28002080"><plus id="idp28002208"/><apply id="idp28002336"><times id="idp28002464"/><cn id="idp28002592" type="integer">2</cn><ci id="idp28003120">ω</ci><ci id="idp28003408">t</ci></apply><ci id="idp28003664">δ</ci></apply></apply><apply id="idp28003952"><csymbol id="idp28004080" cd="ambiguous">subscript</csymbol><ci id="idp28004640">p</ci><plus id="idp28004896"/></apply><apply id="idp28005024"><interval id="idp28005152" closure="open"/><ci id="idp28005552">t</ci><ci id="idp28005808">λ</ci></apply><apply id="idp28006096"><csymbol id="idp28006224" cd="ambiguous">subscript</csymbol><ci id="idp28006784">p</ci><minus id="idp28007040"/></apply><apply id="idp28007168"><interval id="idp28007296" closure="open"/><ci id="idp28007696">t</ci><ci id="idp28007952">λ</ci></apply></apply><apply id="idp28008240"><times id="idp28008368"/><apply id="idp28008496"><csymbol id="idp28008624" cd="ambiguous">superscript</csymbol><apply id="idp28009184"><plus id="idp28009312"/><ci id="idp28009440">t</ci><cn id="idp28009696" type="integer">1</cn></apply><ci id="idp28010224">γ</ci></apply><ci id="idp28010512">W</ci><apply id="idp28010768"><interval id="idp28010896" closure="open"/><apply id="idp28011296"><times id="idp28011424"/><apply id="idp28011552"><csymbol id="idp28011680" cd="ambiguous">subscript</csymbol><ci id="idp28012240">ψ</ci><plus id="idp28012528"/></apply><ci id="idp28012656">λ</ci></apply><apply id="idp28012944"><times id="idp28013072"/><apply id="idp28013200"><csymbol id="idp28013328" cd="ambiguous">subscript</csymbol><ci id="idp28013888">ψ</ci><minus id="idp28014176"/></apply><ci id="idp28014304">λ</ci></apply></apply></apply></apply><ci id="idp28014592">d</ci><ci id="idp28014848">t</ci></apply></apply></apply><apply id="idp28015104"><times id="idp28015232"/><apply id="idp28015360"><times id="idp28015488"/><apply id="idp28015616"><divide id="idp28015744"/><apply id="idp28015872"><times id="idp28016000"/><apply id="idp28016128"><abs id="idp28016256"/><ci id="idp28016384">c</ci></apply><ci id="idp28016640">a</ci></apply><apply id="idp28016896"><times id="idp28017024"/><ci id="idp28017152">π</ci><apply id="idp28017440"><abs id="idp28017568"/><apply id="idp28017696"><times id="idp28017824"/><ci id="idp28017952">W</ci><apply id="idp28018208"><interval id="idp28018336" closure="open"/><apply id="idp28018736"><times id="idp28018864"/><apply id="idp28018992"><csymbol id="idp28019120" cd="ambiguous">subscript</csymbol><ci id="idp28019680">ψ</ci><plus id="idp28019968"/></apply><ci id="idp28020096">λ</ci></apply><apply id="idp28020384"><times id="idp28020512"/><apply id="idp28020640"><csymbol id="idp28020768" cd="ambiguous">subscript</csymbol><ci id="idp28021328">ψ</ci><minus id="idp28021616"/></apply><ci id="idp28021744">λ</ci></apply></apply></apply></apply></apply></apply><apply id="idp28022032"><apply id="idp28022160"><csymbol id="idp28022288" cd="ambiguous">superscript</csymbol><apply id="idp28022848"><csymbol id="idp28022976" cd="ambiguous">subscript</csymbol><sum id="idp28023536"/><apply id="idp28023664"><eq id="idp28023792"/><ci id="idp28023920">n</ci><apply id="idp28024176"><minus id="idp28024304"/><infinity id="idp28024432"/></apply></apply></apply><infinity id="idp28024560"/></apply><apply id="idp28024688"><times id="idp28024816"/><apply id="idp28024944"><abs id="idp28025072"/><apply id="idp28025200"><times id="idp28025328"/><apply id="idp28025456"><csymbol id="idp28025584" cd="ambiguous">subscript</csymbol><apply id="idp28026144"><ci id="idp28026272">~</ci><ci id="idp28026528">b</ci></apply><ci id="idp28026784">n</ci></apply><ci id="idp28027040">λ</ci></apply></apply><apply id="idp28027328"><plus id="idp28027456"/><apply id="idp28027584"><divide id="idp28027712"/><cn id="idp28027840" type="integer">1</cn><apply id="idp28028368"><abs id="idp28028496"/><apply id="idp28028624"><plus id="idp28028752"/><apply id="idp28028880"><divide id="idp28029008"/><apply id="idp28029136"><times id="idp28029264"/><cn id="idp28029392" type="integer">2</cn><ci id="idp28029920">a</ci><ci id="idp28030176">ω</ci></apply><ci id="idp28030464">π</ci></apply><apply id="idp28030752"><times id="idp28030880"/><cn id="idp28031008" type="integer">2</cn><ci id="idp28031536">n</ci></apply></apply></apply></apply><apply id="idp28031792"><divide id="idp28031920"/><cn id="idp28032048" type="integer">1</cn><apply id="idp28032576"><abs id="idp28032704"/><apply id="idp28032832"><minus id="idp28032960"/><apply id="idp28033088"><divide id="idp28033216"/><apply id="idp28033344"><times id="idp28033472"/><cn id="idp28033600" type="integer">2</cn><ci id="idp28034128">a</ci><ci id="idp28034384">ω</ci></apply><ci id="idp28034672">π</ci></apply><apply id="idp28034960"><times id="idp28035088"/><cn id="idp28035216" type="integer">2</cn><ci id="idp28035744">n</ci></apply></apply></apply></apply></apply></apply></apply></apply><apply id="idp28036000"><divide id="idp28036128"/><cn id="idp28036256" type="integer">1</cn><apply id="idp28036784"><csymbol id="idp28036912" cd="ambiguous">superscript</csymbol><apply id="idp28037472"><plus id="idp28037600"/><ci id="idp28037728">x</ci><cn id="idp28037984" type="integer">1</cn></apply><ci id="idp28038512">γ</ci></apply></apply></apply></apply></annotation-xml><annotation id="idp28038800" encoding="application/x-tex">\left|\int _{x}^{y}\text{Re \;}\frac{c\sin(2\omega t+\delta)p_{+}(t,\lambda)p_{-}(t,\lambda)}{(t+1)^{{\gamma}}W(\psi _{+}(\lambda),\psi _{-}(\lambda))}dt\right|\leq\frac{|c|a}{\pi|W(\psi _{+}(\lambda),\psi _{-}(\lambda))|}\\ \times\left(\sum _{{n=-\infty}}^{{\infty}}|\widetilde{b}_{n}(\lambda)|\left(\frac{1}{\left|\frac{2a\omega}{\pi}+2n\right|}+\frac{1}{\left|\frac{2a\omega}{\pi}-2n\right|}\right)\right)\frac{1}{(x+1)^{{\gamma}}},</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp28025216"><h4>Hit idp28025216</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 85</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/204/f081530.xhtml#idp28025216</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1083591(000089%) VariableMap:[sum x 2, + x 3, kq, beta x 2, j x 6, k x 3, infty x 2, ,, frac, - x 2, 1 x 3, alpha x 2, \ x 9, _ x 7, ^ x 2, | x 4, = x 2, <] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp28025216" alttext="\sum _{{j=k}}^{{\infty}}|\alpha _{{j+1}}-\alpha _{j}|+\sum _{{j=k}}^{{\infty}}|\beta _{{j+1}}-\beta _{j}|<\frac{1}{kq_{k}}," display="inline"><semantics id="idp28024992"><mrow id="idp28026080"><mrow id="idp28026208"><mrow id="idp28026336"><mrow id="idp28026464"><msubsup id="idp28026592"><mo id="idp28026720">∑</mo><mrow id="idp28026976"><mi id="idp28027104">j</mi><mo id="idp28027360">=</mo><mi id="idp28027616">k</mi></mrow><mi id="idp28027872" mathvariant="normal">∞</mi></msubsup><mrow id="idp28028368"><mo id="idp28028496" fence="true">|</mo><mrow id="idp28028992"><msub id="idp28029120"><mi id="idp28029248">α</mi><mrow id="idp28029504"><mi id="idp28029632">j</mi><mo id="idp28029888">+</mo><mn id="idp28030144">1</mn></mrow></msub><mo id="idp28030400">-</mo><msub id="idp28030656"><mi id="idp28030784">α</mi><mi id="idp28031072">j</mi></msub></mrow><mo id="idp28031328" fence="true">|</mo></mrow></mrow><mo id="idp28031856">+</mo><mrow id="idp28032112"><msubsup id="idp28032240"><mo id="idp28032368">∑</mo><mrow id="idp28032656"><mi id="idp28032784">j</mi><mo id="idp28033040">=</mo><mi id="idp28033296">k</mi></mrow><mi id="idp28033552" mathvariant="normal">∞</mi></msubsup><mrow id="idp28034112"><mo id="idp28034240" fence="true">|</mo><mrow id="idp28034768"><msub id="idp28034896"><mi id="idp28035024">β</mi><mrow id="idp28035312"><mi id="idp28035440">j</mi><mo id="idp28035696">+</mo><mn id="idp28035952">1</mn></mrow></msub><mo id="idp28036208">-</mo><msub id="idp28036464"><mi id="idp28036592">β</mi><mi id="idp28036880">j</mi></msub></mrow><mo id="idp28037136" fence="true">|</mo></mrow></mrow></mrow><mo id="idp28037664"><</mo><mfrac id="idp28037952"><mn id="idp28038080">1</mn><mrow id="idp28038336"><mi id="idp28038464">k</mi><mo id="idp28038720">⁢</mo><msub id="idp28039008"><mi id="idp28039136">q</mi><mi id="idp28039392">k</mi></msub></mrow></mfrac></mrow><mo id="idp28039648">,</mo></mrow><annotation-xml id="idp28039904" encoding="MathML-Content"><apply id="idp28040304"><lt id="idp28040432"/><apply id="idp28040560"><plus id="idp28040688"/><apply id="idp28040816"><apply id="idp28040944"><csymbol id="idp28041072" cd="ambiguous">superscript</csymbol><apply id="idp28041632"><csymbol id="idp28041760" cd="ambiguous">subscript</csymbol><sum id="idp28042320"/><apply id="idp28042448"><eq id="idp28042576"/><ci id="idp28042704">j</ci><ci id="idp28042960">k</ci></apply></apply><infinity id="idp28043216"/></apply><apply id="idp28043344"><abs id="idp28043472"/><apply id="idp28043600"><minus id="idp28043728"/><apply id="idp28043856"><csymbol id="idp28043984" cd="ambiguous">subscript</csymbol><ci id="idp28044544">α</ci><apply id="idp28044832"><plus id="idp28044960"/><ci id="idp28045088">j</ci><cn id="idp28045344" type="integer">1</cn></apply></apply><apply id="idp28045872"><csymbol id="idp28046000" cd="ambiguous">subscript</csymbol><ci id="idp28046560">α</ci><ci id="idp28046848">j</ci></apply></apply></apply></apply><apply id="idp28047104"><apply id="idp28047232"><csymbol id="idp28047360" cd="ambiguous">superscript</csymbol><apply id="idp28047920"><csymbol id="idp28048048" cd="ambiguous">subscript</csymbol><sum id="idp28048608"/><apply id="idp28048736"><eq id="idp28048864"/><ci id="idp28048992">j</ci><ci id="idp28049248">k</ci></apply></apply><infinity id="idp28049504"/></apply><apply id="idp28049632"><abs id="idp28049760"/><apply id="idp28049888"><minus id="idp28050016"/><apply id="idp28050144"><csymbol id="idp28050272" cd="ambiguous">subscript</csymbol><ci id="idp28050832">β</ci><apply id="idp28051120"><plus id="idp28051248"/><ci id="idp28051376">j</ci><cn id="idp28051632" type="integer">1</cn></apply></apply><apply id="idp28052160"><csymbol id="idp28052288" cd="ambiguous">subscript</csymbol><ci id="idp28052848">β</ci><ci id="idp28053136">j</ci></apply></apply></apply></apply></apply><apply id="idp28053392"><divide id="idp28053520"/><cn id="idp28053648" type="integer">1</cn><apply id="idp28054176"><times id="idp28054304"/><ci id="idp28054432">k</ci><apply id="idp28054688"><csymbol id="idp28054816" cd="ambiguous">subscript</csymbol><ci id="idp28055376">q</ci><ci id="idp28055632">k</ci></apply></apply></apply></apply></annotation-xml><annotation id="idp28055888" encoding="application/x-tex">\sum _{{j=k}}^{{\infty}}|\alpha _{{j+1}}-\alpha _{j}|+\sum _{{j=k}}^{{\infty}}|\beta _{{j+1}}-\beta _{j}|<\frac{1}{kq_{k}},</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp2862304"><h4>Hit idp2862304</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 86</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/202/f080528.xhtml#idp2862304</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:350932(000023%) VariableMap:[theta x 2, A x 2, B x 2, ., omega x 2, and, mbox, frac x 4, - x 4, 2 x 4, 1 x 4, quad x 2, r x 2, q x 4, p x 2, \ x 19, left x 4, _ x 8, | x 16, right x 4, = x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp2862304" alttext="|A|\left|\frac{p_{1}}{q_{1}}-\theta\right|=|B|\left|\frac{r_{1}}{q_{1}}-\omega\right|\quad\mbox{and}\quad|A|\left|\frac{p_{2}}{q_{2}}-\theta\right|=|B|\left|\frac{r_{2}}{q_{2}}-\omega\right|." display="block"><semantics id="idp2863232"><mrow id="idp2863360"><mrow id="idp2863488"><mrow id="idp2863616"><mrow id="idp2863744"><mrow id="idp2863872"><mo id="idp2864000" fence="true">|</mo><mi id="idp2864496">A</mi><mo id="idp2864752" fence="true">|</mo></mrow><mo id="idp2865248">⁢</mo><mrow id="idp2865536"><mo id="idp2865664" fence="true">|</mo><mrow id="idp2866192"><mfrac id="idp2866320"><msub id="idp2866448"><mi id="idp2866576">p</mi><mn id="idp2866832">1</mn></msub><msub id="idp2867088"><mi id="idp2867216">q</mi><mn id="idp2867472">1</mn></msub></mfrac><mo id="idp2867728">-</mo><mi id="idp2867984">θ</mi></mrow><mo id="idp2868272" fence="true">|</mo></mrow></mrow><mo id="idp2868800">=</mo><mrow id="idp2869056"><mrow id="idp2869184"><mrow id="idp2869312"><mo id="idp2869440" fence="true">|</mo><mi id="idp2869968">B</mi><mo id="idp2870224" fence="true">|</mo></mrow><mo id="idp2870752">⁢</mo><mrow id="idp2871040"><mo id="idp2871168" fence="true">|</mo><mrow id="idp2871696"><mfrac id="idp2871824"><msub id="idp2871952"><mi id="idp2872080">r</mi><mn id="idp2872336">1</mn></msub><msub id="idp2872592"><mi id="idp2872720">q</mi><mn id="idp2872976">1</mn></msub></mfrac><mo id="idp2873232">-</mo><mi id="idp2873488">ω</mi></mrow><mo id="idp2873776" fence="true">|</mo></mrow></mrow><mo id="idp2874304" separator="true"> </mo><mtext id="idp2874864">and</mtext></mrow></mrow><mo id="idp2875120" separator="true"> </mo><mrow id="idp2875680"><mrow id="idp2875808"><mrow id="idp2875936"><mo id="idp2876064" fence="true">|</mo><mi id="idp2876592">A</mi><mo id="idp2876848" fence="true">|</mo></mrow><mo id="idp2877376">⁢</mo><mrow id="idp2877664"><mo id="idp2877792" fence="true">|</mo><mrow id="idp2878320"><mfrac id="idp2878448"><msub id="idp2878576"><mi id="idp2878704">p</mi><mn id="idp2878960">2</mn></msub><msub id="idp2879216"><mi id="idp2879344">q</mi><mn id="idp2879600">2</mn></msub></mfrac><mo id="idp2879856">-</mo><mi id="idp2880112">θ</mi></mrow><mo id="idp2880400" fence="true">|</mo></mrow></mrow><mo id="idp2880928">=</mo><mrow id="idp2881184"><mrow id="idp2881312"><mo id="idp2881440" fence="true">|</mo><mi id="idp2881968">B</mi><mo id="idp2882224" fence="true">|</mo></mrow><mo id="idp2882752">⁢</mo><mrow id="idp2883040"><mo id="idp2883168" fence="true">|</mo><mrow id="idp2883696"><mfrac id="idp2883824"><msub id="idp2883952"><mi id="idp2884080">r</mi><mn id="idp2884336">2</mn></msub><msub id="idp2884592"><mi id="idp2884720">q</mi><mn id="idp2884976">2</mn></msub></mfrac><mo id="idp2885232">-</mo><mi id="idp2885488">ω</mi></mrow><mo id="idp2885776" fence="true">|</mo></mrow></mrow></mrow></mrow><mo id="idp2886304">.</mo></mrow><annotation-xml id="idp2886560" encoding="MathML-Content"><apply id="idp2886960"><csymbol id="idp2887088" cd="ambiguous" name="formulae-sequence"/><apply id="idp2887760"><eq id="idp2887888"/><apply id="idp2888016"><times id="idp2888144"/><apply id="idp2888272"><abs id="idp2888400"/><ci id="idp2888528">A</ci></apply><apply id="idp2888784"><abs id="idp2888912"/><apply id="idp2889040"><minus id="idp2889168"/><apply id="idp2889296"><divide id="idp2889424"/><apply id="idp2889552"><csymbol id="idp2889680" cd="ambiguous">subscript</csymbol><ci id="idp2890240">p</ci><cn id="idp2890496" type="integer">1</cn></apply><apply id="idp2891024"><csymbol id="idp2891152" cd="ambiguous">subscript</csymbol><ci id="idp2891712">q</ci><cn id="idp2891968" type="integer">1</cn></apply></apply><ci id="idp2892496">θ</ci></apply></apply></apply><apply id="idp2892784"><list id="idp2892912"/><apply id="idp2893040"><times id="idp2893168"/><apply id="idp2893296"><abs id="idp2893424"/><ci id="idp2893552">B</ci></apply><apply id="idp2893808"><abs id="idp2893936"/><apply id="idp2894064"><minus id="idp2894192"/><apply id="idp2894320"><divide id="idp2894448"/><apply id="idp2894576"><csymbol id="idp2894704" cd="ambiguous">subscript</csymbol><ci id="idp2895264">r</ci><cn id="idp2895520" type="integer">1</cn></apply><apply id="idp2896048"><csymbol id="idp2896176" cd="ambiguous">subscript</csymbol><ci id="idp2896736">q</ci><cn id="idp2896992" type="integer">1</cn></apply></apply><ci id="idp2897520">ω</ci></apply></apply></apply><mtext id="idp2897808">and</mtext></apply></apply><apply id="idp2898064"><eq id="idp2898192"/><apply id="idp2898320"><times id="idp2898448"/><apply id="idp2898576"><abs id="idp2898704"/><ci id="idp2898832">A</ci></apply><apply id="idp2899088"><abs id="idp2899216"/><apply id="idp2899344"><minus id="idp2899472"/><apply id="idp2899600"><divide id="idp2899728"/><apply id="idp2899856"><csymbol id="idp2899984" cd="ambiguous">subscript</csymbol><ci id="idp2900544">p</ci><cn id="idp2900800" type="integer">2</cn></apply><apply id="idp2901328"><csymbol id="idp2901456" cd="ambiguous">subscript</csymbol><ci id="idp2902016">q</ci><cn id="idp2902272" type="integer">2</cn></apply></apply><ci id="idp2902800">θ</ci></apply></apply></apply><apply id="idp2903088"><times id="idp2903216"/><apply id="idp2903344"><abs id="idp2903472"/><ci id="idp2903600">B</ci></apply><apply id="idp2903856"><abs id="idp2903984"/><apply id="idp2904112"><minus id="idp2904240"/><apply id="idp2904368"><divide id="idp2904496"/><apply id="idp2904624"><csymbol id="idp2904752" cd="ambiguous">subscript</csymbol><ci id="idp2905312">r</ci><cn id="idp2905568" type="integer">2</cn></apply><apply id="idp2906096"><csymbol id="idp2906224" cd="ambiguous">subscript</csymbol><ci id="idp2906784">q</ci><cn id="idp2907040" type="integer">2</cn></apply></apply><ci id="idp2907568">ω</ci></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp2907856" encoding="application/x-tex">|A|\left|\frac{p_{1}}{q_{1}}-\theta\right|=|B|\left|\frac{r_{1}}{q_{1}}-\omega\right|\quad\mbox{and}\quad|A|\left|\frac{p_{2}}{q_{2}}-\theta\right|=|B|\left|\frac{r_{2}}{q_{2}}-\omega\right|.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp29097248"><h4>Hit idp29097248</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 87</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/114/f045366.xhtml#idp29097248</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1242033(000065%) VariableMap:[E, sum, , infty, dfrac x 3, P, \ x 31, left, _ x 18, ^ x 10, right, qt x 3, prod, leq x 2, n x 7, mu x 14, + x 2, ( x 10, cdot, ) x 10, j x 9, in, i x 9, - x 12, prime, 1 x 5, t x 3, q x 2, :, | x 4, z x 3, = x 2, <] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp29097248" alttext="E_{q}(z):=(-z)_{{\infty^{n}}}=\sum _{{\mu\in P_{n}}}\dfrac{z^{{|\mu|}}q^{{n(\mu^{{\prime}})}}t^{{n(\mu)+(1-n)|\mu|}}}{(qt^{{n-1}})_{\mu}}\\ \cdot\prod _{{1\leq i<j\leq n}}\left\{\dfrac{(qt^{{j-i}})_{{\mu _{i}-\mu _{j}}}}{(qt^{{j-i-1}})_{{\mu _{i}-\mu _{j}}}}\dfrac{(t^{{j-i+1}})_{{\mu _{i}-\mu _{j}}}}{(t^{{j-i}})_{{\mu _{i}-\mu _{j}}}}\right\}" display="block"><semantics id="idp29096800"><mrow id="idp29096928"><mrow id="idp29097056"><msub id="idp29098336"><mi id="idp29098464">E</mi><mi id="idp29098720">q</mi></msub><mo id="idp29098976">⁢</mo><mrow id="idp29099232"><mo id="idp29099360">(</mo><mi id="idp29099616">z</mi><mo id="idp29099872">)</mo></mrow></mrow><mo id="idp29100128">:=</mo><msub id="idp29100384"><mrow id="idp29100512"><mo id="idp29100640">(</mo><mrow id="idp29100896"><mo id="idp29101024">-</mo><mi id="idp29101280">z</mi></mrow><mo id="idp29101536">)</mo></mrow><msup id="idp29101792"><mi id="idp29101920" mathvariant="normal">∞</mi><mi id="idp29102448">n</mi></msup></msub><mo id="idp29102704">=</mo><mrow id="idp29102960"><munder id="idp29103088"><mo id="idp29103216" movablelimits="false">∑</mo><mrow id="idp29103776"><mi id="idp29103904">μ</mi><mo id="idp29104192">∈</mo><msub id="idp29104480"><mi id="idp29104608">P</mi><mi id="idp29104864">n</mi></msub></mrow></munder><mrow id="idp29105120"><mfrac id="idp29105248"><mrow id="idp29105376"><msup id="idp29105504"><mi id="idp29105632">z</mi><mrow id="idp29105888"><mo id="idp29106016" fence="true">|</mo><mi id="idp29106544">μ</mi><mo id="idp29106832" fence="true">|</mo></mrow></msup><mo id="idp29107360">⁢</mo><msup id="idp29107648"><mi id="idp29107776">q</mi><mrow id="idp29108032"><mi id="idp29108160">n</mi><mo id="idp29108416">⁢</mo><mrow id="idp29108704"><mo id="idp29108832">(</mo><msup id="idp29109088"><mi id="idp29109216">μ</mi><mo id="idp29109504">′</mo></msup><mo id="idp29109792">)</mo></mrow></mrow></msup><mo id="idp29110048">⁢</mo><msup id="idp29110336"><mi id="idp29110464">t</mi><mrow id="idp29110720"><mrow id="idp29110848"><mi id="idp29110976">n</mi><mo id="idp29111232">⁢</mo><mrow id="idp29111520"><mo id="idp29111648">(</mo><mi id="idp29111904">μ</mi><mo id="idp29112192">)</mo></mrow></mrow><mo id="idp29112448">+</mo><mrow id="idp29112704"><mrow id="idp29112832"><mo id="idp29112960">(</mo><mrow id="idp29113216"><mn id="idp29113344">1</mn><mo id="idp29113600">-</mo><mi id="idp29113856">n</mi></mrow><mo id="idp29114112">)</mo></mrow><mo id="idp29114368">⁢</mo><mrow id="idp29114656"><mo id="idp29114784" fence="true">|</mo><mi id="idp29115312">μ</mi><mo id="idp29115600" fence="true">|</mo></mrow></mrow></mrow></msup></mrow><msub id="idp29116128"><mrow id="idp29116256"><mo id="idp29116384">(</mo><mrow id="idp29116640"><mi id="idp29116768">q</mi><mo id="idp29117024">⁢</mo><msup id="idp29117312"><mi id="idp29117440">t</mi><mrow id="idp29117696"><mi id="idp29117824">n</mi><mo id="idp29118080">-</mo><mn id="idp29118336">1</mn></mrow></msup></mrow><mo id="idp29118592">)</mo></mrow><mi id="idp29118848">μ</mi></msub></mfrac><mo id="idp29119136">⋅</mo><mrow id="idp29119424"><munder id="idp29119552"><mo id="idp29119680" movablelimits="false">∏</mo><mrow id="idp29120240"><mn id="idp29120368">1</mn><mo id="idp29120624">≤</mo><mi id="idp29120912">i</mi><mo id="idp29121168"><</mo><mi id="idp29121456">j</mi><mo id="idp29121712">≤</mo><mi id="idp29122000">n</mi></mrow></munder><mrow id="idp29122256"><mo id="idp29122384">{</mo><mrow id="idp29122640"><mfrac id="idp29122768"><msub id="idp29122896"><mrow id="idp29123024"><mo id="idp29123152">(</mo><mrow id="idp29123408"><mi id="idp29123536">q</mi><mo id="idp29123792">⁢</mo><msup id="idp29124080"><mi id="idp29124208">t</mi><mrow id="idp29124464"><mi id="idp29124592">j</mi><mo id="idp29124848">-</mo><mi id="idp29125104">i</mi></mrow></msup></mrow><mo id="idp29125360">)</mo></mrow><mrow id="idp29125616"><msub id="idp29125744"><mi id="idp29125872">μ</mi><mi id="idp29126160">i</mi></msub><mo id="idp29126416">-</mo><msub id="idp29126672"><mi id="idp29126800">μ</mi><mi id="idp29127088">j</mi></msub></mrow></msub><msub id="idp29127344"><mrow id="idp29127472"><mo id="idp29127600">(</mo><mrow id="idp29127856"><mi id="idp29127984">q</mi><mo id="idp29128240">⁢</mo><msup id="idp29128528"><mi id="idp29128656">t</mi><mrow id="idp29128912"><mi id="idp29129040">j</mi><mo id="idp29129296">-</mo><mi id="idp29129552">i</mi><mo id="idp29129808">-</mo><mn id="idp29130064">1</mn></mrow></msup></mrow><mo id="idp29130320">)</mo></mrow><mrow id="idp29130576"><msub id="idp29130704"><mi id="idp29130832">μ</mi><mi id="idp29131120">i</mi></msub><mo id="idp29131376">-</mo><msub id="idp29131632"><mi id="idp29131760">μ</mi><mi id="idp29132048">j</mi></msub></mrow></msub></mfrac><mo id="idp29132304">⁢</mo><mfrac id="idp29132592"><msub id="idp29132720"><mrow id="idp29132848"><mo id="idp29132976">(</mo><msup id="idp29133232"><mi id="idp29133360">t</mi><mrow id="idp29133616"><mi id="idp29133744">j</mi><mo id="idp29134000">-</mo><mi id="idp29134256">i</mi><mo id="idp29134512">+</mo><mn id="idp29134768">1</mn></mrow></msup><mo id="idp29135024">)</mo></mrow><mrow id="idp29135280"><msub id="idp29135408"><mi id="idp29135536">μ</mi><mi id="idp29135824">i</mi></msub><mo id="idp29136080">-</mo><msub id="idp29136336"><mi id="idp29136464">μ</mi><mi id="idp29136752">j</mi></msub></mrow></msub><msub id="idp29137008"><mrow id="idp29137136"><mo id="idp29137264">(</mo><msup id="idp29137520"><mi id="idp29137648">t</mi><mrow id="idp29137904"><mi id="idp29138032">j</mi><mo id="idp29138288">-</mo><mi id="idp29138544">i</mi></mrow></msup><mo id="idp29138800">)</mo></mrow><mrow id="idp29139056"><msub id="idp29139184"><mi id="idp29139312">μ</mi><mi id="idp29139600">i</mi></msub><mo id="idp29139856">-</mo><msub id="idp29140112"><mi id="idp29140240">μ</mi><mi id="idp29140528">j</mi></msub></mrow></msub></mfrac></mrow><mo id="idp29140784">}</mo></mrow></mrow></mrow></mrow></mrow><annotation-xml id="idp29141040" encoding="MathML-Content"><apply id="idp29141440"><and id="idp29141568"/><apply id="idp29141696"><csymbol id="idp29141824" cd="latexml">assign</csymbol><apply id="idp29142384"><times id="idp29142512"/><apply id="idp29142640"><csymbol id="idp29142768" cd="ambiguous">subscript</csymbol><ci id="idp29143328">E</ci><ci id="idp29143584">q</ci></apply><ci id="idp29143840">z</ci></apply><apply id="S3.E57.m1.sh1h.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh1.cmml">subscript</csymbol><apply id="S3.E57.m1.sh1c.cmml"><minus id="S3.E57.m1.sh1a.cmml"/><ci id="S3.E57.m1.sh1b.cmml">z</ci></apply><apply id="S3.E57.m1.sh1g.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh1d.cmml">superscript</csymbol><infinity id="S3.E57.m1.sh1e.cmml"/><ci id="S3.E57.m1.sh1f.cmml">n</ci></apply></apply></apply><apply id="idp29148816"><eq id="idp29148944"/><share id="idp29149072" href="#S3.E57.m1.sh1.cmml"/><apply id="S3.E57.m1.sh2fp.cmml"><apply id="S3.E57.m1.sh2i.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2.cmml">subscript</csymbol><sum id="S3.E57.m1.sh2a.cmml"/><apply id="S3.E57.m1.sh2h.cmml"><in id="S3.E57.m1.sh2b.cmml"/><ci id="S3.E57.m1.sh2c.cmml">μ</ci><apply id="S3.E57.m1.sh2g.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2d.cmml">subscript</csymbol><ci id="S3.E57.m1.sh2e.cmml">P</ci><ci id="S3.E57.m1.sh2f.cmml">n</ci></apply></apply></apply><apply id="S3.E57.m1.sh2fo.cmml"><ci id="S3.E57.m1.sh2j.cmml">⋅</ci><apply id="S3.E57.m1.sh2bi.cmml"><divide id="S3.E57.m1.sh2k.cmml"/><apply id="S3.E57.m1.sh2au.cmml"><times id="S3.E57.m1.sh2l.cmml"/><apply id="S3.E57.m1.sh2r.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2m.cmml">superscript</csymbol><ci id="S3.E57.m1.sh2n.cmml">z</ci><apply id="S3.E57.m1.sh2q.cmml"><abs id="S3.E57.m1.sh2o.cmml"/><ci id="S3.E57.m1.sh2p.cmml">μ</ci></apply></apply><apply id="S3.E57.m1.sh2ab.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2s.cmml">superscript</csymbol><ci id="S3.E57.m1.sh2t.cmml">q</ci><apply id="S3.E57.m1.sh2aa.cmml"><times id="S3.E57.m1.sh2u.cmml"/><ci id="S3.E57.m1.sh2v.cmml">n</ci><apply id="S3.E57.m1.sh2z.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2w.cmml">superscript</csymbol><ci id="S3.E57.m1.sh2x.cmml">μ</ci><ci id="S3.E57.m1.sh2y.cmml">′</ci></apply></apply></apply><apply id="S3.E57.m1.sh2at.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2ac.cmml">superscript</csymbol><ci id="S3.E57.m1.sh2ad.cmml">t</ci><apply id="S3.E57.m1.sh2as.cmml"><plus id="S3.E57.m1.sh2ae.cmml"/><apply id="S3.E57.m1.sh2ai.cmml"><times id="S3.E57.m1.sh2af.cmml"/><ci id="S3.E57.m1.sh2ag.cmml">n</ci><ci id="S3.E57.m1.sh2ah.cmml">μ</ci></apply><apply id="S3.E57.m1.sh2ar.cmml"><times id="S3.E57.m1.sh2aj.cmml"/><apply id="S3.E57.m1.sh2an.cmml"><minus id="S3.E57.m1.sh2ak.cmml"/><cn type="integer" id="S3.E57.m1.sh2al.cmml">1</cn><ci id="S3.E57.m1.sh2am.cmml">n</ci></apply><apply id="S3.E57.m1.sh2aq.cmml"><abs id="S3.E57.m1.sh2ao.cmml"/><ci id="S3.E57.m1.sh2ap.cmml">μ</ci></apply></apply></apply></apply></apply><apply id="S3.E57.m1.sh2bh.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2av.cmml">subscript</csymbol><apply id="S3.E57.m1.sh2bf.cmml"><times id="S3.E57.m1.sh2aw.cmml"/><ci id="S3.E57.m1.sh2ax.cmml">q</ci><apply id="S3.E57.m1.sh2be.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2ay.cmml">superscript</csymbol><ci id="S3.E57.m1.sh2az.cmml">t</ci><apply id="S3.E57.m1.sh2bd.cmml"><minus id="S3.E57.m1.sh2ba.cmml"/><ci id="S3.E57.m1.sh2bb.cmml">n</ci><cn type="integer" id="S3.E57.m1.sh2bc.cmml">1</cn></apply></apply></apply><ci id="S3.E57.m1.sh2bg.cmml">μ</ci></apply></apply><apply id="S3.E57.m1.sh2fn.cmml"><apply id="S3.E57.m1.sh2bw.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2bj.cmml">subscript</csymbol><csymbol cd="latexml" id="S3.E57.m1.sh2bk.cmml">product</csymbol><apply id="S3.E57.m1.sh2bp.cmml"><and id="S3.E57.m1.sh2bq.cmml"/><apply id="S3.E57.m1.sh2br.cmml"><leq id="S3.E57.m1.sh2bm.cmml"/><cn type="integer" id="S3.E57.m1.sh2bl.cmml">1</cn><ci id="S3.E57.m1.sh2.sh1.cmml">i</ci></apply><apply id="S3.E57.m1.sh2bs.cmml"><lt id="S3.E57.m1.sh2bn.cmml"/><share href="#S3.E57.m1.sh2.sh1.cmml" id="S3.E57.m1.sh2bt.cmml"/><ci id="S3.E57.m1.sh2.sh2.cmml">j</ci></apply><apply id="S3.E57.m1.sh2bu.cmml"><leq id="S3.E57.m1.sh2bo.cmml"/><share href="#S3.E57.m1.sh2.sh2.cmml" id="S3.E57.m1.sh2bv.cmml"/><ci id="S3.E57.m1.sh2.sh3.cmml">n</ci></apply></apply></apply><apply id="S3.E57.m1.sh2fm.cmml"><set id="S3.E57.m1.sh2bx.cmml"/><apply id="S3.E57.m1.sh2fl.cmml"><times id="S3.E57.m1.sh2by.cmml"/><apply id="S3.E57.m1.sh2dt.cmml"><divide id="S3.E57.m1.sh2bz.cmml"/><apply id="S3.E57.m1.sh2cv.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2ca.cmml">subscript</csymbol><apply id="S3.E57.m1.sh2ck.cmml"><times id="S3.E57.m1.sh2cb.cmml"/><ci id="S3.E57.m1.sh2cc.cmml">q</ci><apply id="S3.E57.m1.sh2cj.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2cd.cmml">superscript</csymbol><ci id="S3.E57.m1.sh2ce.cmml">t</ci><apply id="S3.E57.m1.sh2ci.cmml"><minus id="S3.E57.m1.sh2cf.cmml"/><ci id="S3.E57.m1.sh2cg.cmml">j</ci><ci id="S3.E57.m1.sh2ch.cmml">i</ci></apply></apply></apply><apply id="S3.E57.m1.sh2cu.cmml"><minus id="S3.E57.m1.sh2cl.cmml"/><apply id="S3.E57.m1.sh2cp.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2cm.cmml">subscript</csymbol><ci id="S3.E57.m1.sh2cn.cmml">μ</ci><ci id="S3.E57.m1.sh2co.cmml">i</ci></apply><apply id="S3.E57.m1.sh2ct.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2cq.cmml">subscript</csymbol><ci id="S3.E57.m1.sh2cr.cmml">μ</ci><ci id="S3.E57.m1.sh2cs.cmml">j</ci></apply></apply></apply><apply id="S3.E57.m1.sh2ds.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2cw.cmml">subscript</csymbol><apply id="S3.E57.m1.sh2dh.cmml"><times id="S3.E57.m1.sh2cx.cmml"/><ci id="S3.E57.m1.sh2cy.cmml">q</ci><apply id="S3.E57.m1.sh2dg.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2cz.cmml">superscript</csymbol><ci id="S3.E57.m1.sh2da.cmml">t</ci><apply id="S3.E57.m1.sh2df.cmml"><minus id="S3.E57.m1.sh2db.cmml"/><ci id="S3.E57.m1.sh2dc.cmml">j</ci><ci id="S3.E57.m1.sh2dd.cmml">i</ci><cn type="integer" id="S3.E57.m1.sh2de.cmml">1</cn></apply></apply></apply><apply id="S3.E57.m1.sh2dr.cmml"><minus id="S3.E57.m1.sh2di.cmml"/><apply id="S3.E57.m1.sh2dm.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2dj.cmml">subscript</csymbol><ci id="S3.E57.m1.sh2dk.cmml">μ</ci><ci id="S3.E57.m1.sh2dl.cmml">i</ci></apply><apply id="S3.E57.m1.sh2dq.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2dn.cmml">subscript</csymbol><ci id="S3.E57.m1.sh2do.cmml">μ</ci><ci id="S3.E57.m1.sh2dp.cmml">j</ci></apply></apply></apply></apply><apply id="S3.E57.m1.sh2fk.cmml"><divide id="S3.E57.m1.sh2du.cmml"/><apply id="S3.E57.m1.sh2eq.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2dv.cmml">subscript</csymbol><apply id="S3.E57.m1.sh2ef.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2dw.cmml">superscript</csymbol><ci id="S3.E57.m1.sh2dx.cmml">t</ci><apply id="S3.E57.m1.sh2ee.cmml"><plus id="S3.E57.m1.sh2dy.cmml"/><apply id="S3.E57.m1.sh2ec.cmml"><minus id="S3.E57.m1.sh2dz.cmml"/><ci id="S3.E57.m1.sh2ea.cmml">j</ci><ci id="S3.E57.m1.sh2eb.cmml">i</ci></apply><cn type="integer" id="S3.E57.m1.sh2ed.cmml">1</cn></apply></apply><apply id="S3.E57.m1.sh2ep.cmml"><minus id="S3.E57.m1.sh2eg.cmml"/><apply id="S3.E57.m1.sh2ek.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2eh.cmml">subscript</csymbol><ci id="S3.E57.m1.sh2ei.cmml">μ</ci><ci id="S3.E57.m1.sh2ej.cmml">i</ci></apply><apply id="S3.E57.m1.sh2eo.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2el.cmml">subscript</csymbol><ci id="S3.E57.m1.sh2em.cmml">μ</ci><ci id="S3.E57.m1.sh2en.cmml">j</ci></apply></apply></apply><apply id="S3.E57.m1.sh2fj.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2er.cmml">subscript</csymbol><apply id="S3.E57.m1.sh2ey.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2es.cmml">superscript</csymbol><ci id="S3.E57.m1.sh2et.cmml">t</ci><apply id="S3.E57.m1.sh2ex.cmml"><minus id="S3.E57.m1.sh2eu.cmml"/><ci id="S3.E57.m1.sh2ev.cmml">j</ci><ci id="S3.E57.m1.sh2ew.cmml">i</ci></apply></apply><apply id="S3.E57.m1.sh2fi.cmml"><minus id="S3.E57.m1.sh2ez.cmml"/><apply id="S3.E57.m1.sh2fd.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2fa.cmml">subscript</csymbol><ci id="S3.E57.m1.sh2fb.cmml">μ</ci><ci id="S3.E57.m1.sh2fc.cmml">i</ci></apply><apply id="S3.E57.m1.sh2fh.cmml"><csymbol cd="ambiguous" id="S3.E57.m1.sh2fe.cmml">subscript</csymbol><ci id="S3.E57.m1.sh2ff.cmml">μ</ci><ci id="S3.E57.m1.sh2fg.cmml">j</ci></apply></apply></apply></apply></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp29240816" encoding="application/x-tex">E_{q}(z):=(-z)_{{\infty^{n}}}=\sum _{{\mu\in P_{n}}}\dfrac{z^{{|\mu|}}q^{{n(\mu^{{\prime}})}}t^{{n(\mu)+(1-n)|\mu|}}}{(qt^{{n-1}})_{\mu}}\\ \cdot\prod _{{1\leq i<j\leq n}}\left\{\dfrac{(qt^{{j-i}})_{{\mu _{i}-\mu _{j}}}}{(qt^{{j-i-1}})_{{\mu _{i}-\mu _{j}}}}\dfrac{(t^{{j-i+1}})_{{\mu _{i}-\mu _{j}}}}{(t^{{j-i}})_{{\mu _{i}-\mu _{j}}}}\right\}</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp29248304"><h4>Hit idp29248304</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 88</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/114/f045366.xhtml#idp29248304</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1257382(000065%) VariableMap:[sum, , infty, dfrac x 4, P, \ x 30, left, _ x 18, ^ x 8, right, qt x 3, prod, e, leq x 2, n x 6, mu x 13, + x 2, ( x 9, cdot, ) x 9, j x 9, in, i x 9, - x 11, 2, 1 x 6, t x 3, q, :, | x 4, z x 3, = x 2, <] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp29248304" alttext="e_{q}(z):=\dfrac{1}{(z)_{{\infty^{n}}}}=\sum _{{\mu\in P_{n}}}\dfrac{z^{{|\mu|}}t^{{2n(\mu)+(1-n)|\mu|}}}{(qt^{{n-1}})_{\mu}}\\ \cdot\prod _{{1\leq i<j\leq n}}\left\{\dfrac{(qt^{{j-i}})_{{\mu _{i}-\mu _{j}}}}{(qt^{{j-i-1}})_{{\mu _{i}-\mu _{j}}}}\dfrac{(t^{{j-i+1}})_{{\mu _{i}-\mu _{j}}}}{(t^{{j-i}})_{{\mu _{i}-\mu _{j}}}}\right\}" display="block"><semantics id="idp29247856"><mrow id="idp29247984"><mrow id="idp29248112"><msub id="idp29249376"><mi id="idp29249504">e</mi><mi id="idp29249760">q</mi></msub><mo id="idp29250016">⁢</mo><mrow id="idp29250272"><mo id="idp29250400">(</mo><mi id="idp29250656">z</mi><mo id="idp29250912">)</mo></mrow></mrow><mo id="idp29251168">:=</mo><mfrac id="idp29251424"><mn id="idp29251552">1</mn><msub id="idp29251808"><mrow id="idp29251936"><mo id="idp29252064">(</mo><mi id="idp29252320">z</mi><mo id="idp29252576">)</mo></mrow><msup id="idp29252832"><mi id="idp29252960" mathvariant="normal">∞</mi><mi id="idp29253456">n</mi></msup></msub></mfrac><mo id="idp29253712">=</mo><mrow id="idp29253968"><munder id="idp29254096"><mo id="idp29254224" movablelimits="false">∑</mo><mrow id="idp29254752"><mi id="idp29254880">μ</mi><mo id="idp29255168">∈</mo><msub id="idp29255456"><mi id="idp29255584">P</mi><mi id="idp29255840">n</mi></msub></mrow></munder><mrow id="idp29256096"><mfrac id="idp29256224"><mrow id="idp29256352"><msup id="idp29256480"><mi id="idp29256608">z</mi><mrow id="idp29256864"><mo id="idp29256992" fence="true">|</mo><mi id="idp29257520">μ</mi><mo id="idp29257808" fence="true">|</mo></mrow></msup><mo id="idp29258336">⁢</mo><msup id="idp29258624"><mi id="idp29258752">t</mi><mrow id="idp29259008"><mrow id="idp29259136"><mn id="idp29259264">2</mn><mo id="idp29259520">⁢</mo><mi id="idp29259808">n</mi><mo id="idp29260064">⁢</mo><mrow id="idp29260352"><mo id="idp29260480">(</mo><mi id="idp29260736">μ</mi><mo id="idp29261024">)</mo></mrow></mrow><mo id="idp29261280">+</mo><mrow id="idp29261536"><mrow id="idp29261664"><mo id="idp29261792">(</mo><mrow id="idp29262048"><mn id="idp29262176">1</mn><mo id="idp29262432">-</mo><mi id="idp29262688">n</mi></mrow><mo id="idp29262944">)</mo></mrow><mo id="idp29263200">⁢</mo><mrow id="idp29263488"><mo id="idp29263616" fence="true">|</mo><mi id="idp29264144">μ</mi><mo id="idp29264432" fence="true">|</mo></mrow></mrow></mrow></msup></mrow><msub id="idp29264960"><mrow id="idp29265088"><mo id="idp29265216">(</mo><mrow id="idp29265472"><mi id="idp29265600">q</mi><mo id="idp29265856">⁢</mo><msup id="idp29266144"><mi id="idp29266272">t</mi><mrow id="idp29266528"><mi id="idp29266656">n</mi><mo id="idp29266912">-</mo><mn id="idp29267168">1</mn></mrow></msup></mrow><mo id="idp29267424">)</mo></mrow><mi id="idp29267680">μ</mi></msub></mfrac><mo id="idp29267968">⋅</mo><mrow id="idp29268256"><munder id="idp29268384"><mo id="idp29268512" movablelimits="false">∏</mo><mrow id="idp29269072"><mn id="idp29269200">1</mn><mo id="idp29269456">≤</mo><mi id="idp29269744">i</mi><mo id="idp29270000"><</mo><mi id="idp29270288">j</mi><mo id="idp29270544">≤</mo><mi id="idp29270832">n</mi></mrow></munder><mrow id="idp29271088"><mo id="idp29271216">{</mo><mrow id="idp29271472"><mfrac id="idp29271600"><msub id="idp29271728"><mrow id="idp29271856"><mo id="idp29271984">(</mo><mrow id="idp29272240"><mi id="idp29272368">q</mi><mo id="idp29272624">⁢</mo><msup id="idp29272912"><mi id="idp29273040">t</mi><mrow id="idp29273296"><mi id="idp29273424">j</mi><mo id="idp29273680">-</mo><mi id="idp29273936">i</mi></mrow></msup></mrow><mo id="idp29274192">)</mo></mrow><mrow id="idp29274448"><msub id="idp29274576"><mi id="idp29274704">μ</mi><mi id="idp29274992">i</mi></msub><mo id="idp29275248">-</mo><msub id="idp29275504"><mi id="idp29275632">μ</mi><mi id="idp29275920">j</mi></msub></mrow></msub><msub id="idp29276176"><mrow id="idp29276304"><mo id="idp29276432">(</mo><mrow id="idp29276688"><mi id="idp29276816">q</mi><mo id="idp29277072">⁢</mo><msup id="idp29277360"><mi id="idp29277488">t</mi><mrow id="idp29277744"><mi id="idp29277872">j</mi><mo id="idp29278128">-</mo><mi id="idp29278384">i</mi><mo id="idp29278640">-</mo><mn id="idp29278896">1</mn></mrow></msup></mrow><mo id="idp29279152">)</mo></mrow><mrow id="idp29279408"><msub id="idp29279536"><mi id="idp29279664">μ</mi><mi id="idp29279952">i</mi></msub><mo id="idp29280208">-</mo><msub id="idp29280464"><mi id="idp29280592">μ</mi><mi id="idp29280880">j</mi></msub></mrow></msub></mfrac><mo id="idp29281136">⁢</mo><mfrac id="idp29281424"><msub id="idp29281552"><mrow id="idp29281680"><mo id="idp29281808">(</mo><msup id="idp29282064"><mi id="idp29282192">t</mi><mrow id="idp29282448"><mi id="idp29282576">j</mi><mo id="idp29282832">-</mo><mi id="idp29283088">i</mi><mo id="idp29283344">+</mo><mn id="idp29283600">1</mn></mrow></msup><mo id="idp29283856">)</mo></mrow><mrow id="idp29284112"><msub id="idp29284240"><mi id="idp29284368">μ</mi><mi id="idp29284656">i</mi></msub><mo id="idp29284912">-</mo><msub id="idp29285168"><mi id="idp29285296">μ</mi><mi id="idp29285584">j</mi></msub></mrow></msub><msub id="idp29285840"><mrow id="idp29285968"><mo id="idp29286096">(</mo><msup id="idp29286352"><mi id="idp29286480">t</mi><mrow id="idp29286736"><mi id="idp29286864">j</mi><mo id="idp29287120">-</mo><mi id="idp29287376">i</mi></mrow></msup><mo id="idp29287632">)</mo></mrow><mrow id="idp29287888"><msub id="idp29288016"><mi id="idp29288144">μ</mi><mi id="idp29288432">i</mi></msub><mo id="idp29288688">-</mo><msub id="idp29288944"><mi id="idp29289072">μ</mi><mi id="idp29289360">j</mi></msub></mrow></msub></mfrac></mrow><mo id="idp29289616">}</mo></mrow></mrow></mrow></mrow></mrow><annotation-xml id="idp29289872" encoding="MathML-Content"><apply id="idp29290272"><and id="idp29290400"/><apply id="idp29290528"><csymbol id="idp29290656" cd="latexml">assign</csymbol><apply id="idp29291216"><times id="idp29291344"/><apply id="idp29291472"><csymbol id="idp29291600" cd="ambiguous">subscript</csymbol><ci id="idp29292160">e</ci><ci id="idp29292416">q</ci></apply><ci id="idp29292672">z</ci></apply><apply id="S3.E58.m1.sh1i.cmml"><divide id="S3.E58.m1.sh1.cmml"/><cn type="integer" id="S3.E58.m1.sh1a.cmml">1</cn><apply id="S3.E58.m1.sh1h.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh1b.cmml">subscript</csymbol><ci id="S3.E58.m1.sh1c.cmml">z</ci><apply id="S3.E58.m1.sh1g.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh1d.cmml">superscript</csymbol><infinity id="S3.E58.m1.sh1e.cmml"/><ci id="S3.E58.m1.sh1f.cmml">n</ci></apply></apply></apply></apply><apply id="idp29298448"><eq id="idp29298576"/><share id="idp29298704" href="#S3.E58.m1.sh1.cmml"/><apply id="S3.E58.m1.sh2fg.cmml"><apply id="S3.E58.m1.sh2i.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2.cmml">subscript</csymbol><sum id="S3.E58.m1.sh2a.cmml"/><apply id="S3.E58.m1.sh2h.cmml"><in id="S3.E58.m1.sh2b.cmml"/><ci id="S3.E58.m1.sh2c.cmml">μ</ci><apply id="S3.E58.m1.sh2g.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2d.cmml">subscript</csymbol><ci id="S3.E58.m1.sh2e.cmml">P</ci><ci id="S3.E58.m1.sh2f.cmml">n</ci></apply></apply></apply><apply id="S3.E58.m1.sh2ff.cmml"><ci id="S3.E58.m1.sh2j.cmml">⋅</ci><apply id="S3.E58.m1.sh2az.cmml"><divide id="S3.E58.m1.sh2k.cmml"/><apply id="S3.E58.m1.sh2al.cmml"><times id="S3.E58.m1.sh2l.cmml"/><apply id="S3.E58.m1.sh2r.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2m.cmml">superscript</csymbol><ci id="S3.E58.m1.sh2n.cmml">z</ci><apply id="S3.E58.m1.sh2q.cmml"><abs id="S3.E58.m1.sh2o.cmml"/><ci id="S3.E58.m1.sh2p.cmml">μ</ci></apply></apply><apply id="S3.E58.m1.sh2ak.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2s.cmml">superscript</csymbol><ci id="S3.E58.m1.sh2t.cmml">t</ci><apply id="S3.E58.m1.sh2aj.cmml"><plus id="S3.E58.m1.sh2u.cmml"/><apply id="S3.E58.m1.sh2z.cmml"><times id="S3.E58.m1.sh2v.cmml"/><cn type="integer" id="S3.E58.m1.sh2w.cmml">2</cn><ci id="S3.E58.m1.sh2x.cmml">n</ci><ci id="S3.E58.m1.sh2y.cmml">μ</ci></apply><apply id="S3.E58.m1.sh2ai.cmml"><times id="S3.E58.m1.sh2aa.cmml"/><apply id="S3.E58.m1.sh2ae.cmml"><minus id="S3.E58.m1.sh2ab.cmml"/><cn type="integer" id="S3.E58.m1.sh2ac.cmml">1</cn><ci id="S3.E58.m1.sh2ad.cmml">n</ci></apply><apply id="S3.E58.m1.sh2ah.cmml"><abs id="S3.E58.m1.sh2af.cmml"/><ci id="S3.E58.m1.sh2ag.cmml">μ</ci></apply></apply></apply></apply></apply><apply id="S3.E58.m1.sh2ay.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2am.cmml">subscript</csymbol><apply id="S3.E58.m1.sh2aw.cmml"><times id="S3.E58.m1.sh2an.cmml"/><ci id="S3.E58.m1.sh2ao.cmml">q</ci><apply id="S3.E58.m1.sh2av.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2ap.cmml">superscript</csymbol><ci id="S3.E58.m1.sh2aq.cmml">t</ci><apply id="S3.E58.m1.sh2au.cmml"><minus id="S3.E58.m1.sh2ar.cmml"/><ci id="S3.E58.m1.sh2as.cmml">n</ci><cn type="integer" id="S3.E58.m1.sh2at.cmml">1</cn></apply></apply></apply><ci id="S3.E58.m1.sh2ax.cmml">μ</ci></apply></apply><apply id="S3.E58.m1.sh2fe.cmml"><apply id="S3.E58.m1.sh2bn.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2ba.cmml">subscript</csymbol><csymbol cd="latexml" id="S3.E58.m1.sh2bb.cmml">product</csymbol><apply id="S3.E58.m1.sh2bg.cmml"><and id="S3.E58.m1.sh2bh.cmml"/><apply id="S3.E58.m1.sh2bi.cmml"><leq id="S3.E58.m1.sh2bd.cmml"/><cn type="integer" id="S3.E58.m1.sh2bc.cmml">1</cn><ci id="S3.E58.m1.sh2.sh1.cmml">i</ci></apply><apply id="S3.E58.m1.sh2bj.cmml"><lt id="S3.E58.m1.sh2be.cmml"/><share href="#S3.E58.m1.sh2.sh1.cmml" id="S3.E58.m1.sh2bk.cmml"/><ci id="S3.E58.m1.sh2.sh2.cmml">j</ci></apply><apply id="S3.E58.m1.sh2bl.cmml"><leq id="S3.E58.m1.sh2bf.cmml"/><share href="#S3.E58.m1.sh2.sh2.cmml" id="S3.E58.m1.sh2bm.cmml"/><ci id="S3.E58.m1.sh2.sh3.cmml">n</ci></apply></apply></apply><apply id="S3.E58.m1.sh2fd.cmml"><set id="S3.E58.m1.sh2bo.cmml"/><apply id="S3.E58.m1.sh2fc.cmml"><times id="S3.E58.m1.sh2bp.cmml"/><apply id="S3.E58.m1.sh2dk.cmml"><divide id="S3.E58.m1.sh2bq.cmml"/><apply id="S3.E58.m1.sh2cm.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2br.cmml">subscript</csymbol><apply id="S3.E58.m1.sh2cb.cmml"><times id="S3.E58.m1.sh2bs.cmml"/><ci id="S3.E58.m1.sh2bt.cmml">q</ci><apply id="S3.E58.m1.sh2ca.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2bu.cmml">superscript</csymbol><ci id="S3.E58.m1.sh2bv.cmml">t</ci><apply id="S3.E58.m1.sh2bz.cmml"><minus id="S3.E58.m1.sh2bw.cmml"/><ci id="S3.E58.m1.sh2bx.cmml">j</ci><ci id="S3.E58.m1.sh2by.cmml">i</ci></apply></apply></apply><apply id="S3.E58.m1.sh2cl.cmml"><minus id="S3.E58.m1.sh2cc.cmml"/><apply id="S3.E58.m1.sh2cg.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2cd.cmml">subscript</csymbol><ci id="S3.E58.m1.sh2ce.cmml">μ</ci><ci id="S3.E58.m1.sh2cf.cmml">i</ci></apply><apply id="S3.E58.m1.sh2ck.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2ch.cmml">subscript</csymbol><ci id="S3.E58.m1.sh2ci.cmml">μ</ci><ci id="S3.E58.m1.sh2cj.cmml">j</ci></apply></apply></apply><apply id="S3.E58.m1.sh2dj.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2cn.cmml">subscript</csymbol><apply id="S3.E58.m1.sh2cy.cmml"><times id="S3.E58.m1.sh2co.cmml"/><ci id="S3.E58.m1.sh2cp.cmml">q</ci><apply id="S3.E58.m1.sh2cx.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2cq.cmml">superscript</csymbol><ci id="S3.E58.m1.sh2cr.cmml">t</ci><apply id="S3.E58.m1.sh2cw.cmml"><minus id="S3.E58.m1.sh2cs.cmml"/><ci id="S3.E58.m1.sh2ct.cmml">j</ci><ci id="S3.E58.m1.sh2cu.cmml">i</ci><cn type="integer" id="S3.E58.m1.sh2cv.cmml">1</cn></apply></apply></apply><apply id="S3.E58.m1.sh2di.cmml"><minus id="S3.E58.m1.sh2cz.cmml"/><apply id="S3.E58.m1.sh2dd.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2da.cmml">subscript</csymbol><ci id="S3.E58.m1.sh2db.cmml">μ</ci><ci id="S3.E58.m1.sh2dc.cmml">i</ci></apply><apply id="S3.E58.m1.sh2dh.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2de.cmml">subscript</csymbol><ci id="S3.E58.m1.sh2df.cmml">μ</ci><ci id="S3.E58.m1.sh2dg.cmml">j</ci></apply></apply></apply></apply><apply id="S3.E58.m1.sh2fb.cmml"><divide id="S3.E58.m1.sh2dl.cmml"/><apply id="S3.E58.m1.sh2eh.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2dm.cmml">subscript</csymbol><apply id="S3.E58.m1.sh2dw.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2dn.cmml">superscript</csymbol><ci id="S3.E58.m1.sh2do.cmml">t</ci><apply id="S3.E58.m1.sh2dv.cmml"><plus id="S3.E58.m1.sh2dp.cmml"/><apply id="S3.E58.m1.sh2dt.cmml"><minus id="S3.E58.m1.sh2dq.cmml"/><ci id="S3.E58.m1.sh2dr.cmml">j</ci><ci id="S3.E58.m1.sh2ds.cmml">i</ci></apply><cn type="integer" id="S3.E58.m1.sh2du.cmml">1</cn></apply></apply><apply id="S3.E58.m1.sh2eg.cmml"><minus id="S3.E58.m1.sh2dx.cmml"/><apply id="S3.E58.m1.sh2eb.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2dy.cmml">subscript</csymbol><ci id="S3.E58.m1.sh2dz.cmml">μ</ci><ci id="S3.E58.m1.sh2ea.cmml">i</ci></apply><apply id="S3.E58.m1.sh2ef.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2ec.cmml">subscript</csymbol><ci id="S3.E58.m1.sh2ed.cmml">μ</ci><ci id="S3.E58.m1.sh2ee.cmml">j</ci></apply></apply></apply><apply id="S3.E58.m1.sh2fa.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2ei.cmml">subscript</csymbol><apply id="S3.E58.m1.sh2ep.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2ej.cmml">superscript</csymbol><ci id="S3.E58.m1.sh2ek.cmml">t</ci><apply id="S3.E58.m1.sh2eo.cmml"><minus id="S3.E58.m1.sh2el.cmml"/><ci id="S3.E58.m1.sh2em.cmml">j</ci><ci id="S3.E58.m1.sh2en.cmml">i</ci></apply></apply><apply id="S3.E58.m1.sh2ez.cmml"><minus id="S3.E58.m1.sh2eq.cmml"/><apply id="S3.E58.m1.sh2eu.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2er.cmml">subscript</csymbol><ci id="S3.E58.m1.sh2es.cmml">μ</ci><ci id="S3.E58.m1.sh2et.cmml">i</ci></apply><apply id="S3.E58.m1.sh2ey.cmml"><csymbol cd="ambiguous" id="S3.E58.m1.sh2ev.cmml">subscript</csymbol><ci id="S3.E58.m1.sh2ew.cmml">μ</ci><ci id="S3.E58.m1.sh2ex.cmml">j</ci></apply></apply></apply></apply></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp29385808" encoding="application/x-tex">e_{q}(z):=\dfrac{1}{(z)_{{\infty^{n}}}}=\sum _{{\mu\in P_{n}}}\dfrac{z^{{|\mu|}}t^{{2n(\mu)+(1-n)|\mu|}}}{(qt^{{n-1}})_{\mu}}\\ \cdot\prod _{{1\leq i<j\leq n}}\left\{\dfrac{(qt^{{j-i}})_{{\mu _{i}-\mu _{j}}}}{(qt^{{j-i-1}})_{{\mu _{i}-\mu _{j}}}}\dfrac{(t^{{j-i+1}})_{{\mu _{i}-\mu _{j}}}}{(t^{{j-i}})_{{\mu _{i}-\mu _{j}}}}\right\}</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp2954816"><h4>Hit idp2954816</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 89</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/129/f051577.xhtml#idp2954816</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:361686(000013%) VariableMap:[varphi x 4, n x 2, + x 2, sum x 2, ( x 4, ) x 4, infty, k x 6, - x 2, 1 x 2, displaystyle, \ x 8, _ x 6, ^ x 2, | x 4, y x 2, = x 2, x x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp2954816" alttext="\displaystyle\sum _{{k=1}}^{n}|\varphi _{k}(x)-\varphi _{k}(y)|+\sum _{{k=n+1}}^{\infty}|\varphi _{k}(x)-\varphi _{k}(y)|" display="inline"><semantics id="idp2955680"><mrow id="idp2955808"><mrow id="idp2955936"><mover id="idp2956064"><mstyle id="idp2956192" displaystyle="true"><munder id="idp2956560"><mo id="idp2956688" movablelimits="false">∑</mo><mrow id="idp2957216"><mi id="idp2957344">k</mi><mo id="idp2957600" movablelimits="false">=</mo><mn id="idp2958128">1</mn></mrow></munder></mstyle><mi id="idp2958384">n</mi></mover><mrow id="idp2958640"><mo id="idp2958768" fence="true">|</mo><mrow id="idp2959296"><mrow id="idp2959424"><msub id="idp2959552"><mi id="idp2959680">φ</mi><mi id="idp2959968">k</mi></msub><mo id="idp2960224">⁢</mo><mrow id="idp2960512"><mo id="idp2960640">(</mo><mi id="idp2960896">x</mi><mo id="idp2961152">)</mo></mrow></mrow><mo id="idp2961408">-</mo><mrow id="idp2961664"><msub id="idp2961792"><mi id="idp2961920">φ</mi><mi id="idp2962208">k</mi></msub><mo id="idp2962464">⁢</mo><mrow id="idp2962752"><mo id="idp2962880">(</mo><mi id="idp2963136">y</mi><mo id="idp2963392">)</mo></mrow></mrow></mrow><mo id="idp2963648" fence="true">|</mo></mrow></mrow><mo id="idp2964176">+</mo><mrow id="idp2964432"><mover id="idp2964560"><mstyle id="idp2964688" displaystyle="true"><munder id="idp2965088"><mo id="idp2965216" movablelimits="false">∑</mo><mrow id="idp2965776"><mi id="idp2965904">k</mi><mo id="idp2966160" movablelimits="false">=</mo><mrow id="idp2966688"><mi id="idp2966816">n</mi><mo id="idp2967072" movablelimits="false">+</mo><mn id="idp2967600">1</mn></mrow></mrow></munder></mstyle><mi id="idp2967856" mathvariant="normal">∞</mi></mover><mrow id="idp2968416"><mo id="idp2968544" fence="true">|</mo><mrow id="idp2969072"><mrow id="idp2969200"><msub id="idp2969328"><mi id="idp2969456">φ</mi><mi id="idp2969744">k</mi></msub><mo id="idp2970000">⁢</mo><mrow id="idp2970288"><mo id="idp2970416">(</mo><mi id="idp2970672">x</mi><mo id="idp2970928">)</mo></mrow></mrow><mo id="idp2971184">-</mo><mrow id="idp2971440"><msub id="idp2971568"><mi id="idp2971696">φ</mi><mi id="idp2971984">k</mi></msub><mo id="idp2972240">⁢</mo><mrow id="idp2972528"><mo id="idp2972656">(</mo><mi id="idp2972912">y</mi><mo id="idp2973168">)</mo></mrow></mrow></mrow><mo id="idp2973424" fence="true">|</mo></mrow></mrow></mrow><annotation-xml id="idp2973952" encoding="MathML-Content"><apply id="idp2974352"><plus id="idp2974480"/><apply id="idp2974608"><apply id="idp2974736"><csymbol id="idp2974864" cd="ambiguous">superscript</csymbol><apply id="idp2975424"><csymbol id="idp2975552" cd="ambiguous">subscript</csymbol><sum id="idp2976112"/><apply id="idp2976240"><eq id="idp2976368"/><ci id="idp2976496">k</ci><cn id="idp2976752" type="integer">1</cn></apply></apply><ci id="idp2977280">n</ci></apply><apply id="idp2977536"><abs id="idp2977664"/><apply id="idp2977792"><minus id="idp2977920"/><apply id="idp2978048"><times id="idp2978176"/><apply id="idp2978304"><csymbol id="idp2978432" cd="ambiguous">subscript</csymbol><ci id="idp2978992">φ</ci><ci id="idp2979280">k</ci></apply><ci id="idp2979536">x</ci></apply><apply id="idp2979792"><times id="idp2979920"/><apply id="idp2980048"><csymbol id="idp2980176" cd="ambiguous">subscript</csymbol><ci id="idp2980736">φ</ci><ci id="idp2981024">k</ci></apply><ci id="idp2981280">y</ci></apply></apply></apply></apply><apply id="idp2981536"><apply id="idp2981664"><csymbol id="idp2981792" cd="ambiguous">superscript</csymbol><apply id="idp2982352"><csymbol id="idp2982480" cd="ambiguous">subscript</csymbol><sum id="idp2983040"/><apply id="idp2983168"><eq id="idp2983296"/><ci id="idp2983424">k</ci><apply id="idp2983680"><plus id="idp2983808"/><ci id="idp2983936">n</ci><cn id="idp2984192" type="integer">1</cn></apply></apply></apply><infinity id="idp2984720"/></apply><apply id="idp2984848"><abs id="idp2984976"/><apply id="idp2985104"><minus id="idp2985232"/><apply id="idp2985360"><times id="idp2985488"/><apply id="idp2985616"><csymbol id="idp2985744" cd="ambiguous">subscript</csymbol><ci id="idp2986304">φ</ci><ci id="idp2986592">k</ci></apply><ci id="idp2986848">x</ci></apply><apply id="idp2987104"><times id="idp2987232"/><apply id="idp2987360"><csymbol id="idp2987488" cd="ambiguous">subscript</csymbol><ci id="idp2988048">φ</ci><ci id="idp2988336">k</ci></apply><ci id="idp2988592">y</ci></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp2988848" encoding="application/x-tex">\displaystyle\sum _{{k=1}}^{n}|\varphi _{k}(x)-\varphi _{k}(y)|+\sum _{{k=n+1}}^{\infty}|\varphi _{k}(x)-\varphi _{k}(y)|</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp30248128"><h4>Hit idp30248128</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 90</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/202/f080533.xhtml#idp30248128</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:3982493(000064%) VariableMap:[leq, +, ( x 4, ) x 4, h x 4, - x 4, 2 x 3, 1 x 4, displaystyle, \ x 6, _ x 7, | x 8, bar x 4, z, y x 7] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp30248128" alttext="\displaystyle\leq|y_{{2}}-y_{{1}}||\bar{h}(y_{{2}})-\bar{h}(y_{{1}})|+|y_{{1}}-z||\bar{h}(y_{{2}})-\bar{h}(y_{{1}})|" display="inline"><semantics id="idp30248976"><mrow id="idp30249104"><none id="idp30249232"/><mo id="idp30249360">≤</mo><mrow id="idp30249616"><mrow id="idp30249744"><mrow id="idp30249872"><mo id="idp30250000" fence="true">|</mo><mrow id="idp30250496"><msub id="idp30250624"><mi id="idp30250752">y</mi><mn id="idp30251008">2</mn></msub><mo id="idp30251264">-</mo><msub id="idp30251520"><mi id="idp30251648">y</mi><mn id="idp30251904">1</mn></msub></mrow><mo id="idp30252160" fence="true">|</mo></mrow><mo id="idp30252688">⁢</mo><mrow id="idp30252976"><mo id="idp30253104" fence="true">|</mo><mrow id="idp30253632"><mrow id="idp30253760"><mover id="idp30253888" accent="true"><mi id="idp30254288">h</mi><mo id="idp30254544">¯</mo></mover><mo id="idp30254832">⁢</mo><mrow id="idp30255120"><mo id="idp30255248">(</mo><msub id="idp30255504"><mi id="idp30255632">y</mi><mn id="idp30255888">2</mn></msub><mo id="idp30256144">)</mo></mrow></mrow><mo id="idp30256400">-</mo><mrow id="idp30256656"><mover id="idp30256784" accent="true"><mi id="idp30257184">h</mi><mo id="idp30257440">¯</mo></mover><mo id="idp30257728">⁢</mo><mrow id="idp30258016"><mo id="idp30258144">(</mo><msub id="idp30258400"><mi id="idp30258528">y</mi><mn id="idp30258784">1</mn></msub><mo id="idp30259040">)</mo></mrow></mrow></mrow><mo id="idp30259296" fence="true">|</mo></mrow></mrow><mo id="idp30259824">+</mo><mrow id="idp30260080"><mrow id="idp30260208"><mo id="idp30260336" fence="true">|</mo><mrow id="idp30260864"><msub id="idp30260992"><mi id="idp30261120">y</mi><mn id="idp30261376">1</mn></msub><mo id="idp30261632">-</mo><mi id="idp30261888">z</mi></mrow><mo id="idp30262144" fence="true">|</mo></mrow><mo id="idp30262672">⁢</mo><mrow id="idp30262960"><mo id="idp30263088" fence="true">|</mo><mrow id="idp30263616"><mrow id="idp30263744"><mover id="idp30263872" accent="true"><mi id="idp30264272">h</mi><mo id="idp30264528">¯</mo></mover><mo id="idp30264816">⁢</mo><mrow id="idp30265104"><mo id="idp30265232">(</mo><msub id="idp30265488"><mi id="idp30265616">y</mi><mn id="idp30265872">2</mn></msub><mo id="idp30266128">)</mo></mrow></mrow><mo id="idp30266384">-</mo><mrow id="idp30266640"><mover id="idp30266768" accent="true"><mi id="idp30267168">h</mi><mo id="idp30267424">¯</mo></mover><mo id="idp30267712">⁢</mo><mrow id="idp30268000"><mo id="idp30268128">(</mo><msub id="idp30268384"><mi id="idp30268512">y</mi><mn id="idp30268768">1</mn></msub><mo id="idp30269024">)</mo></mrow></mrow></mrow><mo id="idp30269280" fence="true">|</mo></mrow></mrow></mrow></mrow><annotation-xml id="idp30269808" encoding="MathML-Content"><apply id="idp30270208"><leq id="idp30270336"/><csymbol id="idp30270464" cd="latexml">absent</csymbol><apply id="idp30271024"><plus id="idp30271152"/><apply id="idp30271280"><times id="idp30271408"/><apply id="idp30271536"><abs id="idp30271664"/><apply id="idp30271792"><minus id="idp30271920"/><apply id="idp30272048"><csymbol id="idp30272176" cd="ambiguous">subscript</csymbol><ci id="idp30272736">y</ci><cn id="idp30272992" type="integer">2</cn></apply><apply id="idp30273520"><csymbol id="idp30273648" cd="ambiguous">subscript</csymbol><ci id="idp30274208">y</ci><cn id="idp30274464" type="integer">1</cn></apply></apply></apply><apply id="idp30274992"><abs id="idp30275120"/><apply id="idp30275248"><minus id="idp30275376"/><apply id="idp30275504"><times id="idp30275632"/><apply id="idp30275760"><ci id="idp30275888">¯</ci><ci id="idp30276176">h</ci></apply><apply id="idp30276432"><csymbol id="idp30276560" cd="ambiguous">subscript</csymbol><ci id="idp30277120">y</ci><cn id="idp30277376" type="integer">2</cn></apply></apply><apply id="idp30277904"><times id="idp30278032"/><apply id="idp30278160"><ci id="idp30278288">¯</ci><ci id="idp30278576">h</ci></apply><apply id="idp30278832"><csymbol id="idp30278960" cd="ambiguous">subscript</csymbol><ci id="idp30279520">y</ci><cn id="idp30279776" type="integer">1</cn></apply></apply></apply></apply></apply><apply id="idp30280304"><times id="idp30280432"/><apply id="idp30280560"><abs id="idp30280688"/><apply id="idp30280816"><minus id="idp30280944"/><apply id="idp30281072"><csymbol id="idp30281200" cd="ambiguous">subscript</csymbol><ci id="idp30281760">y</ci><cn id="idp30282016" type="integer">1</cn></apply><ci id="idp30282544">z</ci></apply></apply><apply id="idp30282800"><abs id="idp30282928"/><apply id="idp30283056"><minus id="idp30283184"/><apply id="idp30283312"><times id="idp30283440"/><apply id="idp30283568"><ci id="idp30283696">¯</ci><ci id="idp30283984">h</ci></apply><apply id="idp30284240"><csymbol id="idp30284368" cd="ambiguous">subscript</csymbol><ci id="idp30284928">y</ci><cn id="idp30285184" type="integer">2</cn></apply></apply><apply id="idp30285712"><times id="idp30285840"/><apply id="idp30285968"><ci id="idp30286096">¯</ci><ci id="idp30286384">h</ci></apply><apply id="idp30286640"><csymbol id="idp30286768" cd="ambiguous">subscript</csymbol><ci id="idp30287328">y</ci><cn id="idp30287584" type="integer">1</cn></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp30288112" encoding="application/x-tex">\displaystyle\leq|y_{{2}}-y_{{1}}||\bar{h}(y_{{2}})-\bar{h}(y_{{1}})|+|y_{{1}}-z||\bar{h}(y_{{2}})-\bar{h}(y_{{1}})|</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp30267712"><h4>Hit idp30267712</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 91</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/114/f045366.xhtml#idp30267712</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1384561(000072%) VariableMap:[ , dfrac x 3, \ x 32, left, _ x 20, ^ x 10, right, qt x 3, prod x 2, ! x 3, binom, leq x 2, n x 6, mu x 14, + x 3, ( x 8, cdot, ) x 8, j x 9, k x 2, ,, - x 13, i x 15, 2, 1 x 7, t x 5, q x 2, | x 2, = x 2, <] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '|' but has only 2 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp30267712" alttext="\binom{k^{n}}{\mu}_{{\!\!\! q,t}}=t^{{2n(\mu)+(1-n)|\mu|}}\prod _{{i=1}}^{n}\dfrac{(q^{{1+k-\mu _{i}}}t^{{i-1}})_{{\mu _{i}}}}{(qt^{{n-i}})_{{\mu _{i}}}}\\ \cdot\prod _{{1\leq i<j\leq n}}\left\{\dfrac{(qt^{{j-i}})_{{\mu _{i}-\mu _{j}}}}{(qt^{{j-i-1}})_{{\mu _{i}-\mu _{j}}}}\dfrac{(t^{{j-i+1}})_{{\mu _{i}-\mu _{j}}}}{(t^{{j-i}})_{{\mu _{i}-\mu _{j}}}}\right\}" display="block"><semantics id="idp30267264"><mrow id="idp30267392"><msub id="idp30267520"><mrow id="idp30268816"><mo id="idp30268944">(</mo><mtable id="idp30269200" rowspacing="0.2ex" columnspacing="0.4em"><mtr id="idp30269808"><mtd id="idp30269936"><msup id="idp30270064"><mi id="idp30270192">k</mi><mi id="idp30270448">n</mi></msup></mtd></mtr><mtr id="idp30270704"><mtd id="idp30270832"><mi id="idp30270960">μ</mi></mtd></mtr></mtable><mo id="idp30271216">)</mo></mrow><mrow id="idp30271472"><mi id="idp30271600">q</mi><mo id="idp30271856">,</mo><mi id="idp30272112">t</mi></mrow></msub><mo id="idp30272368">=</mo><mrow id="idp30272624"><msup id="idp30272752"><mi id="idp30272880">t</mi><mrow id="idp30273136"><mrow id="idp30273264"><mn id="idp30273392">2</mn><mo id="idp30273648">⁢</mo><mi id="idp30273904">n</mi><mo id="idp30274160">⁢</mo><mrow id="idp30274448"><mo id="idp30274576">(</mo><mi id="idp30274832">μ</mi><mo id="idp30275120">)</mo></mrow></mrow><mo id="idp30275376">+</mo><mrow id="idp30275632"><mrow id="idp30275760"><mo id="idp30275888">(</mo><mrow id="idp30276144"><mn id="idp30276272">1</mn><mo id="idp30276528">-</mo><mi id="idp30276784">n</mi></mrow><mo id="idp30277040">)</mo></mrow><mo id="idp30277296">⁢</mo><mrow id="idp30277584"><mo id="idp30277712" fence="true">|</mo><mi id="idp30278240">μ</mi><mo id="idp30278528" fence="true">|</mo></mrow></mrow></mrow></msup><mo id="idp30279056">⁢</mo><mrow id="idp30279344"><mover id="idp30279472"><munder id="idp30279600"><mo id="idp30279728" movablelimits="false">∏</mo><mrow id="idp30280288"><mi id="idp30280416">i</mi><mo id="idp30280672" movablelimits="false">=</mo><mn id="idp30281200">1</mn></mrow></munder><mi id="idp30281456">n</mi></mover><mrow id="idp30281712"><mfrac id="idp30281840"><msub id="idp30281968"><mrow id="idp30282096"><mo id="idp30282224">(</mo><mrow id="idp30282480"><msup id="idp30282608"><mi id="idp30282736">q</mi><mrow id="idp30282992"><mn id="idp30283120">1</mn><mo id="idp30283376">+</mo><mi id="idp30283632">k</mi><mo id="idp30283888">-</mo><msub id="idp30284144"><mi id="idp30284272">μ</mi><mi id="idp30284560">i</mi></msub></mrow></msup><mo id="idp30284816">⁢</mo><msup id="idp30285104"><mi id="idp30285232">t</mi><mrow id="idp30285488"><mi id="idp30285616">i</mi><mo id="idp30285872">-</mo><mn id="idp30286128">1</mn></mrow></msup></mrow><mo id="idp30286384">)</mo></mrow><msub id="idp30286640"><mi id="idp30286768">μ</mi><mi id="idp30287056">i</mi></msub></msub><msub id="idp30287312"><mrow id="idp30287440"><mo id="idp30287568">(</mo><mrow id="idp30287824"><mi id="idp30287952">q</mi><mo id="idp30288208">⁢</mo><msup id="idp30288496"><mi id="idp30288624">t</mi><mrow id="idp30288880"><mi id="idp30289008">n</mi><mo id="idp30289264">-</mo><mi id="idp30289520">i</mi></mrow></msup></mrow><mo id="idp30289776">)</mo></mrow><msub id="idp30290032"><mi id="idp30290160">μ</mi><mi id="idp30290448">i</mi></msub></msub></mfrac><mo id="idp30290704">⋅</mo><mrow id="idp30290992"><munder id="idp30291120"><mo id="idp30291248" movablelimits="false">∏</mo><mrow id="idp30291808"><mn id="idp30291936">1</mn><mo id="idp30292192">≤</mo><mi id="idp30292480">i</mi><mo id="idp30292736"><</mo><mi id="idp30293024">j</mi><mo id="idp30293280">≤</mo><mi id="idp30293568">n</mi></mrow></munder><mrow id="idp30293824"><mo id="idp30293952">{</mo><mrow id="idp30294208"><mfrac id="idp30294336"><msub id="idp30294464"><mrow id="idp30294592"><mo id="idp30294720">(</mo><mrow id="idp30294976"><mi id="idp30295104">q</mi><mo id="idp30295360">⁢</mo><msup id="idp30295648"><mi id="idp30295776">t</mi><mrow id="idp30296032"><mi id="idp30296160">j</mi><mo id="idp30296416">-</mo><mi id="idp30296672">i</mi></mrow></msup></mrow><mo id="idp30296928">)</mo></mrow><mrow id="idp30297184"><msub id="idp30297312"><mi id="idp30297440">μ</mi><mi id="idp30297728">i</mi></msub><mo id="idp30297984">-</mo><msub id="idp30298240"><mi id="idp30298368">μ</mi><mi id="idp30298656">j</mi></msub></mrow></msub><msub id="idp30298912"><mrow id="idp30299040"><mo id="idp30299168">(</mo><mrow id="idp30299424"><mi id="idp30299552">q</mi><mo id="idp30299808">⁢</mo><msup id="idp30300096"><mi id="idp30300224">t</mi><mrow id="idp30300480"><mi id="idp30300608">j</mi><mo id="idp30300864">-</mo><mi id="idp30301120">i</mi><mo id="idp30301376">-</mo><mn id="idp30301632">1</mn></mrow></msup></mrow><mo id="idp30301888">)</mo></mrow><mrow id="idp30302144"><msub id="idp30302272"><mi id="idp30302400">μ</mi><mi id="idp30302688">i</mi></msub><mo id="idp30302944">-</mo><msub id="idp30303200"><mi id="idp30303328">μ</mi><mi id="idp30303616">j</mi></msub></mrow></msub></mfrac><mo id="idp30303872">⁢</mo><mfrac id="idp30304160"><msub id="idp30304288"><mrow id="idp30304416"><mo id="idp30304544">(</mo><msup id="idp30304800"><mi id="idp30304928">t</mi><mrow id="idp30305184"><mi id="idp30305312">j</mi><mo id="idp30305568">-</mo><mi id="idp30305824">i</mi><mo id="idp30306080">+</mo><mn id="idp30306336">1</mn></mrow></msup><mo id="idp30306592">)</mo></mrow><mrow id="idp30306848"><msub id="idp30306976"><mi id="idp30307104">μ</mi><mi id="idp30307392">i</mi></msub><mo id="idp30307648">-</mo><msub id="idp30307904"><mi id="idp30308032">μ</mi><mi id="idp30308320">j</mi></msub></mrow></msub><msub id="idp30308576"><mrow id="idp30308704"><mo id="idp30308832">(</mo><msup id="idp30309088"><mi id="idp30309216">t</mi><mrow id="idp30309472"><mi id="idp30309600">j</mi><mo id="idp30309856">-</mo><mi id="idp30310112">i</mi></mrow></msup><mo id="idp30310368">)</mo></mrow><mrow id="idp30310624"><msub id="idp30310752"><mi id="idp30310880">μ</mi><mi id="idp30311168">i</mi></msub><mo id="idp30311424">-</mo><msub id="idp30311680"><mi id="idp30311808">μ</mi><mi id="idp30312096">j</mi></msub></mrow></msub></mfrac></mrow><mo id="idp30312352">}</mo></mrow></mrow></mrow></mrow></mrow></mrow><annotation-xml id="idp30312608" encoding="MathML-Content"><apply id="idp30313008"><eq id="idp30313136"/><apply id="idp30313264"><csymbol id="idp30313392" cd="ambiguous">subscript</csymbol><apply id="idp30313952"><csymbol id="idp30314080" cd="latexml">binomial</csymbol><apply id="idp30314640"><csymbol id="idp30314768" cd="ambiguous">superscript</csymbol><ci id="idp30315328">k</ci><ci id="idp30315584">n</ci></apply><ci id="idp30315840">μ</ci></apply><apply id="idp30316128"><list id="idp30316256"/><ci id="idp30316384">q</ci><ci id="idp30316640">t</ci></apply></apply><apply id="idp30316896"><times id="idp30317024"/><apply id="idp30317152"><csymbol id="idp30317280" cd="ambiguous">superscript</csymbol><ci id="idp30317840">t</ci><apply id="idp30318096"><plus id="idp30318224"/><apply id="idp30318352"><times id="idp30318480"/><cn id="idp30318608" type="integer">2</cn><ci id="idp30319136">n</ci><ci id="idp30319392">μ</ci></apply><apply id="idp30319680"><times id="idp30319808"/><apply id="idp30319936"><minus id="idp30320064"/><cn id="idp30320192" type="integer">1</cn><ci id="idp30320720">n</ci></apply><apply id="idp30320976"><abs id="idp30321104"/><ci id="idp30321232">μ</ci></apply></apply></apply></apply><apply id="idp30321520"><apply id="idp30321648"><csymbol id="idp30321776" cd="ambiguous">superscript</csymbol><apply id="idp30322336"><csymbol id="idp30322464" cd="ambiguous">subscript</csymbol><csymbol id="idp30323024" cd="latexml">product</csymbol><apply id="idp30323584"><eq id="idp30323712"/><ci id="idp30323840">i</ci><cn id="idp30324096" type="integer">1</cn></apply></apply><ci id="idp30324624">n</ci></apply><apply id="idp30324880"><ci id="idp30325008">⋅</ci><apply id="idp30325296"><divide id="idp30325424"/><apply id="idp30325552"><csymbol id="idp30325680" cd="ambiguous">subscript</csymbol><apply id="idp30326240"><times id="idp30326368"/><apply id="idp30326496"><csymbol id="idp30326624" cd="ambiguous">superscript</csymbol><ci id="idp30327184">q</ci><apply id="idp30327440"><minus id="idp30327568"/><apply id="idp30327696"><plus id="idp30327824"/><cn id="idp30327952" type="integer">1</cn><ci id="idp30328480">k</ci></apply><apply id="idp30328736"><csymbol id="idp30328864" cd="ambiguous">subscript</csymbol><ci id="idp30329424">μ</ci><ci id="idp30329712">i</ci></apply></apply></apply><apply id="idp30329968"><csymbol id="idp30330096" cd="ambiguous">superscript</csymbol><ci id="idp30330656">t</ci><apply id="idp30330912"><minus id="idp30331040"/><ci id="idp30331168">i</ci><cn id="idp30331424" type="integer">1</cn></apply></apply></apply><apply id="idp30331952"><csymbol id="idp30332080" cd="ambiguous">subscript</csymbol><ci id="idp30332640">μ</ci><ci id="idp30332928">i</ci></apply></apply><apply id="idp30333184"><csymbol id="idp30333312" cd="ambiguous">subscript</csymbol><apply id="idp30333872"><times id="idp30334000"/><ci id="idp30334128">q</ci><apply id="idp30334384"><csymbol id="idp30334512" cd="ambiguous">superscript</csymbol><ci id="idp30335072">t</ci><apply id="idp30335328"><minus id="idp30335456"/><ci id="idp30335584">n</ci><ci id="idp30335840">i</ci></apply></apply></apply><apply id="idp30336096"><csymbol id="idp30336224" cd="ambiguous">subscript</csymbol><ci id="idp30336784">μ</ci><ci id="idp30337072">i</ci></apply></apply></apply><apply id="idp30337328"><apply id="idp30337456"><csymbol id="idp30337584" cd="ambiguous">subscript</csymbol><csymbol id="idp30338144" cd="latexml">product</csymbol><apply id="idp30338704"><and id="idp30338832"/><apply id="idp30338960"><leq id="idp30339088"/><cn id="idp30339216" type="integer">1</cn><ci id="S3.E70.m1.sh1.cmml">i</ci></apply><apply id="idp30340272"><lt id="idp30340400"/><share id="idp30340528" href="#S3.E70.m1.sh1.cmml"/><ci id="S3.E70.m1.sh2.cmml">j</ci></apply><apply id="idp30341456"><leq id="idp30341584"/><share id="idp30341712" href="#S3.E70.m1.sh2.cmml"/><ci id="S3.E70.m1.sh3.cmml">n</ci></apply></apply></apply><apply id="idp30342640"><set id="idp30342768"/><apply id="idp30342896"><times id="idp30343024"/><apply id="idp30343152"><divide id="idp30343280"/><apply id="idp30343408"><csymbol id="idp30343536" cd="ambiguous">subscript</csymbol><apply id="idp30344096"><times id="idp30344224"/><ci id="idp30344352">q</ci><apply id="idp30344608"><csymbol id="idp30344736" cd="ambiguous">superscript</csymbol><ci id="idp30345296">t</ci><apply id="idp30345552"><minus id="idp30345680"/><ci id="idp30345808">j</ci><ci id="idp30346064">i</ci></apply></apply></apply><apply id="idp30346320"><minus id="idp30346448"/><apply id="idp30346576"><csymbol id="idp30346704" cd="ambiguous">subscript</csymbol><ci id="idp30347264">μ</ci><ci id="idp30347552">i</ci></apply><apply id="idp30347808"><csymbol id="idp30347936" cd="ambiguous">subscript</csymbol><ci id="idp30348496">μ</ci><ci id="idp30348784">j</ci></apply></apply></apply><apply id="idp30349040"><csymbol id="idp30349168" cd="ambiguous">subscript</csymbol><apply id="idp30349728"><times id="idp30349856"/><ci id="idp30349984">q</ci><apply id="idp30350240"><csymbol id="idp30350368" cd="ambiguous">superscript</csymbol><ci id="idp30350928">t</ci><apply id="idp30351184"><minus id="idp30351312"/><ci id="idp30351440">j</ci><ci id="idp30351696">i</ci><cn id="idp30351952" type="integer">1</cn></apply></apply></apply><apply id="idp30352480"><minus id="idp30352608"/><apply id="idp30352736"><csymbol id="idp30352864" cd="ambiguous">subscript</csymbol><ci id="idp30353424">μ</ci><ci id="idp30353712">i</ci></apply><apply id="idp30353968"><csymbol id="idp30354096" cd="ambiguous">subscript</csymbol><ci id="idp30354656">μ</ci><ci id="idp30354944">j</ci></apply></apply></apply></apply><apply id="idp30355200"><divide id="idp30355328"/><apply id="idp30355456"><csymbol id="idp30355584" cd="ambiguous">subscript</csymbol><apply id="idp30356144"><csymbol id="idp30356272" cd="ambiguous">superscript</csymbol><ci id="idp30356832">t</ci><apply id="idp30357088"><plus id="idp30357216"/><apply id="idp30357344"><minus id="idp30357472"/><ci id="idp30357600">j</ci><ci id="idp30357856">i</ci></apply><cn id="idp30358112" type="integer">1</cn></apply></apply><apply id="idp30358640"><minus id="idp30358768"/><apply id="idp30358896"><csymbol id="idp30359024" cd="ambiguous">subscript</csymbol><ci id="idp30359584">μ</ci><ci id="idp30359872">i</ci></apply><apply id="idp30360128"><csymbol id="idp30360256" cd="ambiguous">subscript</csymbol><ci id="idp30360816">μ</ci><ci id="idp30361104">j</ci></apply></apply></apply><apply id="idp30361360"><csymbol id="idp30361488" cd="ambiguous">subscript</csymbol><apply id="idp30362048"><csymbol id="idp30362176" cd="ambiguous">superscript</csymbol><ci id="idp30362736">t</ci><apply id="idp30362992"><minus id="idp30363120"/><ci id="idp30363248">j</ci><ci id="idp30363504">i</ci></apply></apply><apply id="idp30363760"><minus id="idp30363888"/><apply id="idp30364016"><csymbol id="idp30364144" cd="ambiguous">subscript</csymbol><ci id="idp30364704">μ</ci><ci id="idp30364992">i</ci></apply><apply id="idp30365248"><csymbol id="idp30365376" cd="ambiguous">subscript</csymbol><ci id="idp30365936">μ</ci><ci id="idp30366224">j</ci></apply></apply></apply></apply></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp30366480" encoding="application/x-tex">\binom{k^{n}}{\mu}_{{\!\!\! q,t}}=t^{{2n(\mu)+(1-n)|\mu|}}\prod _{{i=1}}^{n}\dfrac{(q^{{1+k-\mu _{i}}}t^{{i-1}})_{{\mu _{i}}}}{(qt^{{n-i}})_{{\mu _{i}}}}\\ \cdot\prod _{{1\leq i<j\leq n}}\left\{\dfrac{(qt^{{j-i}})_{{\mu _{i}-\mu _{j}}}}{(qt^{{j-i-1}})_{{\mu _{i}-\mu _{j}}}}\dfrac{(t^{{j-i+1}})_{{\mu _{i}-\mu _{j}}}}{(t^{{j-i}})_{{\mu _{i}-\mu _{j}}}}\right\}</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp30493824"><h4>Hit idp30493824</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 92</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/131/f052291.xhtml#idp30493824</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:1392537(000080%) VariableMap:[d, n, +, ( x 2, ) x 2, ,, frac, - x 2, 2, 0, gamma, t x 2, s x 2, displaystyle, R, \ x 8, epsilon, left x 2, _ x 2, | x 4, right x 2, X] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 6 occurences for '_' but has only 2 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp30493824" alttext="\displaystyle\epsilon|t-s|R+d_{X}\left(\gamma _{n}\left(\frac{|t-s|}{2}\right),0\right)" display="inline"><semantics id="idp30494544"><mrow id="idp30494672"><mrow id="idp30494800"><mi id="idp30494928">ϵ</mi><mo id="idp30495184">⁢</mo><mrow id="idp30495440"><mo id="idp30495568" fence="true">|</mo><mrow id="idp30496096"><mi id="idp30496224">t</mi><mo id="idp30496480">-</mo><mi id="idp30496736">s</mi></mrow><mo id="idp30496992" fence="true">|</mo></mrow><mo id="idp30497520">⁢</mo><mi id="idp30497808">R</mi></mrow><mo id="idp30498064">+</mo><mrow id="idp30498320"><msub id="idp30498448"><mi id="idp30498576">d</mi><mi id="idp30498832">X</mi></msub><mo id="idp30499088">⁢</mo><mrow id="idp30499376"><mo id="idp30499504">(</mo><mrow id="idp30499760"><mrow id="idp30499888"><msub id="idp30500016"><mi id="idp30500144">γ</mi><mi id="idp30500432">n</mi></msub><mo id="idp30500688">⁢</mo><mrow id="idp30500976"><mo id="idp30501104">(</mo><mstyle id="idp30501360" displaystyle="true"><mfrac id="idp30501760"><mrow id="idp30501888"><mo id="idp30502016" fence="true">|</mo><mrow id="idp30502544"><mi id="idp30502672">t</mi><mo id="idp30502928">-</mo><mi id="idp30503184">s</mi></mrow><mo id="idp30503440" fence="true">|</mo></mrow><mn id="idp30503968">2</mn></mfrac></mstyle><mo id="idp30504224">)</mo></mrow></mrow><mo id="idp30504480">,</mo><mn id="idp30504736">0</mn></mrow><mo id="idp30504992">)</mo></mrow></mrow></mrow><annotation-xml id="idp30505248" encoding="MathML-Content"><apply id="idp30505648"><plus id="idp30505776"/><apply id="idp30505904"><times id="idp30506032"/><ci id="idp30506160">ϵ</ci><apply id="idp30506448"><abs id="idp30506576"/><apply id="idp30506704"><minus id="idp30506832"/><ci id="idp30506960">t</ci><ci id="idp30507216">s</ci></apply></apply><ci id="idp30507472">R</ci></apply><apply id="idp30507728"><times id="idp30507856"/><apply id="idp30507984"><csymbol id="idp30508112" cd="ambiguous">subscript</csymbol><ci id="idp30508672">d</ci><ci id="idp30508928">X</ci></apply><apply id="idp30509184"><interval id="idp30509312" closure="open"/><apply id="idp30509712"><times id="idp30509840"/><apply id="idp30509968"><csymbol id="idp30510096" cd="ambiguous">subscript</csymbol><ci id="idp30510656">γ</ci><ci id="idp30510944">n</ci></apply><apply id="idp30511200"><divide id="idp30511328"/><apply id="idp30511456"><abs id="idp30511584"/><apply id="idp30511712"><minus id="idp30511840"/><ci id="idp30511968">t</ci><ci id="idp30512224">s</ci></apply></apply><cn id="idp30512480" type="integer">2</cn></apply></apply><cn id="idp30513008" type="integer">0</cn></apply></apply></apply></annotation-xml><annotation id="idp30513536" encoding="application/x-tex">\displaystyle\epsilon|t-s|R+d_{X}\left(\gamma _{n}\left(\frac{|t-s|}{2}\right),0\right)</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp30562944"><h4>Hit idp30562944</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 93</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/202/f080533.xhtml#idp30562944</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:4023910(000064%) VariableMap:[bigr, +, ( x 3, ) x 3, h x 3, - x 4, frac, 2 x 4, 1 x 2, displaystyle, bigl, \ x 7, _ x 6, | x 8, bar x 3, z x 2, =, y x 6] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp30562944" alttext="\displaystyle=|y_{{2}}-y_{{1}}|+\frac{|y_{{2}}-z|}{|\bar{h}(y_{{2}})-z|}\bigl|\bar{h}(y_{{2}})-\bar{h}(y_{{1}})\bigr|" display="inline"><semantics id="idp30563792"><mrow id="idp30563920"><none id="idp30564048"/><mo id="idp30564176">=</mo><mrow id="idp30564432"><mrow id="idp30564560"><mo id="idp30564688" fence="true">|</mo><mrow id="idp30565184"><msub id="idp30565312"><mi id="idp30565440">y</mi><mn id="idp30565696">2</mn></msub><mo id="idp30565952">-</mo><msub id="idp30566208"><mi id="idp30566336">y</mi><mn id="idp30566592">1</mn></msub></mrow><mo id="idp30566848" fence="true">|</mo></mrow><mo id="idp30567344">+</mo><mrow id="idp30567600"><mstyle id="idp30567728" displaystyle="true"><mfrac id="idp30568128"><mrow id="idp30568256"><mo id="idp30568384" fence="true">|</mo><mrow id="idp30568912"><msub id="idp30569040"><mi id="idp30569168">y</mi><mn id="idp30569424">2</mn></msub><mo id="idp30569680">-</mo><mi id="idp30569936">z</mi></mrow><mo id="idp30570192" fence="true">|</mo></mrow><mrow id="idp30570720"><mo id="idp30570848" fence="true">|</mo><mrow id="idp30571376"><mrow id="idp30571504"><mover id="idp30571632" accent="true"><mi id="idp30572032">h</mi><mo id="idp30572288">¯</mo></mover><mo id="idp30572576">⁢</mo><mrow id="idp30572864"><mo id="idp30572992">(</mo><msub id="idp30573248"><mi id="idp30573376">y</mi><mn id="idp30573632">2</mn></msub><mo id="idp30573888">)</mo></mrow></mrow><mo id="idp30574144">-</mo><mi id="idp30574400">z</mi></mrow><mo id="idp30574656" fence="true">|</mo></mrow></mfrac></mstyle><mo id="idp30575184">⁢</mo><mrow id="idp30575472"><mo id="idp30575600" fence="true">|</mo><mrow id="idp30576128"><mrow id="idp30576256"><mover id="idp30576384" accent="true"><mi id="idp30576784">h</mi><mo id="idp30577040">¯</mo></mover><mo id="idp30577328">⁢</mo><mrow id="idp30577616"><mo id="idp30577744">(</mo><msub id="idp30578000"><mi id="idp30578128">y</mi><mn id="idp30578384">2</mn></msub><mo id="idp30578640">)</mo></mrow></mrow><mo id="idp30578896">-</mo><mrow id="idp30579152"><mover id="idp30579280" accent="true"><mi id="idp30579680">h</mi><mo id="idp30579936">¯</mo></mover><mo id="idp30580224">⁢</mo><mrow id="idp30580512"><mo id="idp30580640">(</mo><msub id="idp30580896"><mi id="idp30581024">y</mi><mn id="idp30581280">1</mn></msub><mo id="idp30581536">)</mo></mrow></mrow></mrow><mo id="idp30581792" fence="true">|</mo></mrow></mrow></mrow></mrow><annotation-xml id="idp30582320" encoding="MathML-Content"><apply id="idp30582720"><eq id="idp30582848"/><csymbol id="idp30582976" cd="latexml">absent</csymbol><apply id="idp30583536"><plus id="idp30583664"/><apply id="idp30583792"><abs id="idp30583920"/><apply id="idp30584048"><minus id="idp30584176"/><apply id="idp30584304"><csymbol id="idp30584432" cd="ambiguous">subscript</csymbol><ci id="idp30584992">y</ci><cn id="idp30585248" type="integer">2</cn></apply><apply id="idp30585776"><csymbol id="idp30585904" cd="ambiguous">subscript</csymbol><ci id="idp30586464">y</ci><cn id="idp30586720" type="integer">1</cn></apply></apply></apply><apply id="idp30587248"><times id="idp30587376"/><apply id="idp30587504"><divide id="idp30587632"/><apply id="idp30587760"><abs id="idp30587888"/><apply id="idp30588016"><minus id="idp30588144"/><apply id="idp30588272"><csymbol id="idp30588400" cd="ambiguous">subscript</csymbol><ci id="idp30588960">y</ci><cn id="idp30589216" type="integer">2</cn></apply><ci id="idp30589744">z</ci></apply></apply><apply id="idp30590000"><abs id="idp30590128"/><apply id="idp30590256"><minus id="idp30590384"/><apply id="idp30590512"><times id="idp30590640"/><apply id="idp30590768"><ci id="idp30590896">¯</ci><ci id="idp30591184">h</ci></apply><apply id="idp30591440"><csymbol id="idp30591568" cd="ambiguous">subscript</csymbol><ci id="idp30592128">y</ci><cn id="idp30592384" type="integer">2</cn></apply></apply><ci id="idp30592912">z</ci></apply></apply></apply><apply id="idp30593168"><abs id="idp30593296"/><apply id="idp30593424"><minus id="idp30593552"/><apply id="idp30593680"><times id="idp30593808"/><apply id="idp30593936"><ci id="idp30594064">¯</ci><ci id="idp30594352">h</ci></apply><apply id="idp30594608"><csymbol id="idp30594736" cd="ambiguous">subscript</csymbol><ci id="idp30595296">y</ci><cn id="idp30595552" type="integer">2</cn></apply></apply><apply id="idp30596080"><times id="idp30596208"/><apply id="idp30596336"><ci id="idp30596464">¯</ci><ci id="idp30596752">h</ci></apply><apply id="idp30597008"><csymbol id="idp30597136" cd="ambiguous">subscript</csymbol><ci id="idp30597696">y</ci><cn id="idp30597952" type="integer">1</cn></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp30598480" encoding="application/x-tex">\displaystyle=|y_{{2}}-y_{{1}}|+\frac{|y_{{2}}-z|}{|\bar{h}(y_{{2}})-z|}\bigl|\bar{h}(y_{{2}})-\bar{h}(y_{{1}})\bigr|</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp31369360"><h4>Hit idp31369360</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 94</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/202/f080533.xhtml#idp31369360</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:4130063(000066%) VariableMap:[+, (, ), h x 4, frac x 2, - x 5, 2 x 3, 1 x 3, displaystyle, \ x 5, left, _ x 6, | x 10, right, z x 4, =, y x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp31369360" alttext="\displaystyle=\left(\frac{|y_{{1}}-z|}{|h_{{1}}-z|}+\frac{|y_{{2}}-z|}{|h_{{2}}-z|}\right)|h_{{2}}-h_{{1}}|" display="inline"><semantics id="idp31370208"><mrow id="idp31370336"><none id="idp31370464"/><mo id="idp31370592">=</mo><mrow id="idp31370848"><mrow id="idp31370976"><mo id="idp31371104">(</mo><mrow id="idp31371360"><mstyle id="idp31371488" displaystyle="true"><mfrac id="idp31371856"><mrow id="idp31371984"><mo id="idp31372112" fence="true">|</mo><mrow id="idp31372608"><msub id="idp31372736"><mi id="idp31372864">y</mi><mn id="idp31373120">1</mn></msub><mo id="idp31373376">-</mo><mi id="idp31373632">z</mi></mrow><mo id="idp31373888" fence="true">|</mo></mrow><mrow id="idp31374416"><mo id="idp31374544" fence="true">|</mo><mrow id="idp31375072"><msub id="idp31375200"><mi id="idp31375328">h</mi><mn id="idp31375584">1</mn></msub><mo id="idp31375840">-</mo><mi id="idp31376096">z</mi></mrow><mo id="idp31376352" fence="true">|</mo></mrow></mfrac></mstyle><mo id="idp31376880">+</mo><mstyle id="idp31377136" displaystyle="true"><mfrac id="idp31377536"><mrow id="idp31377664"><mo id="idp31377792" fence="true">|</mo><mrow id="idp31378320"><msub id="idp31378448"><mi id="idp31378576">y</mi><mn id="idp31378832">2</mn></msub><mo id="idp31379088">-</mo><mi id="idp31379344">z</mi></mrow><mo id="idp31379600" fence="true">|</mo></mrow><mrow id="idp31380128"><mo id="idp31380256" fence="true">|</mo><mrow id="idp31380784"><msub id="idp31380912"><mi id="idp31381040">h</mi><mn id="idp31381296">2</mn></msub><mo id="idp31381552">-</mo><mi id="idp31381808">z</mi></mrow><mo id="idp31382064" fence="true">|</mo></mrow></mfrac></mstyle></mrow><mo id="idp31382592">)</mo></mrow><mo id="idp31382848">⁢</mo><mrow id="idp31383136"><mo id="idp31383264" fence="true">|</mo><mrow id="idp31383792"><msub id="idp31383920"><mi id="idp31384048">h</mi><mn id="idp31384304">2</mn></msub><mo id="idp31384560">-</mo><msub id="idp31384816"><mi id="idp31384944">h</mi><mn id="idp31385200">1</mn></msub></mrow><mo id="idp31385456" fence="true">|</mo></mrow></mrow></mrow><annotation-xml id="idp31385984" encoding="MathML-Content"><apply id="idp31386384"><eq id="idp31386512"/><csymbol id="idp31386640" cd="latexml">absent</csymbol><apply id="idp31387200"><times id="idp31387328"/><apply id="idp31387456"><plus id="idp31387584"/><apply id="idp31387712"><divide id="idp31387840"/><apply id="idp31387968"><abs id="idp31388096"/><apply id="idp31388224"><minus id="idp31388352"/><apply id="idp31388480"><csymbol id="idp31388608" cd="ambiguous">subscript</csymbol><ci id="idp31389168">y</ci><cn id="idp31389424" type="integer">1</cn></apply><ci id="idp31389952">z</ci></apply></apply><apply id="idp31390208"><abs id="idp31390336"/><apply id="idp31390464"><minus id="idp31390592"/><apply id="idp31390720"><csymbol id="idp31390848" cd="ambiguous">subscript</csymbol><ci id="idp31391408">h</ci><cn id="idp31391664" type="integer">1</cn></apply><ci id="idp31392192">z</ci></apply></apply></apply><apply id="idp31392448"><divide id="idp31392576"/><apply id="idp31392704"><abs id="idp31392832"/><apply id="idp31392960"><minus id="idp31393088"/><apply id="idp31393216"><csymbol id="idp31393344" cd="ambiguous">subscript</csymbol><ci id="idp31393904">y</ci><cn id="idp31394160" type="integer">2</cn></apply><ci id="idp31394688">z</ci></apply></apply><apply id="idp31394944"><abs id="idp31395072"/><apply id="idp31395200"><minus id="idp31395328"/><apply id="idp31395456"><csymbol id="idp31395584" cd="ambiguous">subscript</csymbol><ci id="idp31396144">h</ci><cn id="idp31396400" type="integer">2</cn></apply><ci id="idp31396928">z</ci></apply></apply></apply></apply><apply id="idp31397184"><abs id="idp31397312"/><apply id="idp31397440"><minus id="idp31397568"/><apply id="idp31397696"><csymbol id="idp31397824" cd="ambiguous">subscript</csymbol><ci id="idp31398384">h</ci><cn id="idp31398640" type="integer">2</cn></apply><apply id="idp31399168"><csymbol id="idp31399296" cd="ambiguous">subscript</csymbol><ci id="idp31399856">h</ci><cn id="idp31400112" type="integer">1</cn></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp31400640" encoding="application/x-tex">\displaystyle=\left(\frac{|y_{{1}}-z|}{|h_{{1}}-z|}+\frac{|y_{{2}}-z|}{|h_{{2}}-z|}\right)|h_{{2}}-h_{{1}}|</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp36128624"><h4>Hit idp36128624</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 95</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/202/f080533.xhtml#idp36128624</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:4754895(000076%) VariableMap:[2 x 3, 1 x 3, s x 3, displaystyle, +, mu x 3, \ x 4, _ x 6, | x 6, =, - x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp36128624" alttext="\displaystyle=\mu _{{2}}|s_{{2}}-s_{{1}}|+|\mu _{{2}}-\mu _{{1}}||s_{{1}}|" display="inline"><semantics id="idp36129344"><mrow id="idp36129472"><none id="idp36129600"/><mo id="idp36129728">=</mo><mrow id="idp36129984"><mrow id="idp36130112"><msub id="idp36130240"><mi id="idp36130368">μ</mi><mn id="idp36130624">2</mn></msub><mo id="idp36130880">⁢</mo><mrow id="idp36131136"><mo id="idp36131264" fence="true">|</mo><mrow id="idp36131792"><msub id="idp36131920"><mi id="idp36132048">s</mi><mn id="idp36132304">2</mn></msub><mo id="idp36132560">-</mo><msub id="idp36132816"><mi id="idp36132944">s</mi><mn id="idp36133200">1</mn></msub></mrow><mo id="idp36133456" fence="true">|</mo></mrow></mrow><mo id="idp36133984">+</mo><mrow id="idp36134240"><mrow id="idp36134368"><mo id="idp36134496" fence="true">|</mo><mrow id="idp36135024"><msub id="idp36135152"><mi id="idp36135280">μ</mi><mn id="idp36135568">2</mn></msub><mo id="idp36135824">-</mo><msub id="idp36136080"><mi id="idp36136208">μ</mi><mn id="idp36136496">1</mn></msub></mrow><mo id="idp36136752" fence="true">|</mo></mrow><mo id="idp36137280">⁢</mo><mrow id="idp36137568"><mo id="idp36137696" fence="true">|</mo><msub id="idp36138224"><mi id="idp36138352">s</mi><mn id="idp36138608">1</mn></msub><mo id="idp36138864" fence="true">|</mo></mrow></mrow></mrow></mrow><annotation-xml id="idp36139392" encoding="MathML-Content"><apply id="idp36139792"><eq id="idp36139920"/><csymbol id="idp36140048" cd="latexml">absent</csymbol><apply id="idp36140608"><plus id="idp36140736"/><apply id="idp36140864"><times id="idp36140992"/><apply id="idp36141120"><csymbol id="idp36141248" cd="ambiguous">subscript</csymbol><ci id="idp36141808">μ</ci><cn id="idp36142096" type="integer">2</cn></apply><apply id="idp36142624"><abs id="idp36142752"/><apply id="idp36142880"><minus id="idp36143008"/><apply id="idp36143136"><csymbol id="idp36143264" cd="ambiguous">subscript</csymbol><ci id="idp36143824">s</ci><cn id="idp36144080" type="integer">2</cn></apply><apply id="idp36144608"><csymbol id="idp36144736" cd="ambiguous">subscript</csymbol><ci id="idp36145296">s</ci><cn id="idp36145552" type="integer">1</cn></apply></apply></apply></apply><apply id="idp36146080"><times id="idp36146208"/><apply id="idp36146336"><abs id="idp36146464"/><apply id="idp36146592"><minus id="idp36146720"/><apply id="idp36146848"><csymbol id="idp36146976" cd="ambiguous">subscript</csymbol><ci id="idp36147536">μ</ci><cn id="idp36147824" type="integer">2</cn></apply><apply id="idp36148352"><csymbol id="idp36148480" cd="ambiguous">subscript</csymbol><ci id="idp36149040">μ</ci><cn id="idp36149328" type="integer">1</cn></apply></apply></apply><apply id="idp36149856"><abs id="idp36149984"/><apply id="idp36150112"><csymbol id="idp36150240" cd="ambiguous">subscript</csymbol><ci id="idp36150800">s</ci><cn id="idp36151056" type="integer">1</cn></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp36151584" encoding="application/x-tex">\displaystyle=\mu _{{2}}|s_{{2}}-s_{{1}}|+|\mu _{{2}}-\mu _{{1}}||s_{{1}}|</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp37918752"><h4>Hit idp37918752</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 96</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/202/f080533.xhtml#idp37918752</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:4987391(000080%) VariableMap:[leq, bigr x 2, mu x 2, + x 2, ( x 2, ) x 2, ., K x 4, - x 4, 3, 2 x 5, 1 x 6, bigl x 2, \ x 7, _ x 12, | x 8, y x 4, x x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp37918752" alttext="K_{{1}}\bigl(|x_{{2}}-x_{{1}}|+|\mu _{{1}}-\mu _{{2}}|\bigr)\leq K_{{1}}\bigl(K_{{3}}|y_{{2}}-y_{{1}}|+K_{{2}}|y_{{2}}-y_{{1}}|\bigr)." display="block"><semantics id="idp37919616"><mrow id="idp37919744"><mrow id="idp37919872"><mrow id="idp37920000"><msub id="idp37920128"><mi id="idp37920256">K</mi><mn id="idp37920512">1</mn></msub><mo id="idp37920768">⁢</mo><mrow id="idp37921024"><mo id="idp37921152">(</mo><mrow id="idp37921408"><mrow id="idp37921536"><mo id="idp37921664" fence="true">|</mo><mrow id="idp37922160"><msub id="idp37922288"><mi id="idp37922416">x</mi><mn id="idp37922672">2</mn></msub><mo id="idp37922928">-</mo><msub id="idp37923184"><mi id="idp37923312">x</mi><mn id="idp37923568">1</mn></msub></mrow><mo id="idp37923824" fence="true">|</mo></mrow><mo id="idp37924352">+</mo><mrow id="idp37924608"><mo id="idp37924736" fence="true">|</mo><mrow id="idp37925264"><msub id="idp37925392"><mi id="idp37925520">μ</mi><mn id="idp37925808">1</mn></msub><mo id="idp37926064">-</mo><msub id="idp37926320"><mi id="idp37926448">μ</mi><mn id="idp37926736">2</mn></msub></mrow><mo id="idp37926992" fence="true">|</mo></mrow></mrow><mo id="idp37927520">)</mo></mrow></mrow><mo id="idp37927776">≤</mo><mrow id="idp37928064"><msub id="idp37928192"><mi id="idp37928320">K</mi><mn id="idp37928576">1</mn></msub><mo id="idp37928832">⁢</mo><mrow id="idp37929088"><mo id="idp37929216">(</mo><mrow id="idp37929472"><mrow id="idp37929600"><msub id="idp37929728"><mi id="idp37929856">K</mi><mn id="idp37930112">3</mn></msub><mo id="idp37930368">⁢</mo><mrow id="idp37930624"><mo id="idp37930752" fence="true">|</mo><mrow id="idp37931248"><msub id="idp37931376"><mi id="idp37931504">y</mi><mn id="idp37931760">2</mn></msub><mo id="idp37932016">-</mo><msub id="idp37932272"><mi id="idp37932400">y</mi><mn id="idp37932656">1</mn></msub></mrow><mo id="idp37932912" fence="true">|</mo></mrow></mrow><mo id="idp37933440">+</mo><mrow id="idp37933696"><msub id="idp37933824"><mi id="idp37933952">K</mi><mn id="idp37934208">2</mn></msub><mo id="idp37934464">⁢</mo><mrow id="idp37934752"><mo id="idp37934880" fence="true">|</mo><mrow id="idp37935408"><msub id="idp37935536"><mi id="idp37935664">y</mi><mn id="idp37935920">2</mn></msub><mo id="idp37936176">-</mo><msub id="idp37936432"><mi id="idp37936560">y</mi><mn id="idp37936816">1</mn></msub></mrow><mo id="idp37937072" fence="true">|</mo></mrow></mrow></mrow><mo id="idp37937600">)</mo></mrow></mrow></mrow><mo id="idp37937856">.</mo></mrow><annotation-xml id="idp37938112" encoding="MathML-Content"><apply id="idp37938512"><leq id="idp37938640"/><apply id="idp37938768"><times id="idp37938896"/><apply id="idp37939024"><csymbol id="idp37939152" cd="ambiguous">subscript</csymbol><ci id="idp37939712">K</ci><cn id="idp37939968" type="integer">1</cn></apply><apply id="idp37940496"><plus id="idp37940624"/><apply id="idp37940752"><abs id="idp37940880"/><apply id="idp37941008"><minus id="idp37941136"/><apply id="idp37941264"><csymbol id="idp37941392" cd="ambiguous">subscript</csymbol><ci id="idp37941952">x</ci><cn id="idp37942208" type="integer">2</cn></apply><apply id="idp37942736"><csymbol id="idp37942864" cd="ambiguous">subscript</csymbol><ci id="idp37943424">x</ci><cn id="idp37943680" type="integer">1</cn></apply></apply></apply><apply id="idp37944208"><abs id="idp37944336"/><apply id="idp37944464"><minus id="idp37944592"/><apply id="idp37944720"><csymbol id="idp37944848" cd="ambiguous">subscript</csymbol><ci id="idp37945408">μ</ci><cn id="idp37945696" type="integer">1</cn></apply><apply id="idp37946224"><csymbol id="idp37946352" cd="ambiguous">subscript</csymbol><ci id="idp37946912">μ</ci><cn id="idp37947200" type="integer">2</cn></apply></apply></apply></apply></apply><apply id="idp37947728"><times id="idp37947856"/><apply id="idp37947984"><csymbol id="idp37948112" cd="ambiguous">subscript</csymbol><ci id="idp37948672">K</ci><cn id="idp37948928" type="integer">1</cn></apply><apply id="idp37949456"><plus id="idp37949584"/><apply id="idp37949712"><times id="idp37949840"/><apply id="idp37949968"><csymbol id="idp37950096" cd="ambiguous">subscript</csymbol><ci id="idp37950656">K</ci><cn id="idp37950912" type="integer">3</cn></apply><apply id="idp37951440"><abs id="idp37951568"/><apply id="idp37951696"><minus id="idp37951824"/><apply id="idp37951952"><csymbol id="idp37952080" cd="ambiguous">subscript</csymbol><ci id="idp37952640">y</ci><cn id="idp37952896" type="integer">2</cn></apply><apply id="idp37953424"><csymbol id="idp37953552" cd="ambiguous">subscript</csymbol><ci id="idp37954112">y</ci><cn id="idp37954368" type="integer">1</cn></apply></apply></apply></apply><apply id="idp37954896"><times id="idp37955024"/><apply id="idp37955152"><csymbol id="idp37955280" cd="ambiguous">subscript</csymbol><ci id="idp37955840">K</ci><cn id="idp37956096" type="integer">2</cn></apply><apply id="idp37956624"><abs id="idp37956752"/><apply id="idp37956880"><minus id="idp37957008"/><apply id="idp37957136"><csymbol id="idp37957264" cd="ambiguous">subscript</csymbol><ci id="idp37957824">y</ci><cn id="idp37958080" type="integer">2</cn></apply><apply id="idp37958608"><csymbol id="idp37958736" cd="ambiguous">subscript</csymbol><ci id="idp37959296">y</ci><cn id="idp37959552" type="integer">1</cn></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp37960080" encoding="application/x-tex">K_{{1}}\bigl(|x_{{2}}-x_{{1}}|+|\mu _{{1}}-\mu _{{2}}|\bigr)\leq K_{{1}}\bigl(K_{{3}}|y_{{2}}-y_{{1}}|+K_{{2}}|y_{{2}}-y_{{1}}|\bigr).</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp4009568"><h4>Hit idp4009568</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 97</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/129/f051248.xhtml#idp4009568</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:490793(000045%) VariableMap:[Bigr x 3, leq x 2, +, (, , ), ., frac x 5, - x 7, 2 x 15, 1 x 13, 4, alpha x 4, \ x 19, _ x 20, | x 30, ^ x 8, z x 20, =, Bigl x 3] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp4009568" alttext="|z_{1}|^{{\alpha}}\Bigl|\frac{z_{1}^{2}}{|z_{1}|^{2}}-\frac{z_{2}^{2}}{|z_{2}|^{2}}\Bigr|\leq 2|z_{1}|^{{\alpha}}\Bigl|\frac{z_{1}}{|z_{1}|}-\frac{z_{2}}{|z_{2}|}\Bigr|\\ =2|z_{1}|^{{\alpha-1}}\Bigl|z_{1}-z_{2}+\frac{z_{2}}{|z_{2}|}(|z_{2}|-|z_{1}|)\Bigr|\leq 4|z_{1}|^{{\alpha-1}}|z_{1}-z_{2}|." display="block"><semantics id="idp4009120"><mrow id="idp4009248"><mrow id="idp4009376"><mrow id="idp4010592"><msup id="idp4010720"><mrow id="idp4010848"><mo id="idp4010976" fence="true">|</mo><msub id="idp4011472"><mi id="idp4011600">z</mi><mn id="idp4011856">1</mn></msub><mo id="idp4012112" fence="true">|</mo></mrow><mi id="idp4012608">α</mi></msup><mo id="idp4012864">⁢</mo><mrow id="idp4013120"><mo id="idp4013248" fence="true">|</mo><mrow id="idp4013744"><mfrac id="idp4013872"><msubsup id="idp4014000"><mi id="idp4014128">z</mi><mn id="idp4014384">1</mn><mn id="idp4014640">2</mn></msubsup><msup id="idp4014896"><mrow id="idp4015024"><mo id="idp4015152" fence="true">|</mo><msub id="idp4015648"><mi id="idp4015776">z</mi><mn id="idp4016032">1</mn></msub><mo id="idp4016288" fence="true">|</mo></mrow><mn id="idp4016784">2</mn></msup></mfrac><mo id="idp4017040">-</mo><mfrac id="idp4017296"><msubsup id="idp4017424"><mi id="idp4017552">z</mi><mn id="idp4017808">2</mn><mn id="idp4018064">2</mn></msubsup><msup id="idp4018320"><mrow id="idp4018448"><mo id="idp4018576" fence="true">|</mo><msub id="idp4019104"><mi id="idp4019232">z</mi><mn id="idp4019488">2</mn></msub><mo id="idp4019744" fence="true">|</mo></mrow><mn id="idp4020272">2</mn></msup></mfrac></mrow><mo id="idp4020528" fence="true">|</mo></mrow></mrow><mo id="idp4021056">≤</mo><mrow id="idp4021344"><mn id="idp4021472">2</mn><mo id="idp4021728">⁢</mo><msup id="idp4022016"><mrow id="idp4022144"><mo id="idp4022272" fence="true">|</mo><msub id="idp4022800"><mi id="idp4022928">z</mi><mn id="idp4023184">1</mn></msub><mo id="idp4023440" fence="true">|</mo></mrow><mi id="idp4023968">α</mi></msup><mo id="idp4024256">⁢</mo><mrow id="idp4024544"><mo id="idp4024672" fence="true">|</mo><mrow id="idp4025200"><mfrac id="idp4025328"><msub id="idp4025456"><mi id="idp4025584">z</mi><mn id="idp4025840">1</mn></msub><mrow id="idp4026096"><mo id="idp4026224" fence="true">|</mo><msub id="idp4026752"><mi id="idp4026880">z</mi><mn id="idp4027136">1</mn></msub><mo id="idp4027392" fence="true">|</mo></mrow></mfrac><mo id="idp4027920">-</mo><mfrac id="idp4028176"><msub id="idp4028304"><mi id="idp4028432">z</mi><mn id="idp4028688">2</mn></msub><mrow id="idp4028944"><mo id="idp4029072" fence="true">|</mo><msub id="idp4029600"><mi id="idp4029728">z</mi><mn id="idp4029984">2</mn></msub><mo id="idp4030240" fence="true">|</mo></mrow></mfrac></mrow><mo id="idp4030768" fence="true">|</mo></mrow></mrow><mo id="idp4031296">=</mo><mrow id="idp4031552"><mn id="idp4031680">2</mn><mo id="idp4031936">⁢</mo><msup id="idp4032224"><mrow id="idp4032352"><mo id="idp4032480" fence="true">|</mo><msub id="idp4033008"><mi id="idp4033136">z</mi><mn id="idp4033392">1</mn></msub><mo id="idp4033648" fence="true">|</mo></mrow><mrow id="idp4034176"><mi id="idp4034304">α</mi><mo id="idp4034592">-</mo><mn id="idp4034848">1</mn></mrow></msup><mo id="idp4035104">⁢</mo><mrow id="idp4035392"><mo id="idp4035520" fence="true">|</mo><mrow id="idp4036048"><msub id="idp4036176"><mi id="idp4036304">z</mi><mn id="idp4036560">1</mn></msub><mo id="idp4036816">-</mo><msub id="idp4037072"><mi id="idp4037200">z</mi><mn id="idp4037456">2</mn></msub><mo id="idp4037712">+</mo><mrow id="idp4037968"><mfrac id="idp4038096"><msub id="idp4038224"><mi id="idp4038352">z</mi><mn id="idp4038608">2</mn></msub><mrow id="idp4038864"><mo id="idp4038992" fence="true">|</mo><msub id="idp4039520"><mi id="idp4039648">z</mi><mn id="idp4039904">2</mn></msub><mo id="idp4040160" fence="true">|</mo></mrow></mfrac><mo id="idp4040688">⁢</mo><mrow id="idp4040976"><mo id="idp4041104">(</mo><mrow id="idp4041360"><mrow id="idp4041488"><mo id="idp4041616" fence="true">|</mo><msub id="idp4042144"><mi id="idp4042272">z</mi><mn id="idp4042528">2</mn></msub><mo id="idp4042784" fence="true">|</mo></mrow><mo id="idp4043312">-</mo><mrow id="idp4043568"><mo id="idp4043696" fence="true">|</mo><msub id="idp4044224"><mi id="idp4044352">z</mi><mn id="idp4044608">1</mn></msub><mo id="idp4044864" fence="true">|</mo></mrow></mrow><mo id="idp4045392">)</mo></mrow></mrow></mrow><mo id="idp4045648" fence="true">|</mo></mrow></mrow><mo id="idp4046176">≤</mo><mrow id="idp4046464"><mn id="idp4046592">4</mn><mo id="idp4046848">⁢</mo><msup id="idp4047136"><mrow id="idp4047264"><mo id="idp4047392" fence="true">|</mo><msub id="idp4047920"><mi id="idp4048048">z</mi><mn id="idp4048304">1</mn></msub><mo id="idp4048560" fence="true">|</mo></mrow><mrow id="idp4049088"><mi id="idp4049216">α</mi><mo id="idp4049504">-</mo><mn id="idp4049760">1</mn></mrow></msup><mo id="idp4050016">⁢</mo><mrow id="idp4050304"><mo id="idp4050432" fence="true">|</mo><mrow id="idp4050960"><msub id="idp4051088"><mi id="idp4051216">z</mi><mn id="idp4051472">1</mn></msub><mo id="idp4051728">-</mo><msub id="idp4051984"><mi id="idp4052112">z</mi><mn id="idp4052368">2</mn></msub></mrow><mo id="idp4052624" fence="true">|</mo></mrow></mrow></mrow><mo id="idp4053152">.</mo></mrow><annotation-xml id="idp4053408" encoding="MathML-Content"><apply id="idp4053808"><and id="idp4053936"/><apply id="idp4054064"><leq id="idp4054192"/><apply id="idp4054320"><times id="idp4054448"/><apply id="idp4054576"><csymbol id="idp4054704" cd="ambiguous">superscript</csymbol><apply id="idp4055264"><abs id="idp4055392"/><apply id="idp4055520"><csymbol id="idp4055648" cd="ambiguous">subscript</csymbol><ci id="idp4056208">z</ci><cn id="idp4056464" type="integer">1</cn></apply></apply><ci id="idp4056992">α</ci></apply><apply id="idp4057280"><abs id="idp4057408"/><apply id="idp4057536"><minus id="idp4057664"/><apply id="idp4057792"><divide id="idp4057920"/><apply id="idp4058048"><csymbol id="idp4058176" cd="ambiguous">superscript</csymbol><apply id="idp4058736"><csymbol id="idp4058864" cd="ambiguous">subscript</csymbol><ci id="idp4059424">z</ci><cn id="idp4059680" type="integer">1</cn></apply><cn id="idp4060208" type="integer">2</cn></apply><apply id="idp4060736"><csymbol id="idp4060864" cd="ambiguous">superscript</csymbol><apply id="idp4061424"><abs id="idp4061552"/><apply id="idp4061680"><csymbol id="idp4061808" cd="ambiguous">subscript</csymbol><ci id="idp4062368">z</ci><cn id="idp4062624" type="integer">1</cn></apply></apply><cn id="idp4063152" type="integer">2</cn></apply></apply><apply id="idp4063680"><divide id="idp4063808"/><apply id="idp4063936"><csymbol id="idp4064064" cd="ambiguous">superscript</csymbol><apply id="idp4064624"><csymbol id="idp4064752" cd="ambiguous">subscript</csymbol><ci id="idp4065312">z</ci><cn id="idp4065568" type="integer">2</cn></apply><cn id="idp4066096" type="integer">2</cn></apply><apply id="idp4066624"><csymbol id="idp4066752" cd="ambiguous">superscript</csymbol><apply id="idp4067312"><abs id="idp4067440"/><apply id="idp4067568"><csymbol id="idp4067696" cd="ambiguous">subscript</csymbol><ci id="idp4068256">z</ci><cn id="idp4068512" type="integer">2</cn></apply></apply><cn id="idp4069040" type="integer">2</cn></apply></apply></apply></apply></apply><apply id="S2.Thmthm3.p1.m9.sh1am.cmml"><times id="S2.Thmthm3.p1.m9.sh1.cmml"/><cn type="integer" id="S2.Thmthm3.p1.m9.sh1a.cmml">2</cn><apply id="S2.Thmthm3.p1.m9.sh1j.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh1b.cmml">superscript</csymbol><apply id="S2.Thmthm3.p1.m9.sh1h.cmml"><abs id="S2.Thmthm3.p1.m9.sh1c.cmml"/><apply id="S2.Thmthm3.p1.m9.sh1g.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh1d.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh1e.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh1f.cmml">1</cn></apply></apply><ci id="S2.Thmthm3.p1.m9.sh1i.cmml">α</ci></apply><apply id="S2.Thmthm3.p1.m9.sh1al.cmml"><abs id="S2.Thmthm3.p1.m9.sh1k.cmml"/><apply id="S2.Thmthm3.p1.m9.sh1ak.cmml"><minus id="S2.Thmthm3.p1.m9.sh1l.cmml"/><apply id="S2.Thmthm3.p1.m9.sh1x.cmml"><divide id="S2.Thmthm3.p1.m9.sh1m.cmml"/><apply id="S2.Thmthm3.p1.m9.sh1q.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh1n.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh1o.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh1p.cmml">1</cn></apply><apply id="S2.Thmthm3.p1.m9.sh1w.cmml"><abs id="S2.Thmthm3.p1.m9.sh1r.cmml"/><apply id="S2.Thmthm3.p1.m9.sh1v.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh1s.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh1t.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh1u.cmml">1</cn></apply></apply></apply><apply id="S2.Thmthm3.p1.m9.sh1aj.cmml"><divide id="S2.Thmthm3.p1.m9.sh1y.cmml"/><apply id="S2.Thmthm3.p1.m9.sh1ac.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh1z.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh1aa.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh1ab.cmml">2</cn></apply><apply id="S2.Thmthm3.p1.m9.sh1ai.cmml"><abs id="S2.Thmthm3.p1.m9.sh1ad.cmml"/><apply id="S2.Thmthm3.p1.m9.sh1ah.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh1ae.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh1af.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh1ag.cmml">2</cn></apply></apply></apply></apply></apply></apply></apply><apply id="idp4092000"><eq id="idp4092128"/><share id="idp4092256" href="#S2.Thmthm3.p1.m9.sh1.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2bd.cmml"><times id="S2.Thmthm3.p1.m9.sh2.cmml"/><cn type="integer" id="S2.Thmthm3.p1.m9.sh2a.cmml">2</cn><apply id="S2.Thmthm3.p1.m9.sh2m.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh2b.cmml">superscript</csymbol><apply id="S2.Thmthm3.p1.m9.sh2h.cmml"><abs id="S2.Thmthm3.p1.m9.sh2c.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2g.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh2d.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh2e.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh2f.cmml">1</cn></apply></apply><apply id="S2.Thmthm3.p1.m9.sh2l.cmml"><minus id="S2.Thmthm3.p1.m9.sh2i.cmml"/><ci id="S2.Thmthm3.p1.m9.sh2j.cmml">α</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh2k.cmml">1</cn></apply></apply><apply id="S2.Thmthm3.p1.m9.sh2bc.cmml"><abs id="S2.Thmthm3.p1.m9.sh2n.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2bb.cmml"><plus id="S2.Thmthm3.p1.m9.sh2o.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2y.cmml"><minus id="S2.Thmthm3.p1.m9.sh2p.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2t.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh2q.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh2r.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh2s.cmml">1</cn></apply><apply id="S2.Thmthm3.p1.m9.sh2x.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh2u.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh2v.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh2w.cmml">2</cn></apply></apply><apply id="S2.Thmthm3.p1.m9.sh2ba.cmml"><times id="S2.Thmthm3.p1.m9.sh2z.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2al.cmml"><divide id="S2.Thmthm3.p1.m9.sh2aa.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2ae.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh2ab.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh2ac.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh2ad.cmml">2</cn></apply><apply id="S2.Thmthm3.p1.m9.sh2ak.cmml"><abs id="S2.Thmthm3.p1.m9.sh2af.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2aj.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh2ag.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh2ah.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh2ai.cmml">2</cn></apply></apply></apply><apply id="S2.Thmthm3.p1.m9.sh2az.cmml"><minus id="S2.Thmthm3.p1.m9.sh2am.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2as.cmml"><abs id="S2.Thmthm3.p1.m9.sh2an.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2ar.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh2ao.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh2ap.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh2aq.cmml">2</cn></apply></apply><apply id="S2.Thmthm3.p1.m9.sh2ay.cmml"><abs id="S2.Thmthm3.p1.m9.sh2at.cmml"/><apply id="S2.Thmthm3.p1.m9.sh2ax.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh2au.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh2av.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh2aw.cmml">1</cn></apply></apply></apply></apply></apply></apply></apply></apply><apply id="idp4124496"><leq id="idp4124624"/><share id="idp4124752" href="#S2.Thmthm3.p1.m9.sh2.cmml"/><apply id="S2.Thmthm3.p1.m9.sh3z.cmml"><times id="S2.Thmthm3.p1.m9.sh3.cmml"/><cn type="integer" id="S2.Thmthm3.p1.m9.sh3a.cmml">4</cn><apply id="S2.Thmthm3.p1.m9.sh3m.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh3b.cmml">superscript</csymbol><apply id="S2.Thmthm3.p1.m9.sh3h.cmml"><abs id="S2.Thmthm3.p1.m9.sh3c.cmml"/><apply id="S2.Thmthm3.p1.m9.sh3g.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh3d.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh3e.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh3f.cmml">1</cn></apply></apply><apply id="S2.Thmthm3.p1.m9.sh3l.cmml"><minus id="S2.Thmthm3.p1.m9.sh3i.cmml"/><ci id="S2.Thmthm3.p1.m9.sh3j.cmml">α</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh3k.cmml">1</cn></apply></apply><apply id="S2.Thmthm3.p1.m9.sh3y.cmml"><abs id="S2.Thmthm3.p1.m9.sh3n.cmml"/><apply id="S2.Thmthm3.p1.m9.sh3x.cmml"><minus id="S2.Thmthm3.p1.m9.sh3o.cmml"/><apply id="S2.Thmthm3.p1.m9.sh3s.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh3p.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh3q.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh3r.cmml">1</cn></apply><apply id="S2.Thmthm3.p1.m9.sh3w.cmml"><csymbol cd="ambiguous" id="S2.Thmthm3.p1.m9.sh3t.cmml">subscript</csymbol><ci id="S2.Thmthm3.p1.m9.sh3u.cmml">z</ci><cn type="integer" id="S2.Thmthm3.p1.m9.sh3v.cmml">2</cn></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp4140672" encoding="application/x-tex">|z_{1}|^{{\alpha}}\Bigl|\frac{z_{1}^{2}}{|z_{1}|^{2}}-\frac{z_{2}^{2}}{|z_{2}|^{2}}\Bigr|\leq 2|z_{1}|^{{\alpha}}\Bigl|\frac{z_{1}}{|z_{1}|}-\frac{z_{2}}{|z_{2}|}\Bigr|\\ =2|z_{1}|^{{\alpha-1}}\Bigl|z_{1}-z_{2}+\frac{z_{2}}{|z_{2}|}(|z_{2}|-|z_{1}|)\Bigr|\leq 4|z_{1}|^{{\alpha-1}}|z_{1}-z_{2}|.</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp42813584"><h4>Hit idp42813584</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 98</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/206/f082233.xhtml#idp42813584</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:2907845(000074%) VariableMap:[mathbb x 7, x 2, infty x 2, R x 7, \ x 105, epsilon x 17, _ x 28, left x 10, ^ x 9, right x 10, end, & x 3, varphi x 8, widetilde x 12, leq x 3, + x 11, ( x 8, m x 17, ) x 8, ., partial, ,, frac x 12, i, begin, - x 11, prime x 8, 1 x 14, split x 2, | x 26, big x 4, y x 8, x x 7] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp42813584" alttext="\begin{split}\big|\partial _{{y^{i}}}\big(\varphi _{{\epsilon _{{m+1}}}}^{{\,\epsilon _{m}}}&(x-y)\big)\big|\leq\left|\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m}}}\right)\frac{1}{\epsilon _{m}}-\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m+1}}}\right)\frac{1}{\epsilon _{{m+1}}}\right|\\ &\leq\left|\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m}}}\right)\right|\left|\frac{1}{\epsilon _{{m}}}-\frac{1}{\epsilon _{{m+1}}}\right|+\left|\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m}}}\right)-\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m+1}}}\right)\right|\frac{1}{\epsilon _{{m+1}}}\\ &\leq\left(\|\varphi _{{\mathbb{R}}}^{{\prime}}\| _{{\infty}}+\|\varphi^{{\prime\prime}}_{{\mathbb{R}}}\| _{{\infty}}\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m+1}}}\right)\frac{\epsilon _{{m}}-\epsilon _{{m+1}}}{\epsilon _{{m}}\epsilon _{{m+1}}}.\end{split}" display="block"><semantics id="idp42811760"><mrow id="idp42811888"><mrow id="idp42812016"><mrow id="idp42812144"><mo id="idp42812272" fence="true">|</mo><mrow id="idp42812800"><msub id="idp42812928"><mo id="idp42813056">∂</mo><msup id="idp42813344"><mi id="idp42815392">y</mi><mi id="idp42815648">i</mi></msup></msub><mo id="idp42815904">⁡</mo><mrow id="idp42816160"><mo id="idp42816288">(</mo><mrow id="idp42816544"><msubsup id="idp42816672"><mi id="idp42816800">φ</mi><msub id="idp42817056"><mi id="idp42817184">ϵ</mi><mrow id="idp42817440"><mi id="idp42817568">m</mi><mo id="idp42817824">+</mo><mn id="idp42818080">1</mn></mrow></msub><msub id="idp42818336"><mi id="idp42818464">ϵ</mi><mi id="idp42818720">m</mi></msub></msubsup><mo id="idp42818976">⁢</mo><mrow id="idp42819232"><mo id="idp42819360">(</mo><mrow id="idp42819616"><mi id="idp42819744">x</mi><mo id="idp42820000">-</mo><mi id="idp42820256">y</mi></mrow><mo id="idp42820512">)</mo></mrow></mrow><mo id="idp42820768">)</mo></mrow></mrow><mo id="idp42821024" fence="true">|</mo></mrow><mo id="idp42821520">≤</mo><mrow id="idp42821808"><mo id="idp42821936" fence="true">|</mo><mrow id="idp42822464"><mrow id="idp42822592"><msubsup id="idp42822720"><mi id="idp42822848">φ</mi><mi id="idp42823136" mathvariant="double-struck">R</mi><mo id="idp42823664">′</mo></msubsup><mo id="idp42823952">⁢</mo><mrow id="idp42824240"><mo id="idp42824368">(</mo><mfrac id="idp42824624"><mrow id="idp42824752"><mo id="idp42824880" fence="true">|</mo><mrow id="idp42825408"><mover id="idp42825536" accent="true"><mi id="idp42825936">x</mi><mo id="idp42826192">~</mo></mover><mo id="idp42826448">-</mo><mover id="idp42826704" accent="true"><mi id="idp42827104">y</mi><mo id="idp42827360">~</mo></mover></mrow><mo id="idp42827616" fence="true">|</mo></mrow><msub id="idp42828144"><mi id="idp42828272">ϵ</mi><mi id="idp42828560">m</mi></msub></mfrac><mo id="idp42828816">)</mo></mrow><mo id="idp42829072">⁢</mo><mfrac id="idp42829360"><mn id="idp42829488">1</mn><msub id="idp42829744"><mi id="idp42829872">ϵ</mi><mi id="idp42830160">m</mi></msub></mfrac></mrow><mo id="idp42830416">-</mo><mrow id="idp42830672"><msubsup id="idp42830800"><mi id="idp42830928">φ</mi><mi id="idp42831216" mathvariant="double-struck">R</mi><mo id="idp42831744">′</mo></msubsup><mo id="idp42832032">⁢</mo><mrow id="idp42832320"><mo id="idp42832448">(</mo><mfrac id="idp42832704"><mrow id="idp42832832"><mo id="idp42832960" fence="true">|</mo><mrow id="idp42833488"><mover id="idp42833616" accent="true"><mi id="idp42834016">x</mi><mo id="idp42834272">~</mo></mover><mo id="idp42834528">-</mo><mover id="idp42834784" accent="true"><mi id="idp42835184">y</mi><mo id="idp42835440">~</mo></mover></mrow><mo id="idp42835696" fence="true">|</mo></mrow><msub id="idp42836224"><mi id="idp42836352">ϵ</mi><mrow id="idp42836640"><mi id="idp42836768">m</mi><mo id="idp42837024">+</mo><mn id="idp42837280">1</mn></mrow></msub></mfrac><mo id="idp42837536">)</mo></mrow><mo id="idp42837792">⁢</mo><mfrac id="idp42838080"><mn id="idp42838208">1</mn><msub id="idp42838464"><mi id="idp42838592">ϵ</mi><mrow id="idp42838880"><mi id="idp42839008">m</mi><mo id="idp42839264">+</mo><mn id="idp42839520">1</mn></mrow></msub></mfrac></mrow></mrow><mo id="idp42839776" fence="true">|</mo></mrow><mo id="idp42840304">≤</mo><mrow id="idp42840592"><mrow id="idp42840720"><mrow id="idp42840848"><mo id="idp42840976" fence="true">|</mo><mrow id="idp42841504"><msubsup id="idp42841632"><mi id="idp42841760">φ</mi><mi id="idp42842048" mathvariant="double-struck">R</mi><mo id="idp42842576">′</mo></msubsup><mo id="idp42842864">⁢</mo><mrow id="idp42843152"><mo id="idp42843280">(</mo><mfrac id="idp42843536"><mrow id="idp42843664"><mo id="idp42843792" fence="true">|</mo><mrow id="idp42844320"><mover id="idp42844448" accent="true"><mi id="idp42844848">x</mi><mo id="idp42845104">~</mo></mover><mo id="idp42845360">-</mo><mover id="idp42845616" accent="true"><mi id="idp42846016">y</mi><mo id="idp42846272">~</mo></mover></mrow><mo id="idp42846528" fence="true">|</mo></mrow><msub id="idp42847056"><mi id="idp42847184">ϵ</mi><mi id="idp42847472">m</mi></msub></mfrac><mo id="idp42847728">)</mo></mrow></mrow><mo id="idp42847984" fence="true">|</mo></mrow><mo id="idp42848512">⁢</mo><mrow id="idp42848800"><mo id="idp42848928" fence="true">|</mo><mrow id="idp42849456"><mfrac id="idp42849584"><mn id="idp42849712">1</mn><msub id="idp42849968"><mi id="idp42850096">ϵ</mi><mi id="idp42850384">m</mi></msub></mfrac><mo id="idp42850640">-</mo><mfrac id="idp42850896"><mn id="idp42851024">1</mn><msub id="idp42851280"><mi id="idp42851408">ϵ</mi><mrow id="idp42851696"><mi id="idp42851824">m</mi><mo id="idp42852080">+</mo><mn id="idp42852336">1</mn></mrow></msub></mfrac></mrow><mo id="idp42852592" fence="true">|</mo></mrow></mrow><mo id="idp42853120">+</mo><mrow id="idp42853376"><mrow id="idp42853504"><mo id="idp42853632" fence="true">|</mo><mrow id="idp42854160"><mrow id="idp42854288"><msubsup id="idp42854416"><mi id="idp42854544">φ</mi><mi id="idp42854832" mathvariant="double-struck">R</mi><mo id="idp42855360">′</mo></msubsup><mo id="idp42855648">⁢</mo><mrow id="idp42855936"><mo id="idp42856064">(</mo><mfrac id="idp42856320"><mrow id="idp42856448"><mo id="idp42856576" fence="true">|</mo><mrow id="idp42857104"><mover id="idp42857232" accent="true"><mi id="idp42857632">x</mi><mo id="idp42857888">~</mo></mover><mo id="idp42858144">-</mo><mover id="idp42858400" accent="true"><mi id="idp42858800">y</mi><mo id="idp42859056">~</mo></mover></mrow><mo id="idp42859312" fence="true">|</mo></mrow><msub id="idp42859840"><mi id="idp42859968">ϵ</mi><mi id="idp42860256">m</mi></msub></mfrac><mo id="idp42860512">)</mo></mrow></mrow><mo id="idp42860768">-</mo><mrow id="idp42861024"><msubsup id="idp42861152"><mi id="idp42861280">φ</mi><mi id="idp42861568" mathvariant="double-struck">R</mi><mo id="idp42862096">′</mo></msubsup><mo id="idp42862384">⁢</mo><mrow id="idp42862672"><mo id="idp42862800">(</mo><mfrac id="idp42863056"><mrow id="idp42863184"><mo id="idp42863312" fence="true">|</mo><mrow id="idp42863840"><mover id="idp42863968" accent="true"><mi id="idp42864368">x</mi><mo id="idp42864624">~</mo></mover><mo id="idp42864880">-</mo><mover id="idp42865136" accent="true"><mi id="idp42865536">y</mi><mo id="idp42865792">~</mo></mover></mrow><mo id="idp42866048" fence="true">|</mo></mrow><msub id="idp42866576"><mi id="idp42866704">ϵ</mi><mrow id="idp42866992"><mi id="idp42867120">m</mi><mo id="idp42867376">+</mo><mn id="idp42867632">1</mn></mrow></msub></mfrac><mo id="idp42867888">)</mo></mrow></mrow></mrow><mo id="idp42868144" fence="true">|</mo></mrow><mo id="idp42868672">⁢</mo><mfrac id="idp42868960"><mn id="idp42869088">1</mn><msub id="idp42869344"><mi id="idp42869472">ϵ</mi><mrow id="idp42869760"><mi id="idp42869888">m</mi><mo id="idp42870144">+</mo><mn id="idp42870400">1</mn></mrow></msub></mfrac></mrow></mrow><mo id="idp42870656">≤</mo><mrow id="idp42870944"><mrow id="idp42871072"><mo id="idp42871200">(</mo><mrow id="idp42871456"><msub id="idp42871584"><mrow id="idp42871712"><mo id="idp42871840" fence="true">∥</mo><msubsup id="idp42872400"><mi id="idp42872528">φ</mi><mi id="idp42872816" mathvariant="double-struck">R</mi><mo id="idp42873344">′</mo></msubsup><mo id="idp42873632" fence="true">∥</mo></mrow><mi id="idp42874192" mathvariant="normal">∞</mi></msub><mo id="idp42874752">+</mo><mrow id="idp42875008"><msub id="idp42875136"><mrow id="idp42875264"><mo id="idp42875392" fence="true">∥</mo><msubsup id="idp42875952"><mi id="idp42876080">φ</mi><mi id="idp42876368" mathvariant="double-struck">R</mi><mi id="idp42876896">′′</mi></msubsup><mo id="idp42877184" fence="true">∥</mo></mrow><mi id="idp42877744" mathvariant="normal">∞</mi></msub><mo id="idp42878304">⁢</mo><mfrac id="idp42878592"><mrow id="idp42878720"><mo id="idp42878848" fence="true">|</mo><mrow id="idp42879376"><mover id="idp42879504" accent="true"><mi id="idp42879904">x</mi><mo id="idp42880160">~</mo></mover><mo id="idp42880416">-</mo><mover id="idp42880672" accent="true"><mi id="idp42881072">y</mi><mo id="idp42881328">~</mo></mover></mrow><mo id="idp42881584" fence="true">|</mo></mrow><msub id="idp42882112"><mi id="idp42882240">ϵ</mi><mrow id="idp42882528"><mi id="idp42882656">m</mi><mo id="idp42882912">+</mo><mn id="idp42883168">1</mn></mrow></msub></mfrac></mrow></mrow><mo id="idp42883424">)</mo></mrow><mo id="idp42883680">⁢</mo><mfrac id="idp42883968"><mrow id="idp42884096"><msub id="idp42884224"><mi id="idp42884352">ϵ</mi><mi id="idp42884640">m</mi></msub><mo id="idp42884896">-</mo><msub id="idp42885152"><mi id="idp42885280">ϵ</mi><mrow id="idp42885568"><mi id="idp42885696">m</mi><mo id="idp42885952">+</mo><mn id="idp42886208">1</mn></mrow></msub></mrow><mrow id="idp42886464"><msub id="idp42886592"><mi id="idp42886720">ϵ</mi><mi id="idp42887008">m</mi></msub><mo id="idp42887264">⁢</mo><msub id="idp42887552"><mi id="idp42887680">ϵ</mi><mrow id="idp42887968"><mi id="idp42888096">m</mi><mo id="idp42888352">+</mo><mn id="idp42888608">1</mn></mrow></msub></mrow></mfrac></mrow></mrow><mo id="idp42888864">.</mo></mrow><annotation-xml id="idp42889120" encoding="MathML-Content"><apply id="idp42889520"><and id="idp42889648"/><apply id="idp42889776"><leq id="idp42889904"/><apply id="idp42890032"><abs id="idp42890160"/><apply id="idp42890288"><apply id="idp42890416"><csymbol id="idp42890544" cd="ambiguous">subscript</csymbol><partialdiff id="idp42891104"/><apply id="idp42891232"><csymbol id="idp42891360" cd="ambiguous">superscript</csymbol><ci id="idp42891920">y</ci><ci id="idp42892176">i</ci></apply></apply><apply id="idp42892432"><times id="idp42892560"/><apply id="idp42892688"><csymbol id="idp42892816" cd="ambiguous">superscript</csymbol><apply id="idp42893376"><csymbol id="idp42893504" cd="ambiguous">subscript</csymbol><ci id="idp42894064">φ</ci><apply id="idp42894352"><csymbol id="idp42894480" cd="ambiguous">subscript</csymbol><ci id="idp42895040">ϵ</ci><apply id="idp42895328"><plus id="idp42895456"/><ci id="idp42895584">m</ci><cn id="idp42895840" type="integer">1</cn></apply></apply></apply><apply id="idp42896368"><csymbol id="idp42896496" cd="ambiguous">subscript</csymbol><ci id="idp42897056">ϵ</ci><ci id="idp42897344">m</ci></apply></apply><apply id="idp42897600"><minus id="idp42897728"/><ci id="idp42897856">x</ci><ci id="idp42898112">y</ci></apply></apply></apply></apply><apply id="S5.Ex5.m1.sh1bu.cmml"><abs id="S5.Ex5.m1.sh1.cmml"/><apply id="S5.Ex5.m1.sh1bt.cmml"><minus id="S5.Ex5.m1.sh1a.cmml"/><apply id="S5.Ex5.m1.sh1ag.cmml"><times id="S5.Ex5.m1.sh1b.cmml"/><apply id="S5.Ex5.m1.sh1i.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh1c.cmml">subscript</csymbol><apply id="S5.Ex5.m1.sh1g.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh1d.cmml">superscript</csymbol><ci id="S5.Ex5.m1.sh1e.cmml">φ</ci><ci id="S5.Ex5.m1.sh1f.cmml">′</ci></apply><ci id="S5.Ex5.m1.sh1h.cmml">R</ci></apply><apply id="S5.Ex5.m1.sh1y.cmml"><divide id="S5.Ex5.m1.sh1j.cmml"/><apply id="S5.Ex5.m1.sh1t.cmml"><abs id="S5.Ex5.m1.sh1k.cmml"/><apply id="S5.Ex5.m1.sh1s.cmml"><minus id="S5.Ex5.m1.sh1l.cmml"/><apply id="S5.Ex5.m1.sh1o.cmml"><ci id="S5.Ex5.m1.sh1m.cmml">~</ci><ci id="S5.Ex5.m1.sh1n.cmml">x</ci></apply><apply id="S5.Ex5.m1.sh1r.cmml"><ci id="S5.Ex5.m1.sh1p.cmml">~</ci><ci id="S5.Ex5.m1.sh1q.cmml">y</ci></apply></apply></apply><apply id="S5.Ex5.m1.sh1x.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh1u.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh1v.cmml">ϵ</ci><ci id="S5.Ex5.m1.sh1w.cmml">m</ci></apply></apply><apply id="S5.Ex5.m1.sh1af.cmml"><divide id="S5.Ex5.m1.sh1z.cmml"/><cn type="integer" id="S5.Ex5.m1.sh1aa.cmml">1</cn><apply id="S5.Ex5.m1.sh1ae.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh1ab.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh1ac.cmml">ϵ</ci><ci id="S5.Ex5.m1.sh1ad.cmml">m</ci></apply></apply></apply><apply id="S5.Ex5.m1.sh1bs.cmml"><times id="S5.Ex5.m1.sh1ah.cmml"/><apply id="S5.Ex5.m1.sh1ao.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh1ai.cmml">subscript</csymbol><apply id="S5.Ex5.m1.sh1am.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh1aj.cmml">superscript</csymbol><ci id="S5.Ex5.m1.sh1ak.cmml">φ</ci><ci id="S5.Ex5.m1.sh1al.cmml">′</ci></apply><ci id="S5.Ex5.m1.sh1an.cmml">R</ci></apply><apply id="S5.Ex5.m1.sh1bh.cmml"><divide id="S5.Ex5.m1.sh1ap.cmml"/><apply id="S5.Ex5.m1.sh1az.cmml"><abs id="S5.Ex5.m1.sh1aq.cmml"/><apply id="S5.Ex5.m1.sh1ay.cmml"><minus id="S5.Ex5.m1.sh1ar.cmml"/><apply id="S5.Ex5.m1.sh1au.cmml"><ci id="S5.Ex5.m1.sh1as.cmml">~</ci><ci id="S5.Ex5.m1.sh1at.cmml">x</ci></apply><apply id="S5.Ex5.m1.sh1ax.cmml"><ci id="S5.Ex5.m1.sh1av.cmml">~</ci><ci id="S5.Ex5.m1.sh1aw.cmml">y</ci></apply></apply></apply><apply id="S5.Ex5.m1.sh1bg.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh1ba.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh1bb.cmml">ϵ</ci><apply id="S5.Ex5.m1.sh1bf.cmml"><plus id="S5.Ex5.m1.sh1bc.cmml"/><ci id="S5.Ex5.m1.sh1bd.cmml">m</ci><cn type="integer" id="S5.Ex5.m1.sh1be.cmml">1</cn></apply></apply></apply><apply id="S5.Ex5.m1.sh1br.cmml"><divide id="S5.Ex5.m1.sh1bi.cmml"/><cn type="integer" id="S5.Ex5.m1.sh1bj.cmml">1</cn><apply id="S5.Ex5.m1.sh1bq.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh1bk.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh1bl.cmml">ϵ</ci><apply id="S5.Ex5.m1.sh1bp.cmml"><plus id="S5.Ex5.m1.sh1bm.cmml"/><ci id="S5.Ex5.m1.sh1bn.cmml">m</ci><cn type="integer" id="S5.Ex5.m1.sh1bo.cmml">1</cn></apply></apply></apply></apply></apply></apply></apply><apply id="idp42936096"><leq id="idp42936224"/><share id="idp42936352" href="#S5.Ex5.m1.sh1.cmml"/><apply id="S5.Ex5.m1.sh2dp.cmml"><plus id="S5.Ex5.m1.sh2.cmml"/><apply id="S5.Ex5.m1.sh2ax.cmml"><times id="S5.Ex5.m1.sh2a.cmml"/><apply id="S5.Ex5.m1.sh2ab.cmml"><abs id="S5.Ex5.m1.sh2b.cmml"/><apply id="S5.Ex5.m1.sh2aa.cmml"><times id="S5.Ex5.m1.sh2c.cmml"/><apply id="S5.Ex5.m1.sh2j.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2d.cmml">subscript</csymbol><apply id="S5.Ex5.m1.sh2h.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2e.cmml">superscript</csymbol><ci id="S5.Ex5.m1.sh2f.cmml">φ</ci><ci id="S5.Ex5.m1.sh2g.cmml">′</ci></apply><ci id="S5.Ex5.m1.sh2i.cmml">R</ci></apply><apply id="S5.Ex5.m1.sh2z.cmml"><divide id="S5.Ex5.m1.sh2k.cmml"/><apply id="S5.Ex5.m1.sh2u.cmml"><abs id="S5.Ex5.m1.sh2l.cmml"/><apply id="S5.Ex5.m1.sh2t.cmml"><minus id="S5.Ex5.m1.sh2m.cmml"/><apply id="S5.Ex5.m1.sh2p.cmml"><ci id="S5.Ex5.m1.sh2n.cmml">~</ci><ci id="S5.Ex5.m1.sh2o.cmml">x</ci></apply><apply id="S5.Ex5.m1.sh2s.cmml"><ci id="S5.Ex5.m1.sh2q.cmml">~</ci><ci id="S5.Ex5.m1.sh2r.cmml">y</ci></apply></apply></apply><apply id="S5.Ex5.m1.sh2y.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2v.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh2w.cmml">ϵ</ci><ci id="S5.Ex5.m1.sh2x.cmml">m</ci></apply></apply></apply></apply><apply id="S5.Ex5.m1.sh2aw.cmml"><abs id="S5.Ex5.m1.sh2ac.cmml"/><apply id="S5.Ex5.m1.sh2av.cmml"><minus id="S5.Ex5.m1.sh2ad.cmml"/><apply id="S5.Ex5.m1.sh2ak.cmml"><divide id="S5.Ex5.m1.sh2ae.cmml"/><cn type="integer" id="S5.Ex5.m1.sh2af.cmml">1</cn><apply id="S5.Ex5.m1.sh2aj.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2ag.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh2ah.cmml">ϵ</ci><ci id="S5.Ex5.m1.sh2ai.cmml">m</ci></apply></apply><apply id="S5.Ex5.m1.sh2au.cmml"><divide id="S5.Ex5.m1.sh2al.cmml"/><cn type="integer" id="S5.Ex5.m1.sh2am.cmml">1</cn><apply id="S5.Ex5.m1.sh2at.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2an.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh2ao.cmml">ϵ</ci><apply id="S5.Ex5.m1.sh2as.cmml"><plus id="S5.Ex5.m1.sh2ap.cmml"/><ci id="S5.Ex5.m1.sh2aq.cmml">m</ci><cn type="integer" id="S5.Ex5.m1.sh2ar.cmml">1</cn></apply></apply></apply></apply></apply></apply><apply id="S5.Ex5.m1.sh2do.cmml"><times id="S5.Ex5.m1.sh2ay.cmml"/><apply id="S5.Ex5.m1.sh2dd.cmml"><abs id="S5.Ex5.m1.sh2az.cmml"/><apply id="S5.Ex5.m1.sh2dc.cmml"><minus id="S5.Ex5.m1.sh2ba.cmml"/><apply id="S5.Ex5.m1.sh2bz.cmml"><times id="S5.Ex5.m1.sh2bb.cmml"/><apply id="S5.Ex5.m1.sh2bi.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2bc.cmml">subscript</csymbol><apply id="S5.Ex5.m1.sh2bg.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2bd.cmml">superscript</csymbol><ci id="S5.Ex5.m1.sh2be.cmml">φ</ci><ci id="S5.Ex5.m1.sh2bf.cmml">′</ci></apply><ci id="S5.Ex5.m1.sh2bh.cmml">R</ci></apply><apply id="S5.Ex5.m1.sh2by.cmml"><divide id="S5.Ex5.m1.sh2bj.cmml"/><apply id="S5.Ex5.m1.sh2bt.cmml"><abs id="S5.Ex5.m1.sh2bk.cmml"/><apply id="S5.Ex5.m1.sh2bs.cmml"><minus id="S5.Ex5.m1.sh2bl.cmml"/><apply id="S5.Ex5.m1.sh2bo.cmml"><ci id="S5.Ex5.m1.sh2bm.cmml">~</ci><ci id="S5.Ex5.m1.sh2bn.cmml">x</ci></apply><apply id="S5.Ex5.m1.sh2br.cmml"><ci id="S5.Ex5.m1.sh2bp.cmml">~</ci><ci id="S5.Ex5.m1.sh2bq.cmml">y</ci></apply></apply></apply><apply id="S5.Ex5.m1.sh2bx.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2bu.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh2bv.cmml">ϵ</ci><ci id="S5.Ex5.m1.sh2bw.cmml">m</ci></apply></apply></apply><apply id="S5.Ex5.m1.sh2db.cmml"><times id="S5.Ex5.m1.sh2ca.cmml"/><apply id="S5.Ex5.m1.sh2ch.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2cb.cmml">subscript</csymbol><apply id="S5.Ex5.m1.sh2cf.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2cc.cmml">superscript</csymbol><ci id="S5.Ex5.m1.sh2cd.cmml">φ</ci><ci id="S5.Ex5.m1.sh2ce.cmml">′</ci></apply><ci id="S5.Ex5.m1.sh2cg.cmml">R</ci></apply><apply id="S5.Ex5.m1.sh2da.cmml"><divide id="S5.Ex5.m1.sh2ci.cmml"/><apply id="S5.Ex5.m1.sh2cs.cmml"><abs id="S5.Ex5.m1.sh2cj.cmml"/><apply id="S5.Ex5.m1.sh2cr.cmml"><minus id="S5.Ex5.m1.sh2ck.cmml"/><apply id="S5.Ex5.m1.sh2cn.cmml"><ci id="S5.Ex5.m1.sh2cl.cmml">~</ci><ci id="S5.Ex5.m1.sh2cm.cmml">x</ci></apply><apply id="S5.Ex5.m1.sh2cq.cmml"><ci id="S5.Ex5.m1.sh2co.cmml">~</ci><ci id="S5.Ex5.m1.sh2cp.cmml">y</ci></apply></apply></apply><apply id="S5.Ex5.m1.sh2cz.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2ct.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh2cu.cmml">ϵ</ci><apply id="S5.Ex5.m1.sh2cy.cmml"><plus id="S5.Ex5.m1.sh2cv.cmml"/><ci id="S5.Ex5.m1.sh2cw.cmml">m</ci><cn type="integer" id="S5.Ex5.m1.sh2cx.cmml">1</cn></apply></apply></apply></apply></apply></apply><apply id="S5.Ex5.m1.sh2dn.cmml"><divide id="S5.Ex5.m1.sh2de.cmml"/><cn type="integer" id="S5.Ex5.m1.sh2df.cmml">1</cn><apply id="S5.Ex5.m1.sh2dm.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh2dg.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh2dh.cmml">ϵ</ci><apply id="S5.Ex5.m1.sh2dl.cmml"><plus id="S5.Ex5.m1.sh2di.cmml"/><ci id="S5.Ex5.m1.sh2dj.cmml">m</ci><cn type="integer" id="S5.Ex5.m1.sh2dk.cmml">1</cn></apply></apply></apply></apply></apply></apply><apply id="idp42997344"><leq id="idp42997472"/><share id="idp42997600" href="#S5.Ex5.m1.sh2.cmml"/><apply id="S5.Ex5.m1.sh3bx.cmml"><times id="S5.Ex5.m1.sh3.cmml"/><apply id="S5.Ex5.m1.sh3au.cmml"><plus id="S5.Ex5.m1.sh3a.cmml"/><apply id="S5.Ex5.m1.sh3m.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3b.cmml">subscript</csymbol><apply id="S5.Ex5.m1.sh3k.cmml"><csymbol cd="latexml" id="S5.Ex5.m1.sh3c.cmml">norm</csymbol><apply id="S5.Ex5.m1.sh3j.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3d.cmml">superscript</csymbol><apply id="S5.Ex5.m1.sh3h.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3e.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh3f.cmml">φ</ci><ci id="S5.Ex5.m1.sh3g.cmml">R</ci></apply><ci id="S5.Ex5.m1.sh3i.cmml">′</ci></apply></apply><infinity id="S5.Ex5.m1.sh3l.cmml"/></apply><apply id="S5.Ex5.m1.sh3at.cmml"><times id="S5.Ex5.m1.sh3n.cmml"/><apply id="S5.Ex5.m1.sh3z.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3o.cmml">subscript</csymbol><apply id="S5.Ex5.m1.sh3x.cmml"><csymbol cd="latexml" id="S5.Ex5.m1.sh3p.cmml">norm</csymbol><apply id="S5.Ex5.m1.sh3w.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3q.cmml">subscript</csymbol><apply id="S5.Ex5.m1.sh3u.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3r.cmml">superscript</csymbol><ci id="S5.Ex5.m1.sh3s.cmml">φ</ci><ci id="S5.Ex5.m1.sh3t.cmml">′′</ci></apply><ci id="S5.Ex5.m1.sh3v.cmml">R</ci></apply></apply><infinity id="S5.Ex5.m1.sh3y.cmml"/></apply><apply id="S5.Ex5.m1.sh3as.cmml"><divide id="S5.Ex5.m1.sh3aa.cmml"/><apply id="S5.Ex5.m1.sh3ak.cmml"><abs id="S5.Ex5.m1.sh3ab.cmml"/><apply id="S5.Ex5.m1.sh3aj.cmml"><minus id="S5.Ex5.m1.sh3ac.cmml"/><apply id="S5.Ex5.m1.sh3af.cmml"><ci id="S5.Ex5.m1.sh3ad.cmml">~</ci><ci id="S5.Ex5.m1.sh3ae.cmml">x</ci></apply><apply id="S5.Ex5.m1.sh3ai.cmml"><ci id="S5.Ex5.m1.sh3ag.cmml">~</ci><ci id="S5.Ex5.m1.sh3ah.cmml">y</ci></apply></apply></apply><apply id="S5.Ex5.m1.sh3ar.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3al.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh3am.cmml">ϵ</ci><apply id="S5.Ex5.m1.sh3aq.cmml"><plus id="S5.Ex5.m1.sh3an.cmml"/><ci id="S5.Ex5.m1.sh3ao.cmml">m</ci><cn type="integer" id="S5.Ex5.m1.sh3ap.cmml">1</cn></apply></apply></apply></apply></apply><apply id="S5.Ex5.m1.sh3bw.cmml"><divide id="S5.Ex5.m1.sh3av.cmml"/><apply id="S5.Ex5.m1.sh3bi.cmml"><minus id="S5.Ex5.m1.sh3aw.cmml"/><apply id="S5.Ex5.m1.sh3ba.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3ax.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh3ay.cmml">ϵ</ci><ci id="S5.Ex5.m1.sh3az.cmml">m</ci></apply><apply id="S5.Ex5.m1.sh3bh.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3bb.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh3bc.cmml">ϵ</ci><apply id="S5.Ex5.m1.sh3bg.cmml"><plus id="S5.Ex5.m1.sh3bd.cmml"/><ci id="S5.Ex5.m1.sh3be.cmml">m</ci><cn type="integer" id="S5.Ex5.m1.sh3bf.cmml">1</cn></apply></apply></apply><apply id="S5.Ex5.m1.sh3bv.cmml"><times id="S5.Ex5.m1.sh3bj.cmml"/><apply id="S5.Ex5.m1.sh3bn.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3bk.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh3bl.cmml">ϵ</ci><ci id="S5.Ex5.m1.sh3bm.cmml">m</ci></apply><apply id="S5.Ex5.m1.sh3bu.cmml"><csymbol cd="ambiguous" id="S5.Ex5.m1.sh3bo.cmml">subscript</csymbol><ci id="S5.Ex5.m1.sh3bp.cmml">ϵ</ci><apply id="S5.Ex5.m1.sh3bt.cmml"><plus id="S5.Ex5.m1.sh3bq.cmml"/><ci id="S5.Ex5.m1.sh3br.cmml">m</ci><cn type="integer" id="S5.Ex5.m1.sh3bs.cmml">1</cn></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp43038464" encoding="application/x-tex">\begin{split}\big|\partial _{{y^{i}}}\big(\varphi _{{\epsilon _{{m+1}}}}^{{\,\epsilon _{m}}}&(x-y)\big)\big|\leq\left|\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m}}}\right)\frac{1}{\epsilon _{m}}-\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m+1}}}\right)\frac{1}{\epsilon _{{m+1}}}\right|\\ &\leq\left|\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m}}}\right)\right|\left|\frac{1}{\epsilon _{{m}}}-\frac{1}{\epsilon _{{m+1}}}\right|+\left|\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m}}}\right)-\varphi^{{\prime}}_{{\mathbb{R}}}\left(\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m+1}}}\right)\right|\frac{1}{\epsilon _{{m+1}}}\\ &\leq\left(\|\varphi _{{\mathbb{R}}}^{{\prime}}\| _{{\infty}}+\|\varphi^{{\prime\prime}}_{{\mathbb{R}}}\| _{{\infty}}\frac{|\widetilde{x}-\widetilde{y}|}{\epsilon _{{m+1}}}\right)\frac{\epsilon _{{m}}-\epsilon _{{m+1}}}{\epsilon _{{m}}\epsilon _{{m+1}}}.\end{split}</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp500272"><h4>Hit idp500272</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 99</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/204/f081544.xhtml#idp500272</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:59296(000013%) VariableMap:[min, + x 2, (, ), DW, , x 2, frac, - x 5, i x 8, 2 x 3, 1 x 5, W x 6, sigma, \ x 5, _ x 8, left, | x 6, right, =] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 1 occurences for 'infty' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp500272" alttext="DW_{i}=\sigma _{i}\min\left(2|W_{{i+1}}-W_{i}|,\frac{1}{2}|W_{{i+1}}-W_{{i-1}}|,2|W_{{i}}-W_{{i-1}}|\right)" display="block"><semantics id="idp501120"><mrow id="idp501248"><mrow id="idp501376"><mi id="idp501504">D</mi><mo id="idp501760">⁢</mo><msub id="idp502016"><mi id="idp502144">W</mi><mi id="idp502400">i</mi></msub></mrow><mo id="idp502656">=</mo><mrow id="idp502912"><msub id="idp503040"><mi id="idp503168">σ</mi><mi id="idp503424">i</mi></msub><mo id="idp503680">⁢</mo><mrow id="idp503968"><mo id="idp504096" movablelimits="false">min</mo><mo id="idp504624">⁡</mo><mrow id="idp504912"><mo id="idp505040">(</mo><mrow id="idp505296"><mrow id="idp505424"><mn id="idp505552">2</mn><mo id="idp505808">⁢</mo><mrow id="idp506096"><mo id="idp506224" fence="true">|</mo><mrow id="idp506752"><msub id="idp506880"><mi id="idp507008">W</mi><mrow id="idp507264"><mi id="idp507392">i</mi><mo id="idp507648">+</mo><mn id="idp507904">1</mn></mrow></msub><mo id="idp508160">-</mo><msub id="idp508416"><mi id="idp508544">W</mi><mi id="idp508800">i</mi></msub></mrow><mo id="idp509056" fence="true">|</mo></mrow></mrow><mo id="idp509584">,</mo><mrow id="idp509840"><mfrac id="idp509968"><mn id="idp510096">1</mn><mn id="idp510352">2</mn></mfrac><mo id="idp510608">⁢</mo><mrow id="idp510896"><mo id="idp511024" fence="true">|</mo><mrow id="idp511552"><msub id="idp511680"><mi id="idp511808">W</mi><mrow id="idp512064"><mi id="idp512192">i</mi><mo id="idp512448">+</mo><mn id="idp512704">1</mn></mrow></msub><mo id="idp512960">-</mo><msub id="idp513216"><mi id="idp513344">W</mi><mrow id="idp513600"><mi id="idp513728">i</mi><mo id="idp513984">-</mo><mn id="idp514240">1</mn></mrow></msub></mrow><mo id="idp514496" fence="true">|</mo></mrow></mrow><mo id="idp515024">,</mo><mrow id="idp515280"><mn id="idp515408">2</mn><mo id="idp515664">⁢</mo><mrow id="idp515952"><mo id="idp516080" fence="true">|</mo><mrow id="idp516608"><msub id="idp516736"><mi id="idp516864">W</mi><mi id="idp517120">i</mi></msub><mo id="idp517376">-</mo><msub id="idp517632"><mi id="idp517760">W</mi><mrow id="idp518016"><mi id="idp518144">i</mi><mo id="idp518400">-</mo><mn id="idp518656">1</mn></mrow></msub></mrow><mo id="idp518912" fence="true">|</mo></mrow></mrow></mrow><mo id="idp519440">)</mo></mrow></mrow></mrow></mrow><annotation-xml id="idp519696" encoding="MathML-Content"><apply id="idp520096"><eq id="idp520224"/><apply id="idp520352"><times id="idp520480"/><ci id="idp520608">D</ci><apply id="idp520864"><csymbol id="idp520992" cd="ambiguous">subscript</csymbol><ci id="idp521552">W</ci><ci id="idp521808">i</ci></apply></apply><apply id="idp522064"><times id="idp522192"/><apply id="idp522320"><csymbol id="idp522448" cd="ambiguous">subscript</csymbol><ci id="idp523008">σ</ci><ci id="idp523296">i</ci></apply><apply id="idp523552"><min id="idp523680"/><apply id="idp523808"><vector id="idp523936"/><apply id="idp524064"><times id="idp524192"/><cn id="idp524320" type="integer">2</cn><apply id="idp524848"><abs id="idp524976"/><apply id="idp525104"><minus id="idp525232"/><apply id="idp525360"><csymbol id="idp525488" cd="ambiguous">subscript</csymbol><ci id="idp526048">W</ci><apply id="idp526304"><plus id="idp526432"/><ci id="idp526560">i</ci><cn id="idp526816" type="integer">1</cn></apply></apply><apply id="idp527344"><csymbol id="idp527472" cd="ambiguous">subscript</csymbol><ci id="idp528032">W</ci><ci id="idp528288">i</ci></apply></apply></apply></apply><apply id="idp528544"><times id="idp528672"/><apply id="idp528800"><divide id="idp528928"/><cn id="idp529056" type="integer">1</cn><cn id="idp529584" type="integer">2</cn></apply><apply id="idp530112"><abs id="idp530240"/><apply id="idp530368"><minus id="idp530496"/><apply id="idp530624"><csymbol id="idp530752" cd="ambiguous">subscript</csymbol><ci id="idp531312">W</ci><apply id="idp531568"><plus id="idp531696"/><ci id="idp531824">i</ci><cn id="idp532080" type="integer">1</cn></apply></apply><apply id="idp532608"><csymbol id="idp532736" cd="ambiguous">subscript</csymbol><ci id="idp533296">W</ci><apply id="idp533552"><minus id="idp533680"/><ci id="idp533808">i</ci><cn id="idp534064" type="integer">1</cn></apply></apply></apply></apply></apply><apply id="idp534592"><times id="idp534720"/><cn id="idp534848" type="integer">2</cn><apply id="idp535376"><abs id="idp535504"/><apply id="idp535632"><minus id="idp535760"/><apply id="idp535888"><csymbol id="idp536016" cd="ambiguous">subscript</csymbol><ci id="idp536576">W</ci><ci id="idp536832">i</ci></apply><apply id="idp537088"><csymbol id="idp537216" cd="ambiguous">subscript</csymbol><ci id="idp537776">W</ci><apply id="idp538032"><minus id="idp538160"/><ci id="idp538288">i</ci><cn id="idp538544" type="integer">1</cn></apply></apply></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp539072" encoding="application/x-tex">DW_{i}=\sigma _{i}\min\left(2|W_{{i+1}}-W_{i}|,\frac{1}{2}|W_{{i+1}}-W_{{i-1}}|,2|W_{{i}}-W_{{i-1}}|\right)</annotation></semantics></math> <br /> End of MathML <br /> .</div><div id="idp542960"><h4>Hit idp542960</h4> <ul> <li>Reviwer: xxx</li> <li>Reviwer score: 0</li> <li>Formulasearchengine rank: 100</li> <li>Formulasearchengine score: 0</li> <li>Reference to collection: _PREFIX_/18/f006977.xhtml#idp542960</li> </ul><blockcode linenumbers="off" title="justification"> no match at pos:63762(000022%) VariableMap:[f, dt, b, + x 3, sum, beta x 2, j x 4, infty x 2, - x 2, frac x 2, 2, 1 x 2, 0, dN, P x 3, alpha, ], \ x 8, _ x 7, ^, [, = x 2] Expects 1 occurences for 'to' but has only 0 Expects 1 occurences for 'sim' but has only 0 Expects 4 occurences for '|' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0</blockcode><br /> Rendered MathML: <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" id="idp542960" alttext="\frac{dN_{0}}{dt}=\sum^{{\infty}}_{{j=-\infty}}[\beta _{f}P_{{j+1}}+\beta _{b}P_{j}-{\alpha}P_{{j+\frac{1}{2}}}]" display="block"><semantics id="idp543808"><mrow id="idp543936"><mfrac id="idp544064"><mrow id="idp544192"><mi id="idp544320">d</mi><mo id="idp544576">⁢</mo><msub id="idp544832"><mi id="idp544960">N</mi><mn id="idp545216">0</mn></msub></mrow><mrow id="idp545472"><mi id="idp545600">d</mi><mo id="idp545856">⁢</mo><mi id="idp546112">t</mi></mrow></mfrac><mo id="idp546368">=</mo><mrow id="idp546624"><munder id="idp546752"><mover id="idp546880"><mo id="idp547008" movablelimits="false">∑</mo><mi id="idp547568" mathvariant="normal">∞</mi></mover><mrow id="idp548128"><mi id="idp548256">j</mi><mo id="idp548512">=</mo><mrow id="idp548768"><mo id="idp548896">-</mo><mi id="idp549152" mathvariant="normal">∞</mi></mrow></mrow></munder><mrow id="idp549712"><mo id="idp549840">[</mo><mrow id="idp550096"><mrow id="idp550224"><msub id="idp550352"><mi id="idp550480">β</mi><mi id="idp550768">f</mi></msub><mo id="idp551024">⁢</mo><msub id="idp551312"><mi id="idp551440">P</mi><mrow id="idp551696"><mi id="idp551824">j</mi><mo id="idp552080">+</mo><mn id="idp552336">1</mn></mrow></msub></mrow><mo id="idp552592">+</mo><mrow id="idp552848"><msub id="idp552976"><mi id="idp553104">β</mi><mi id="idp553392">b</mi></msub><mo id="idp553648">⁢</mo><msub id="idp553936"><mi id="idp554064">P</mi><mi id="idp554320">j</mi></msub></mrow><mo id="idp554576">-</mo><mrow id="idp554832"><mi id="idp554960">α</mi><mo id="idp555248">⁢</mo><msub id="idp555536"><mi id="idp555664">P</mi><mrow id="idp555920"><mi id="idp556048">j</mi><mo id="idp556304">+</mo><mfrac id="idp556560"><mn id="idp556688">1</mn><mn id="idp556944">2</mn></mfrac></mrow></msub></mrow></mrow><mo id="idp557200">]</mo></mrow></mrow></mrow><annotation-xml id="idp557456" encoding="MathML-Content"><apply id="idp557856"><eq id="idp557984"/><apply id="idp558112"><divide id="idp558240"/><apply id="idp558368"><times id="idp558496"/><ci id="idp558624">d</ci><apply id="idp558880"><csymbol id="idp559008" cd="ambiguous">subscript</csymbol><ci id="idp559568">N</ci><cn id="idp559824" type="integer">0</cn></apply></apply><apply id="idp560352"><times id="idp560480"/><ci id="idp560608">d</ci><ci id="idp560864">t</ci></apply></apply><apply id="idp561120"><apply id="idp561248"><csymbol id="idp561376" cd="ambiguous">subscript</csymbol><apply id="idp561936"><csymbol id="idp562064" cd="ambiguous">superscript</csymbol><sum id="idp562624"/><infinity id="idp562752"/></apply><apply id="idp562880"><eq id="idp563008"/><ci id="idp563136">j</ci><apply id="idp563392"><minus id="idp563520"/><infinity id="idp563648"/></apply></apply></apply><apply id="idp563776"><minus id="idp563904"/><apply id="idp564032"><plus id="idp564160"/><apply id="idp564288"><times id="idp564416"/><apply id="idp564544"><csymbol id="idp564672" cd="ambiguous">subscript</csymbol><ci id="idp565232">β</ci><ci id="idp565520">f</ci></apply><apply id="idp565776"><csymbol id="idp565904" cd="ambiguous">subscript</csymbol><ci id="idp566464">P</ci><apply id="idp566720"><plus id="idp566848"/><ci id="idp566976">j</ci><cn id="idp567232" type="integer">1</cn></apply></apply></apply><apply id="idp567760"><times id="idp567888"/><apply id="idp568016"><csymbol id="idp568144" cd="ambiguous">subscript</csymbol><ci id="idp568704">β</ci><ci id="idp568992">b</ci></apply><apply id="idp569248"><csymbol id="idp569376" cd="ambiguous">subscript</csymbol><ci id="idp569936">P</ci><ci id="idp570192">j</ci></apply></apply></apply><apply id="idp570448"><times id="idp570576"/><ci id="idp570704">α</ci><apply id="idp570992"><csymbol id="idp571120" cd="ambiguous">subscript</csymbol><ci id="idp571680">P</ci><apply id="idp571936"><plus id="idp572064"/><ci id="idp572192">j</ci><apply id="idp572448"><divide id="idp572576"/><cn id="idp572704" type="integer">1</cn><cn id="idp573232" type="integer">2</cn></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation id="idp573760" encoding="application/x-tex">\frac{dN_{0}}{dt}=\sum^{{\infty}}_{{j=-\infty}}[\beta _{f}P_{{j+1}}+\beta _{b}P_{j}-{\alpha}P_{{j+\frac{1}{2}}}]</annotation></semantics></math> <br /> End of MathML <br /> .</div></div></div></div><section class="field field-name-field-tags field-type-taxonomy-term-reference field-label-above view-mode-full view-mode-full"><h2 class="field-label">Tags: </h2><ul class="field-items"><li class="field-item even" rel="dc:subject"><a href="/ntcir10-math/results/FS" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">NTCIR Formulae (only) Search</a></li></ul></section> </div> <nav class="clearfix"><ul class="links"><li class="comment_forbidden first last"><span><a href="/user/login?destination=node/104%23comment-form">Log in</a> to post comments</span></li></ul></nav> </div> </article> </div></div> </section> </div></div> </div></div> </div></div> <div id="page-footer"> <div id="footer-panels-wrapper"><div class="container clearfix"> <div class="four-4x25 gpanel clearfix"> <div class="region region-four-fourth"><div class="region-inner clearfix"><div id="block-block-1" class="block block-block no-title odd first last block-count-3 block-region-four-fourth block-1" ><div class="block-inner clearfix"> <div class="block-content content no-title"><p>By <a href="mailto:info@formulasearchengine.com">Moritz Schubotz</a>, Berlin 2012 (<a href="https://plus.google.com/u/0/104541687836095789339?<br /> rel=author">g+</a>)</p> </div> </div></div></div></div> </div> </div></div> <div id="footer-wrapper"><div class="container clearfix"> <footer class="clearfix"> <div class="region region-footer"><div class="region-inner clearfix"><nav id="block-superfish-2" class="block block-superfish no-title odd first last block-count-4 block-region-footer block-2" ><div class="block-inner clearfix"> <div class="block-content content clearfix no-title"><ul id="superfish-2" class="menu sf-menu sf-menu-administration sf-horizontal sf-style-none sf-total-items-1 sf-parent-items-0 sf-single-items-1"><li id="menu-450-2" class="firstandlast odd sf-item-1 sf-depth-1 sf-no-children"><a href="/Impressum" title="Legeal notices" class="sf-depth-1">Impressum</a></li></ul></div> </div></nav></div></div> </footer> </div></div> </div> </div></div> </body> </html>