Nevanlinna counting function

Results for NTCIR10-FS-13

Query

Original Query

NTCIR10-FS-13 Formula Search Query Nevanlinna counting function N_{{\qvar{k})}}(\qvar{r},\frac{1}{\qvar{f}-\qvar{a}}) N ) ( , 1 - ) subscript N k normal-) 1

Compiled by FSE

Token-Filter

  • TeXFilter:[1, \, (, _, N, ) x 2, ,, -, frac]
  • Presentation-MathML:[1, N, ), ,, -]

MathML-Filter

mrow[msub[mi[N];mrow[(.*?);mo[)]]];mfenced[mrow[(.*?);mo[,];mfrac[mn[1];mrow[(.*?);mo[-];(.*?)]]]]] apply[times;apply[csymbol[subscript];ci[N];cerror[csymbol;csymbol[k];ci[normal-)]]];apply[interval;(.*);apply[divide;cn[1];apply[minus;(.*);(.*)]]]]

Word filter

No words found specifified. Rendered Presentation-MathML: N ) ( , 1 - )

Results

Summary

Reviewer score 4

  • Items reviewd: 2
  • Accumulated score: 0
  • Formulasearchengine found: 0

Reviewer score 0

  • Items reviewd: 98
  • Accumulated score: 486688
  • Formulasearchengine found: 46
.
+++o
200000+0000
5000-200000004646
<5000205254
2098100
50000000:0 200000:0 10000:46 5000:46

Short result list

Detailed results for reviewer score 4

Hit id60248

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 47
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/56/f022186.xhtml#id60248
no match at pos:98995(000017%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 4
Rendered MathML:
freiθfrsuperscripteiθ
End of MathML
.

Hit id74377

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 48
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/167/f066713.xhtml#id74377
no match at pos:320710(000090%) VariableMap:[rightarrow, f, tilde, C x 2, n, bf x 2, :, \ x 4, ^] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 4
Rendered MathML:
f~:CCn:~fCsuperscriptCn\tilde{f}:{\bf C}\rightarrow{\bf C}^{n}
End of MathML
.

Detailed results for reviewer score 0

Hit id66988

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 1
  • Formulasearchengine score: 10652
  • Reference to collection: _PREFIX_/223/f089010.xhtml#id66988
found all required tokens in TeX $\displaystyle{\cal I}_{{m,n}}=2^{N}\cdot i^{N}\cdot\sum^{{N-1}}_{{k=1}}\frac{(-1)^{k}\cdot\left(\displaystyle\sin\frac{\pi k}{N}\right)^{N}}{(\alpha^{{-k}}-1)^{{m+1}}(\alpha^{{k}}-1)^{{n+1}}}\,,\,\,\,\,\,\,\,(m,n=0,1,2,\cdots,N-2)\,,$ at pos:204124(11%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.99609375 * TOKEN_SCORE[1] + 1.9999999701976776 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.75 * TOKEN_SCORE[_] + 1.984375 * TOKEN_SCORE[N] + 1.96875 * TOKEN_SCORE[)] + 1.9999923706054688 * TOKEN_SCORE[,] + 1.984375 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.99609375*0.0102451205633244+1.9999999701976776*5.92879328325965E-4+1.96875*0.00418257496311516+1.75*0.00257082788077282+1.984375*0.367378648065486+1.96875*0.00417601612706465+1.9999923706054688*2.82855+1.984375*0.0154682311502303+1.75*0.0366287198730455 = 10652.348136036118' final score ~ 10652 reviewer: xxx gave 0
Rendered MathML:
Im,n=2NiNN-1k=1-1ksinπkNNα-k-1m+1αk-1n+1,(m,n=0,1,2,,N-2),\displaystyle{\cal I}_{{m,n}}=2^{N}\cdot i^{N}\cdot\sum^{{N-1}}_{{k=1}}\frac{(-1)^{k}\cdot\left(\displaystyle\sin\frac{\pi k}{N}\right)^{N}}{(\alpha^{{-k}}-1)^{{m+1}}(\alpha^{{k}}-1)^{{n+1}}}\,,\,\,\,\,\,\,\,(m,n=0,1,2,\cdots,N-2)\,,
End of MathML
.

Hit id68626

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 2
  • Formulasearchengine score: 10652
  • Reference to collection: _PREFIX_/207/f082755.xhtml#id68626
found all required tokens in TeX $\hbox{}\,\vbox{\openup 3.0pt\halign{\hfil$\displaystyle{#}$&$\displaystyle{{}#}$\hfil\cr$\displaystyle{2N^{2}\,({}^{4}G^{{\bot}}{}_{{\bot}})}$&$\displaystyle{{}=-(\ln A){}\,\dot{}\,(\ln B){}\,\dot{}\,-{\textstyle\frac{1}{2}}(\ln A){}\,\dot{}\,{}^{2}+N^{2}A^{{-2}}({\textstyle\frac{1}{2}}n^{{(3)2}}B-2n^{{(3)}}n^{{(1)}}A)\ ,}$\cr$\displaystyle{2N^{2}({}^{4}R_{A})}$&$\displaystyle{{}=(\ln A)\,\ddot{}\,-(\ln A){}\,\dot{}\,(\ln NA^{{-1}}B^{{-1/2}})\,\dot{}\,+N^{2}A^{{-2}}(-n^{{(3)2}}B+2n^{{(3)}}n^{{(1)}}A)\ ,}$\cr$\displaystyle{2N^{2}({}^{4}R_{B})}$&$\displaystyle{{}=(\ln B)\,\ddot{}\,-(\ln B){}\,\dot{}\,(\ln NA^{{-1}}B^{{-1/2}})\,\dot{}\,+N^{2}A^{{-2}}(n^{{(3)2}}B)\ .}$\cr$\displaystyle{}$\cr$\displaystyle{}$}}\,$ at pos:236015(44%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.99609375 * TOKEN_SCORE[1] + 2.0 * TOKEN_SCORE[\] + 1.999999761581421 * TOKEN_SCORE[(] + 1.875 * TOKEN_SCORE[_] + 1.984375 * TOKEN_SCORE[N] + 1.999999761581421 * TOKEN_SCORE[)] + 1.9999998807907104 * TOKEN_SCORE[,] + 1.9998779296875 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.99609375*0.0102451205633244+2.0*5.92879328325965E-4+1.999999761581421*0.00418257496311516+1.875*0.00257082788077282+1.984375*0.367378648065486+1.999999761581421*0.00417601612706465+1.9999998807907104*2.82855+1.9998779296875*0.0154682311502303+1.75*0.0366287198730455 = 10652.432496367705' final score ~ 10652 reviewer: xxx gave 0
Rendered MathML:
2N2(G4)=-(lnA)˙(lnB)˙-12(lnA)˙+2N2A-2(12n32B-2n3n1A),2N2RA4=lnA¨-lnA˙lnNA-1B-1/2˙+N2A-2-n32B+2n3n1A,2N2RB4=lnB¨-lnB˙lnNA-1B-1/2˙+N2A-2n32B.2N2(G⊥4)⊥=-(lnA)˙(lnB)˙-12(lnA)˙+2N2A-2(12n⁢32B-2n3n1A),⁢2N2RA4=+-⁢lnA¨⁢lnA˙ln⁢NA-1B-/12˙⁢N2A-2+-⁢n⁢32B⁢2n3n1A⁢2N2RB4=+-⁢lnB¨⁢lnB˙ln⁢NA-1B-/12˙⁢N2A-2⁢n⁢32B\hbox{}\,\vbox{\openup 3.0pt\halign{\hfil$\displaystyle{#}$&$\displaystyle{{}#}$\hfil\cr$\displaystyle{2N^{2}\,({}^{4}G^{{\bot}}{}_{{\bot}})}$&$\displaystyle{{}=-(\ln A){}\,\dot{}\,(\ln B){}\,\dot{}\,-{\textstyle\frac{1}{2}}(\ln A){}\,\dot{}\,{}^{2}+N^{2}A^{{-2}}({\textstyle\frac{1}{2}}n^{{(3)2}}B-2n^{{(3)}}n^{{(1)}}A)\ ,}$\cr$\displaystyle{2N^{2}({}^{4}R_{A})}$&$\displaystyle{{}=(\ln A)\,\ddot{}\,-(\ln A){}\,\dot{}\,(\ln NA^{{-1}}B^{{-1/2}})\,\dot{}\,+N^{2}A^{{-2}}(-n^{{(3)2}}B+2n^{{(3)}}n^{{(1)}}A)\ ,}$\cr$\displaystyle{2N^{2}({}^{4}R_{B})}$&$\displaystyle{{}=(\ln B)\,\ddot{}\,-(\ln B){}\,\dot{}\,(\ln NA^{{-1}}B^{{-1/2}})\,\dot{}\,+N^{2}A^{{-2}}(n^{{(3)2}}B)\ .}$\cr$\displaystyle{}$\cr$\displaystyle{}$}}\,
End of MathML
.

Hit id69298

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 3
  • Formulasearchengine score: 10652
  • Reference to collection: _PREFIX_/7/f002417.xhtml#id69298
found all required tokens in TeX $\displaystyle-\,\tilde{\phi}^{{\,(\, 2\, 1\,)}}_{{d^{+}\!,M^{\prime}}}(P,-\,\vec{q}\,)\,\left.\frac{(\,{\not{\! p}}_{1}+m_{{{}_{N}}})^{{(21)}}}{2\, m_{{{}_{N}}}}\right|_{{p^{0}_{1}=\omega _{{{}_{N}}}(|\vec{p}_{1}|)}}\left.\frac{(\,{\not{\! p}}_{2}+m_{{{}_{N}}})^{{(12)}}}{2\, m_{{{}_{N}}}}\right|_{{p^{0}_{2}=\omega _{{{}_{N}}}(|\vec{p}_{2}|)}}\phi^{{\,(\, 2\, 1\,)}}_{{d^{+}\!,M}}(P,\vec{q}\,)\,\Big\}$ at pos:240072(75%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.9921875 * TOKEN_SCORE[1] + 1.9999999999998863 * TOKEN_SCORE[\] + 1.9990234375 * TOKEN_SCORE[(] + 1.999999761581421 * TOKEN_SCORE[_] + 1.984375 * TOKEN_SCORE[N] + 1.9990234375 * TOKEN_SCORE[)] + 1.999999761581421 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.9921875*0.0102451205633244+1.9999999999998863*5.92879328325965E-4+1.9990234375*0.00418257496311516+1.999999761581421*0.00257082788077282+1.984375*0.367378648065486+1.9990234375*0.00417601612706465+1.999999761581421*2.82855+1.75*0.0154682311502303+1.75*0.0366287198730455 = 10652.073262908805' final score ~ 10652 reviewer: xxx gave 0
Rendered MathML:
-ϕ~d+,M 2 1(P,-q)(notp1+mN)212mN|p10=ωNp1(notp2+mN)122mN|p20=ωNp2ϕd+,M 2 1(P,q)}\displaystyle-\,\tilde{\phi}^{{\,(\, 2\, 1\,)}}_{{d^{+}\!,M^{\prime}}}(P,-\,\vec{q}\,)\,\left.\frac{(\,{\not{\! p}}_{1}+m_{{{}_{N}}})^{{(21)}}}{2\, m_{{{}_{N}}}}\right|_{{p^{0}_{1}=\omega _{{{}_{N}}}(|\vec{p}_{1}|)}}\left.\frac{(\,{\not{\! p}}_{2}+m_{{{}_{N}}})^{{(12)}}}{2\, m_{{{}_{N}}}}\right|_{{p^{0}_{2}=\omega _{{{}_{N}}}(|\vec{p}_{2}|)}}\phi^{{\,(\, 2\, 1\,)}}_{{d^{+}\!,M}}(P,\vec{q}\,)\,\Big\}
End of MathML
.

Hit id57829

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 4
  • Formulasearchengine score: 10651
  • Reference to collection: _PREFIX_/146/f058232.xhtml#id57829
found all required tokens in TeX $N_{{\pi^{-}}}\,\simeq\,\frac{1}{3}\,[\frac{bn}{1\,-\, b}\,+\,\frac{(1\,+\,\langle j\rangle)n_{{Q(q)}}n_{{\bar{Q}(q)}}}{n}]\,+\,\frac{\langle j\rangle}{3}[N_{B}\,+\, N_{{\bar{B}}}\,+\,(N_{K}\,-\, n_{K})\,+\,...]$ at pos:70026(25%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.9999999995343387 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.9921875 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[N] + 1.9375 * TOKEN_SCORE[)] + 1.9999980926513672 * TOKEN_SCORE[,] + 1.875 * TOKEN_SCORE[-] + 1.9375 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.9999999995343387*5.92879328325965E-4+1.9375*0.00418257496311516+1.9921875*0.00257082788077282+1.9375*0.367378648065486+1.9375*0.00417601612706465+1.9999980926513672*2.82855+1.875*0.0154682311502303+1.9375*0.0366287198730455 = 10651.057351487516' final score ~ 10651 reviewer: xxx gave 0
Rendered MathML:
Nπ-13bn1-b+1+jnQqnQ¯qn+j3NB+NB¯+NK-nK+subscriptNsuperscriptπ13bn1b1jsubscriptnQqsubscriptn¯Qqnj3subscriptNBsubscriptN¯BsubscriptNKsubscriptnKN_{{\pi^{-}}}\,\simeq\,\frac{1}{3}\,[\frac{bn}{1\,-\, b}\,+\,\frac{(1\,+\,\langle j\rangle)n_{{Q(q)}}n_{{\bar{Q}(q)}}}{n}]\,+\,\frac{\langle j\rangle}{3}[N_{B}\,+\, N_{{\bar{B}}}\,+\,(N_{K}\,-\, n_{K})\,+\,...]
End of MathML
.

Hit id68959

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 5
  • Formulasearchengine score: 10651
  • Reference to collection: _PREFIX_/7/f002417.xhtml#id68959
found all required tokens in TeX $\displaystyle\Big\{\,\;\;\;\tilde{\phi}^{{\,(\, 2\, 1\,)}}_{{d^{+}\!,M^{\prime}}}(P,\vec{q}\,)\;\;\,\left.\frac{(\,{\not{\! p}}_{1}+m_{{{}_{N}}})^{{(1)}}}{2\, m_{{{}_{N}}}}\right|_{{p^{0}_{1}=\omega _{{{}_{N}}}(|\vec{p}_{1}|)}}\;\left.\frac{(\,{\not{\! p}}_{2}+m_{{{}_{N}}})^{{(2)}}}{2\, m_{{{}_{N}}}}\right|_{{p^{0}_{2}=\omega _{{{}_{N}}}(|\vec{p}_{2}|)}}\phi^{{\,(\, 2\, 1\,)}}_{{d^{+}\!,M}}(P,\vec{q}\,)\;-$ at pos:234101(73%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[1] + 1.9999999999999964 * TOKEN_SCORE[\] + 1.9990234375 * TOKEN_SCORE[(] + 1.999999761581421 * TOKEN_SCORE[_] + 1.984375 * TOKEN_SCORE[N] + 1.9990234375 * TOKEN_SCORE[)] + 1.9999990463256836 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.984375*0.0102451205633244+1.9999999999999964*5.92879328325965E-4+1.9990234375*0.00418257496311516+1.999999761581421*0.00257082788077282+1.984375*0.367378648065486+1.9990234375*0.00417601612706465+1.9999990463256836*2.82855+1.5*0.0154682311502303+1.75*0.0366287198730455 = 10651.678350815948' final score ~ 10651 reviewer: xxx gave 0
Rendered MathML:
{ϕ~d+,M 2 1(P,q)(notp1+mN)12mN|p10=ωNp1(notp2+mN)22mN|p20=ωNp2ϕd+,M 2 1(P,q)-\displaystyle\Big\{\,\;\;\;\tilde{\phi}^{{\,(\, 2\, 1\,)}}_{{d^{+}\!,M^{\prime}}}(P,\vec{q}\,)\;\;\,\left.\frac{(\,{\not{\! p}}_{1}+m_{{{}_{N}}})^{{(1)}}}{2\, m_{{{}_{N}}}}\right|_{{p^{0}_{1}=\omega _{{{}_{N}}}(|\vec{p}_{1}|)}}\;\left.\frac{(\,{\not{\! p}}_{2}+m_{{{}_{N}}})^{{(2)}}}{2\, m_{{{}_{N}}}}\right|_{{p^{0}_{2}=\omega _{{{}_{N}}}(|\vec{p}_{2}|)}}\phi^{{\,(\, 2\, 1\,)}}_{{d^{+}\!,M}}(P,\vec{q}\,)\;-
End of MathML
.

Hit id115632

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 6
  • Formulasearchengine score: 10650
  • Reference to collection: _PREFIX_/148/f058874.xhtml#id115632
found all required tokens in TeX $\displaystyle\partial _{t}\, J^{{\rm PF}}_{{(r)}}+\, J^{{\rm PF}}_{{(r)}}\frac{\partial _{t}A}{A}+\frac{N^{{(r)}}}{A}\,\partial _{r}\, J^{{\rm PF}}_{{(r)}}+\frac{\, J^{{\rm PF}}_{{(r)}}}{A}\partial _{r}N^{{(r)}}+\frac{N}{A}\,\partial _{r}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}+\frac{2N}{A}\left({}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}-_{{\rm PF}}\,\! S^{{(\theta)}}_{{\,\,\,\,(\theta)}}\right)\left(\frac{1}{r}+\frac{\partial _{r}B}{B}\right)$ at pos:950688(44%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.9999999999999996 * TOKEN_SCORE[\] + 1.99993896484375 * TOKEN_SCORE[(] + 1.9999847412109375 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[N] + 1.99993896484375 * TOKEN_SCORE[)] + 1.9999995231628418 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.9921875 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.9999999999999996*5.92879328325965E-4+1.99993896484375*0.00418257496311516+1.9999847412109375*0.00257082788077282+1.9375*0.367378648065486+1.99993896484375*0.00417601612706465+1.9999995231628418*2.82855+1.5*0.0154682311502303+1.9921875*0.0366287198730455 = 10650.348013451447' final score ~ 10650 reviewer: xxx gave 0
Rendered MathML:
tJrPF+JrPFtAA+NrArJrPF+JrPFArNr+NArPFSrr+2NASrrPF-PFSθθ1r+rBBsubscripttsubscriptsuperscriptJPFrsubscriptsuperscriptJPFrsubscripttAAsuperscriptNrAsubscriptrsubscriptsuperscriptJPFrsubscriptsuperscriptJPFrAsubscriptrsuperscriptNrNAsubscriptsubscriptrPFsubscriptsuperscriptSrr2NAsubscriptPFsubscriptsubscriptsuperscriptSrrPFsubscriptsuperscriptSθθ1rsubscriptrBB\displaystyle\partial _{t}\, J^{{\rm PF}}_{{(r)}}+\, J^{{\rm PF}}_{{(r)}}\frac{\partial _{t}A}{A}+\frac{N^{{(r)}}}{A}\,\partial _{r}\, J^{{\rm PF}}_{{(r)}}+\frac{\, J^{{\rm PF}}_{{(r)}}}{A}\partial _{r}N^{{(r)}}+\frac{N}{A}\,\partial _{r}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}+\frac{2N}{A}\left({}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}-_{{\rm PF}}\,\! S^{{(\theta)}}_{{\,\,\,\,(\theta)}}\right)\left(\frac{1}{r}+\frac{\partial _{r}B}{B}\right)
End of MathML
.

Hit id122712

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 7
  • Formulasearchengine score: 10650
  • Reference to collection: _PREFIX_/192/f076616.xhtml#id122712
found all required tokens in TeX $\displaystyle N_{{G\, 2}}({\underline{r}},{\underline{b}},y)\,=\, 2\, N_{2}({\underline{r}},{\underline{b}},y)-[N_{1}({\underline{r}},{\underline{b}},y)]^{2}\,=\, 2\, N_{2}({\underline{r}},{\underline{b}},y)-\frac{1}{4}\,[N_{{G\, 1}}({\underline{r}},{\underline{b}},y)]^{2}$ at pos:1070443(62%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.9999995231628418 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.96875 * TOKEN_SCORE[_] + 1.96875 * TOKEN_SCORE[N] + 1.96875 * TOKEN_SCORE[)] + 1.9999980926513672 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.9999995231628418*5.92879328325965E-4+1.96875*0.00418257496311516+1.96875*0.00257082788077282+1.96875*0.367378648065486+1.96875*0.00417601612706465+1.9999980926513672*2.82855+1.75*0.0154682311502303+1.5*0.0366287198730455 = 10650.429645569964' final score ~ 10650 reviewer: xxx gave 0
Rendered MathML:
NG 2r¯,b¯,y= 2N2r¯,b¯,y-N1r¯,b¯,y2= 2N2r¯,b¯,y-14NG 1r¯,b¯,y2subscriptNG 2¯r¯by 2subscriptN2¯r¯bysuperscriptsubscriptN1¯r¯by2 2subscriptN2¯r¯by14superscriptsubscriptNG 1¯r¯by2\displaystyle N_{{G\, 2}}({\underline{r}},{\underline{b}},y)\,=\, 2\, N_{2}({\underline{r}},{\underline{b}},y)-[N_{1}({\underline{r}},{\underline{b}},y)]^{2}\,=\, 2\, N_{2}({\underline{r}},{\underline{b}},y)-\frac{1}{4}\,[N_{{G\, 1}}({\underline{r}},{\underline{b}},y)]^{2}
End of MathML
.

Hit id114713

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 8
  • Formulasearchengine score: 10649
  • Reference to collection: _PREFIX_/148/f058874.xhtml#id114713
found all required tokens in TeX $\displaystyle\partial _{t}\, J^{{\rm PF}}_{{r}}+N^{r}\partial _{r}\, J^{{\rm PF}}_{r}+\, J^{{\rm PF}}_{r}\partial _{r}N^{r}+N\,\partial _{r}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}+2N\left({}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}-_{{\rm PF}}\,\! S^{{(\theta)}}_{{\,\,\,\,(\theta)}}\right)\left(\frac{1}{r}+\frac{\partial _{r}B}{B}\right)$ at pos:935721(44%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.9999999999997726 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[(] + 1.99993896484375 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[N] + 1.99609375 * TOKEN_SCORE[)] + 1.9999980926513672 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.9999999999997726*5.92879328325965E-4+1.99609375*0.00418257496311516+1.99993896484375*0.00257082788077282+1.9375*0.367378648065486+1.99609375*0.00417601612706465+1.9999980926513672*2.82855+1.5*0.0154682311502303+1.75*0.0366287198730455 = 10649.457281188528' final score ~ 10649 reviewer: xxx gave 0
Rendered MathML:
tJrPF+NrrJrPF+JrPFrNr+NrPFSrr+2NSrrPF-PFSθθ1r+rBBsubscripttsubscriptsuperscriptJPFrsuperscriptNrsubscriptrsubscriptsuperscriptJPFrsubscriptsuperscriptJPFrsubscriptrsuperscriptNrNsubscriptsubscriptrPFsubscriptsuperscriptSrr2NsubscriptPFsubscriptsubscriptsuperscriptSrrPFsubscriptsuperscriptSθθ1rsubscriptrBB\displaystyle\partial _{t}\, J^{{\rm PF}}_{{r}}+N^{r}\partial _{r}\, J^{{\rm PF}}_{r}+\, J^{{\rm PF}}_{r}\partial _{r}N^{r}+N\,\partial _{r}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}+2N\left({}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}-_{{\rm PF}}\,\! S^{{(\theta)}}_{{\,\,\,\,(\theta)}}\right)\left(\frac{1}{r}+\frac{\partial _{r}B}{B}\right)
End of MathML
.

Hit id116717

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 9
  • Formulasearchengine score: 10647
  • Reference to collection: _PREFIX_/148/f058874.xhtml#id116717
found all required tokens in TeX $\displaystyle\partial _{t}\, J^{{\rm PF}}_{{(r)}}+\frac{N^{{(r)}}}{A}\,\partial _{r}\, J^{{\rm PF}}_{{(r)}}+\frac{N}{A}\,\partial _{r}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}+\frac{2N}{A}\left({}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}-_{{\rm PF}}\,\! S^{{(\theta)}}_{{\,\,\,\,(\theta)}}\right)\left(\frac{1}{r}+\frac{\partial _{r}B}{B}\right)$ at pos:968583(45%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.9999999999998863 * TOKEN_SCORE[\] + 1.99951171875 * TOKEN_SCORE[(] + 1.999755859375 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[N] + 1.99951171875 * TOKEN_SCORE[)] + 1.9999980926513672 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.96875 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.9999999999998863*5.92879328325965E-4+1.99951171875*0.00418257496311516+1.999755859375*0.00257082788077282+1.875*0.367378648065486+1.99951171875*0.00417601612706465+1.9999980926513672*2.82855+1.5*0.0154682311502303+1.96875*0.0366287198730455 = 10647.96522775239' final score ~ 10647 reviewer: xxx gave 0
Rendered MathML:
tJrPF+NrArJrPF+NArPFSrr+2NASrrPF-PFSθθ1r+rBBsubscripttsubscriptsuperscriptJPFrsuperscriptNrAsubscriptrsubscriptsuperscriptJPFrNAsubscriptsubscriptrPFsubscriptsuperscriptSrr2NAsubscriptPFsubscriptsubscriptsuperscriptSrrPFsubscriptsuperscriptSθθ1rsubscriptrBB\displaystyle\partial _{t}\, J^{{\rm PF}}_{{(r)}}+\frac{N^{{(r)}}}{A}\,\partial _{r}\, J^{{\rm PF}}_{{(r)}}+\frac{N}{A}\,\partial _{r}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}+\frac{2N}{A}\left({}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}-_{{\rm PF}}\,\! S^{{(\theta)}}_{{\,\,\,\,(\theta)}}\right)\left(\frac{1}{r}+\frac{\partial _{r}B}{B}\right)
End of MathML
.

Hit id165172

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 10
  • Formulasearchengine score: 10647
  • Reference to collection: _PREFIX_/148/f058874.xhtml#id165172
found all required tokens in TeX $\partial _{t}J_{{r}}^{{\rm PF}}=N\left[-\frac{1}{r^{2}N}\partial _{r}\left(r^{2}N_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}\right)+\frac{2}{r}_{{\rm PF}}\,\! S^{{(\theta)}}_{{\,\,\,\,(\theta)}}-E_{{\rm PF}}\partial _{r}\nu+J_{{r}}^{{\rm PF}}K^{{(r)}}_{{\,\,\,\,(r)}}-^{3}{\cal F}_{r}\right]\,\,\,.$ at pos:1732959(81%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.999999999992724 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[(] + 1.999755859375 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[N] + 1.9921875 * TOKEN_SCORE[)] + 1.9999923706054688 * TOKEN_SCORE[,] + 1.875 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.999999999992724*5.92879328325965E-4+1.9921875*0.00418257496311516+1.999755859375*0.00257082788077282+1.875*0.367378648065486+1.9921875*0.00417601612706465+1.9999923706054688*2.82855+1.875*0.0154682311502303+1.75*0.0366287198730455 = 10647.736292649053' final score ~ 10647 reviewer: xxx gave 0
Rendered MathML:
tJrPF=N-1r2Nrr2NPFSrr+2rPFSθθ-EPFrν+JrPFKrr-3Fr.subscripttsuperscriptsubscriptJrPFNsuperscript31superscriptr2Nsubscriptrsuperscriptr2subscriptNPFsubscriptsuperscriptSrrsubscript2rPFsubscriptsuperscriptSθθsubscriptEPFsubscriptrνsuperscriptsubscriptJrPFsubscriptsuperscriptKrrsubscriptFr\partial _{t}J_{{r}}^{{\rm PF}}=N\left[-\frac{1}{r^{2}N}\partial _{r}\left(r^{2}N_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}\right)+\frac{2}{r}_{{\rm PF}}\,\! S^{{(\theta)}}_{{\,\,\,\,(\theta)}}-E_{{\rm PF}}\partial _{r}\nu+J_{{r}}^{{\rm PF}}K^{{(r)}}_{{\,\,\,\,(r)}}-^{3}{\cal F}_{r}\right]\,\,\,.
End of MathML
.

Hit id64726

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 11
  • Formulasearchengine score: 10647
  • Reference to collection: _PREFIX_/39/f015283.xhtml#id64726
found all required tokens in TeX $\Phi _{{n}}^{{IR}}(E,E_{{2}},\lambda)=2\left[\frac{1}{\beta _{{N}}}{\mbox{arctanh}}\!\left(\beta _{{N}}\right)-1\right]\ln\left|\frac{\lambda}{m}\right|,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\Phi _{{Coulomb}}(E,E_{{2}})=\frac{\pi^{{2}}}{\beta _{{N}}},$ at pos:175501(8%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[1] + 1.999999999985448 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.9921875 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[N] + 1.875 * TOKEN_SCORE[)] + 1.9999995231628418 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.75*0.0102451205633244+1.999999999985448*5.92879328325965E-4+1.875*0.00418257496311516+1.9921875*0.00257082788077282+1.875*0.367378648065486+1.875*0.00417601612706465+1.9999995231628418*2.82855+1.5*0.0154682311502303+1.875*0.0366287198730455 = 10647.772346195763' final score ~ 10647 reviewer: xxx gave 0
Rendered MathML:
ΦnIRE,E2,λ=21βNarctanhβN-1lnλm,ΦCoulombE,E2=π2βN,superscriptsubscriptΦnIREsubscriptE2λ21subscriptβNarctanhsubscriptβN1λmsubscriptΦCoulombEsubscriptE2superscriptπ2subscriptβN\Phi _{{n}}^{{IR}}(E,E_{{2}},\lambda)=2\left[\frac{1}{\beta _{{N}}}{\mbox{arctanh}}\!\left(\beta _{{N}}\right)-1\right]\ln\left|\frac{\lambda}{m}\right|,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\Phi _{{Coulomb}}(E,E_{{2}})=\frac{\pi^{{2}}}{\beta _{{N}}},
End of MathML
.

Hit id106465

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 12
  • Formulasearchengine score: 10644
  • Reference to collection: _PREFIX_/208/f082929.xhtml#id106465
found all required tokens in TeX $\displaystyle\langle\,\Psi _{{S,-S}}({\bf n})\,|\, d{\Psi _{{S,-S}}(\bf n)}\,\rangle=C^{2}\, S\,\langle\, 0\,|\hat{A}^{{\frac{N-S}{2}}}\hat{\psi^{{{}^{{\prime\prime}}}}}{}^{S}{}_{{-1}}(-\, e^{{-i\phi}}\sin^{2}(\frac{\theta}{2})\hat{\psi}_{1}^{{\dagger}}+\, e^{{i\phi}}\,\cos^{2}(\frac{\theta}{2})\,\hat{\psi}_{{-1}}^{{\dagger}})(\hat{\psi}_{{-1}}^{{{}^{{\prime\prime}}}}{}^{{\dagger}}){}^{{S-1}}\hat{A}^{{{\dagger}\frac{N-S}{2}}}|\, 0\,\rangle\, d\phi\,.$ at pos:798062(75%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.96875 * TOKEN_SCORE[1] + 2.0 * TOKEN_SCORE[\] + 1.984375 * TOKEN_SCORE[(] + 1.984375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.984375 * TOKEN_SCORE[)] + 1.9999961853027344 * TOKEN_SCORE[,] + 1.9990234375 * TOKEN_SCORE[-] + 1.9375 * TOKEN_SCORE[frac] =+100.0+0.0+1.96875*0.0102451205633244+2.0*5.92879328325965E-4+1.984375*0.00418257496311516+1.984375*0.00257082788077282+1.75*0.367378648065486+1.984375*0.00417601612706465+1.9999961853027344*2.82855+1.9990234375*0.0154682311502303+1.9375*0.0366287198730455 = 10644.493525094882' final score ~ 10644 reviewer: xxx gave 0
Rendered MathML:
ΨS,-S(n)|dΨS,-S(n)=C2S 0|AN-S2ψ′′(-1S-e-iϕsin2(θ2)ψ1+eiϕcos2(θ2)ψ-1)(ψ-1′′)AN-S2S-1| 0dϕ.\displaystyle\langle\,\Psi _{{S,-S}}({\bf n})\,|\, d{\Psi _{{S,-S}}(\bf n)}\,\rangle=C^{2}\, S\,\langle\, 0\,|\hat{A}^{{\frac{N-S}{2}}}\hat{\psi^{{{}^{{\prime\prime}}}}}{}^{S}{}_{{-1}}(-\, e^{{-i\phi}}\sin^{2}(\frac{\theta}{2})\hat{\psi}_{1}^{{\dagger}}+\, e^{{i\phi}}\,\cos^{2}(\frac{\theta}{2})\,\hat{\psi}_{{-1}}^{{\dagger}})(\hat{\psi}_{{-1}}^{{{}^{{\prime\prime}}}}{}^{{\dagger}}){}^{{S-1}}\hat{A}^{{{\dagger}\frac{N-S}{2}}}|\, 0\,\rangle\, d\phi\,.
End of MathML
.

Hit id72671

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 13
  • Formulasearchengine score: 10644
  • Reference to collection: _PREFIX_/7/f002417.xhtml#id72671
found all required tokens in TeX $\displaystyle-\, i\,\sqrt{\frac{1}{(4\pi)^{{\, 3}}\,\omega _{{d^{+}}}(|\vec{P}\makebox[1.0pt]{}|)}}\,\int\frac{dq^{0}}{2\pi}\;\frac{\Gamma^{{\,(\, 2\, 1\,)}}_{{d^{+}\,++}}(P,q^{0},|\vec{q}\,|,M;{}^{{3}}{S}_{{\, 1}}\,)}{(p_{{\, 2}}^{0}-\omega _{{{}_{N}}}(|{\vec{p}}_{{\, 2}}|)+i\,\varepsilon)\;(p_{{\, 1}}^{0}-\omega _{{{}_{N}}}(|{\vec{p}}_{{\, 1}}|)+i\,\varepsilon)}$ at pos:293807(92%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[1] + 1.9999999999990905 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[(] + 1.99951171875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.99609375 * TOKEN_SCORE[)] + 1.999999761581421 * TOKEN_SCORE[,] + 1.875 * TOKEN_SCORE[-] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.984375*0.0102451205633244+1.9999999999990905*5.92879328325965E-4+1.99609375*0.00418257496311516+1.99951171875*0.00257082788077282+1.75*0.367378648065486+1.99609375*0.00417601612706465+1.999999761581421*2.82855+1.875*0.0154682311502303+1.875*0.0366287198730455 = 10644.103459458727' final score ~ 10644 reviewer: xxx gave 0
Rendered MathML:
-i14π 3ωd+Pdq02πΓd+++ 2 1P,q0,q,M;S 13p 20-ωNp 2+iεp 10-ωNp 1+iεi1superscript4π 3subscriptωsuperscriptdPdsuperscriptq02πsubscriptsuperscriptΓ 2 1superscriptdPsuperscriptq0qMsuperscriptsubscriptS 13superscriptsubscriptp 20subscriptωNsubscriptp 2iεsuperscriptsubscriptp 10subscriptωNsubscriptp 1iε\displaystyle-\, i\,\sqrt{\frac{1}{(4\pi)^{{\, 3}}\,\omega _{{d^{+}}}(|\vec{P}\makebox[1.0pt]{}|)}}\,\int\frac{dq^{0}}{2\pi}\;\frac{\Gamma^{{\,(\, 2\, 1\,)}}_{{d^{+}\,++}}(P,q^{0},|\vec{q}\,|,M;{}^{{3}}{S}_{{\, 1}}\,)}{(p_{{\, 2}}^{0}-\omega _{{{}_{N}}}(|{\vec{p}}_{{\, 2}}|)+i\,\varepsilon)\;(p_{{\, 1}}^{0}-\omega _{{{}_{N}}}(|{\vec{p}}_{{\, 1}}|)+i\,\varepsilon)}
End of MathML
.

Hit id73253

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 14
  • Formulasearchengine score: 10644
  • Reference to collection: _PREFIX_/190/f075866.xhtml#id73253
found all required tokens in TeX $\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\left(2\pi\right)^{{-3}}\,\, e^{{-i\frac{\left(\vec{p}_{1}^{{\,\, 0}}+\vec{p}_{2}^{{\,\, 0}}\right)}{2}\cdot\left(\vec{r}_{{1B}}+\vec{r}_{{2B}}\right)}}\int d^{3}p\mbox{$\langle\vec{p}_{{rel}}^{{\,\, 0}},s\, m_{s},t\, t_{0}|$}\,\, T_{{NN}}({p}_{{rel}}^{{0}})\mbox{$|\vec{p}\,\rangle$}\frac{1}{\frac{\left({p}_{{rel}}^{{0}}\right)^{2}}{M_{N}}-\frac{p^{2}}{M_{N}}+i\epsilon}e^{{-i\vec{p}\cdot\left(\vec{r}_{{1b}}-\vec{r}_{{2B}}\right)}}\,\,,$ at pos:303315(53%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[1] + 2.0 * TOKEN_SCORE[\] + 1.984375 * TOKEN_SCORE[(] + 1.99993896484375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.984375 * TOKEN_SCORE[)] + 1.9999961853027344 * TOKEN_SCORE[,] + 1.96875 * TOKEN_SCORE[-] + 1.9375 * TOKEN_SCORE[frac] =+100.0+0.0+1.9375*0.0102451205633244+2.0*5.92879328325965E-4+1.984375*0.00418257496311516+1.99993896484375*0.00257082788077282+1.75*0.367378648065486+1.984375*0.00417601612706465+1.9999961853027344*2.82855+1.96875*0.0154682311502303+1.9375*0.0366287198730455 = 10644.4186826677' final score ~ 10644 reviewer: xxx gave 0
Rendered MathML:
2π-3e-ip1  0+p2  02r1B+r2Bd3pprel  0,sms,tt0TNNprel0p1prel02MN-p2MN+iϵe-ipr1b-r2B,superscript2π3superscripteisuperscriptsubscriptp1  0superscriptsubscriptp2  02subscriptr1Bsubscriptr2Bsuperscriptd3p→p⁢rel  0⁢sms⁢tt0subscriptTNNsuperscriptsubscriptprel0→p1superscriptsuperscriptsubscriptprel02subscriptMNsuperscriptp2subscriptMNiϵsuperscripteipsubscriptr1bsubscriptr2B\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\left(2\pi\right)^{{-3}}\,\, e^{{-i\frac{\left(\vec{p}_{1}^{{\,\, 0}}+\vec{p}_{2}^{{\,\, 0}}\right)}{2}\cdot\left(\vec{r}_{{1B}}+\vec{r}_{{2B}}\right)}}\int d^{3}p\mbox{$\langle\vec{p}_{{rel}}^{{\,\, 0}},s\, m_{s},t\, t_{0}|$}\,\, T_{{NN}}({p}_{{rel}}^{{0}})\mbox{$|\vec{p}\,\rangle$}\frac{1}{\frac{\left({p}_{{rel}}^{{0}}\right)^{2}}{M_{N}}-\frac{p^{2}}{M_{N}}+i\epsilon}e^{{-i\vec{p}\cdot\left(\vec{r}_{{1b}}-\vec{r}_{{2B}}\right)}}\,\,,
End of MathML
.

Hit id82662

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 15
  • Formulasearchengine score: 10644
  • Reference to collection: _PREFIX_/140/f055745.xhtml#id82662
found all required tokens in TeX $\displaystyle\frac{\int _{{10^{{-4}}}}^{{\infty}}d\kappa\int _{{0}}^{{z_{s}}}dz_{d}p(\{\kappa,\gamma,\kappa _{c},z_{d}\}|z_{s})\left[\int _{{0}}^{{\infty}}d\mu _{{tot}}\frac{dP}{d\mu _{{tot}}}(\kappa,\gamma,z_{d},z_{s})f(\Delta m|\kappa,\gamma,z_{d},z_{s})N(>\frac{L_{{lim}}}{\mu _{{tot}}},z_{s})\right]}{\int _{{10^{{-4}}}}^{{\infty}}d\kappa\int _{{0}}^{{z_{s}}}dz_{d}p(\{\kappa,\gamma,\kappa _{c},z_{d}\}|z_{s})\left[\int _{{0}}^{{\infty}}d\mu _{{tot}}\frac{dP}{d\mu _{{tot}}}(\kappa,\gamma,z_{d},z_{s})N(>\frac{L_{{lim}}}{\mu _{{tot}}},z_{s})\right]}$ at pos:474260(73%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[1] + 1.9999999999999716 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[(] + 1.9999999997671694 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.9921875 * TOKEN_SCORE[)] + 1.9999923706054688 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.96875 * TOKEN_SCORE[frac] =+100.0+0.0+1.75*0.0102451205633244+1.9999999999999716*5.92879328325965E-4+1.9921875*0.00418257496311516+1.9999999997671694*0.00257082788077282+1.75*0.367378648065486+1.9921875*0.00417601612706465+1.9999923706054688*2.82855+1.75*0.0154682311502303+1.96875*0.0366287198730455 = 10644.008150684454' final score ~ 10644 reviewer: xxx gave 0
Rendered MathML:
10-4dκ0zsdzdp({κ,γ,κc,zd}|zs)[0dμtotdPdμtot(κ,γ,zd,zs)f(Δm|κ,γ,zd,zs)N(>Llimμtot,zs)]10-4dκ0zsdzdp({κ,γ,κc,zd}|zs)[0dμtotdPdμtot(κ,γ,zd,zs)N(>Llimμtot,zs)]∫10-4∞dκ∫0zsdzdp({κ,γ,κc,zd}|zs)[∫0∞dμ⁢tot⁢dP⁢dμ⁢tot(κ,γ,zd,zs)f(Δm|κ,γ,zd,zs)N(>L⁢limμ⁢tot,zs)]∫10-4∞dκ∫0zsdzdp({κ,γ,κc,zd}|zs)[∫0∞dμ⁢tot⁢dP⁢dμ⁢tot(κ,γ,zd,zs)N(>L⁢limμ⁢tot,zs)]\displaystyle\frac{\int _{{10^{{-4}}}}^{{\infty}}d\kappa\int _{{0}}^{{z_{s}}}dz_{d}p(\{\kappa,\gamma,\kappa _{c},z_{d}\}|z_{s})\left[\int _{{0}}^{{\infty}}d\mu _{{tot}}\frac{dP}{d\mu _{{tot}}}(\kappa,\gamma,z_{d},z_{s})f(\Delta m|\kappa,\gamma,z_{d},z_{s})N(>\frac{L_{{lim}}}{\mu _{{tot}}},z_{s})\right]}{\int _{{10^{{-4}}}}^{{\infty}}d\kappa\int _{{0}}^{{z_{s}}}dz_{d}p(\{\kappa,\gamma,\kappa _{c},z_{d}\}|z_{s})\left[\int _{{0}}^{{\infty}}d\mu _{{tot}}\frac{dP}{d\mu _{{tot}}}(\kappa,\gamma,z_{d},z_{s})N(>\frac{L_{{lim}}}{\mu _{{tot}}},z_{s})\right]}
End of MathML
.

Hit id126414

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 16
  • Formulasearchengine score: 10643
  • Reference to collection: _PREFIX_/148/f058874.xhtml#id126414
found all required tokens in TeX $\displaystyle eD_{t}F_{{\rm R}}(r,t,E,\mu)+\left(\frac{p\,\mu\,}{e}+\frac{N^{{(r)}}}{N}\right)eD_{r}F_{{\rm R}}(r,t,e,\mu)-p^{2}\left[-(1-\mu^{2})K^{{(\theta)}}_{{\,\,\,\,\,(\theta)}}-\mu^{2}K^{{(r)}}_{{\,\,\,\,\,(r)}}+\frac{\mu e}{p}D_{r}\nu\right]\partial _{e}F_{{\rm R}}(r,t,e,\mu)$ at pos:1123236(52%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.9999999999417923 * TOKEN_SCORE[\] + 1.9990234375 * TOKEN_SCORE[(] + 1.998046875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.9990234375 * TOKEN_SCORE[)] + 1.9999995231628418 * TOKEN_SCORE[,] + 1.9375 * TOKEN_SCORE[-] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.9999999999417923*5.92879328325965E-4+1.9990234375*0.00418257496311516+1.998046875*0.00257082788077282+1.75*0.367378648065486+1.9990234375*0.00417601612706465+1.9999995231628418*2.82855+1.9375*0.0154682311502303+1.875*0.0366287198730455 = 10643.705892658107' final score ~ 10643 reviewer: xxx gave 0
Rendered MathML:
eDtFRr,t,E,μ+pμe+NrNeDrFRr,t,e,μ-p2-1-μ2Kθθ-μ2Krr+μepDrνeFRr,t,e,μesubscriptDtsubscriptFRrtEμpμesuperscriptNrNesubscriptDrsubscriptFRrteμsuperscriptp21superscriptμ2subscriptsuperscriptKθθsuperscriptμ2subscriptsuperscriptKrrμepsubscriptDrνsubscriptesubscriptFRrteμ\displaystyle eD_{t}F_{{\rm R}}(r,t,E,\mu)+\left(\frac{p\,\mu\,}{e}+\frac{N^{{(r)}}}{N}\right)eD_{r}F_{{\rm R}}(r,t,e,\mu)-p^{2}\left[-(1-\mu^{2})K^{{(\theta)}}_{{\,\,\,\,\,(\theta)}}-\mu^{2}K^{{(r)}}_{{\,\,\,\,\,(r)}}+\frac{\mu e}{p}D_{r}\nu\right]\partial _{e}F_{{\rm R}}(r,t,e,\mu)
End of MathML
.

Hit id154401

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 17
  • Formulasearchengine score: 10643
  • Reference to collection: _PREFIX_/190/f075724.xhtml#id154401
found all required tokens in TeX $\displaystyle\frac{\sqrt{N_{f}\, N_{i}}}{4\, m}\left(\int\frac{d\vec{p}^{{\prime}}\, d\vec{p}}{(2\pi)^{3}}\,\phi _{f}(\vec{p}^{{\prime}})\,\frac{2\, m}{e_{p}+e_{{p^{{\prime}}}}}\,\phi _{i}(\vec{p}\,)\,\,\delta(\frac{1}{2}\vec{q}+\vec{p}^{{\prime}}-\vec{p})+\int\frac{d\vec{p}^{{\prime}}\, d\vec{p}}{(2\pi)^{6}}\,\phi _{f}(\vec{p}^{{\prime}})\,\phi _{i}(\vec{p}\,)\,\frac{m^{2}}{e_{p}e_{{p^{{\prime}}}}}\,(K_{{\Delta B}})_{0}\right),$ at pos:1583489(85%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 2.0 * TOKEN_SCORE[\] + 1.998046875 * TOKEN_SCORE[(] + 1.999755859375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.998046875 * TOKEN_SCORE[)] + 1.9999923706054688 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.984375 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+2.0*5.92879328325965E-4+1.998046875*0.00418257496311516+1.999755859375*0.00257082788077282+1.75*0.367378648065486+1.998046875*0.00417601612706465+1.9999923706054688*2.82855+1.5*0.0154682311502303+1.984375*0.0366287198730455 = 10643.42738411409' final score ~ 10643 reviewer: xxx gave 0
Rendered MathML:
NfNi4mdpdp2π3ϕfp2mep+epϕipδ12q+p-p+dpdp2π6ϕfpϕipm2epepKΔB0,subscriptNfsubscriptNi4mdsuperscriptpdpsuperscript2π3subscriptϕfsuperscriptp2msubscriptepsubscriptesuperscriptpsubscriptϕipδ12qsuperscriptppdsuperscriptpdpsuperscript2π6subscriptϕfsuperscriptpsubscriptϕipsuperscriptm2subscriptepsubscriptesuperscriptpsubscriptsubscriptKΔB0\displaystyle\frac{\sqrt{N_{f}\, N_{i}}}{4\, m}\left(\int\frac{d\vec{p}^{{\prime}}\, d\vec{p}}{(2\pi)^{3}}\,\phi _{f}(\vec{p}^{{\prime}})\,\frac{2\, m}{e_{p}+e_{{p^{{\prime}}}}}\,\phi _{i}(\vec{p}\,)\,\,\delta(\frac{1}{2}\vec{q}+\vec{p}^{{\prime}}-\vec{p})+\int\frac{d\vec{p}^{{\prime}}\, d\vec{p}}{(2\pi)^{6}}\,\phi _{f}(\vec{p}^{{\prime}})\,\phi _{i}(\vec{p}\,)\,\frac{m^{2}}{e_{p}e_{{p^{{\prime}}}}}\,(K_{{\Delta B}})_{0}\right),
End of MathML
.

Hit id73431

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 18
  • Formulasearchengine score: 10643
  • Reference to collection: _PREFIX_/7/f002417.xhtml#id73431
found all required tokens in TeX $\displaystyle+\, i\,\sqrt{\frac{1}{(4\pi)^{{\, 3}}\,\omega _{{d^{+}}}(|\vec{P}\makebox[1.0pt]{}|)}}\,\int\frac{dq^{0}}{2\pi}\;\frac{\Gamma^{{\,(\, 2\, 1\,)}}_{{d^{+}\,++}}(P,q^{0},|\vec{q}\,|,M;{}^{{3}}{D}_{{\, 1}}\,)}{(p_{{\, 2}}^{0}-\omega _{{{}_{N}}}(|{\vec{p}}_{{\, 2}}|)+i\,\varepsilon)\;(p_{{\, 1}}^{0}-\omega _{{{}_{N}}}(|{\vec{p}}_{{\, 1}}|)+i\,\varepsilon)}$ at pos:306062(96%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[1] + 1.9999999999990905 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[(] + 1.99951171875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.99609375 * TOKEN_SCORE[)] + 1.999999761581421 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.984375*0.0102451205633244+1.9999999999990905*5.92879328325965E-4+1.99609375*0.00418257496311516+1.99951171875*0.00257082788077282+1.75*0.367378648065486+1.99609375*0.00417601612706465+1.999999761581421*2.82855+1.75*0.0154682311502303+1.875*0.0366287198730455 = 10643.910106569348' final score ~ 10643 reviewer: xxx gave 0
Rendered MathML:
+i14π 3ωd+Pdq02πΓd+++ 2 1P,q0,q,M;D 13p 20-ωNp 2+iεp 10-ωNp 1+iεi1superscript4π 3subscriptωsuperscriptdPdsuperscriptq02πsubscriptsuperscriptΓ 2 1superscriptdPsuperscriptq0qMsuperscriptsubscriptD 13superscriptsubscriptp 20subscriptωNsubscriptp 2iεsuperscriptsubscriptp 10subscriptωNsubscriptp 1iε\displaystyle+\, i\,\sqrt{\frac{1}{(4\pi)^{{\, 3}}\,\omega _{{d^{+}}}(|\vec{P}\makebox[1.0pt]{}|)}}\,\int\frac{dq^{0}}{2\pi}\;\frac{\Gamma^{{\,(\, 2\, 1\,)}}_{{d^{+}\,++}}(P,q^{0},|\vec{q}\,|,M;{}^{{3}}{D}_{{\, 1}}\,)}{(p_{{\, 2}}^{0}-\omega _{{{}_{N}}}(|{\vec{p}}_{{\, 2}}|)+i\,\varepsilon)\;(p_{{\, 1}}^{0}-\omega _{{{}_{N}}}(|{\vec{p}}_{{\, 1}}|)+i\,\varepsilon)}
End of MathML
.

Hit id95056

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 19
  • Formulasearchengine score: 10643
  • Reference to collection: _PREFIX_/185/f073940.xhtml#id95056
found all required tokens in TeX $\displaystyle\left(\frac{1}{N_{c}-1}\sum _{{i={\rm light}}}\,\int\, d^{3}x^{{\prime}}\, q_{i}^{\dagger}(\vec{x}^{{\prime}})\,\vec{x}^{{\prime}}\, q_{i}(\vec{x}^{{\prime}})\,+\,\vec{\Delta}\,\frac{1}{N_{c}-1}\sum _{{i={\rm light}}}\,\int\, d^{3}x^{{\prime}}\, q_{i}^{\dagger}(\vec{x}^{{\prime}})\, q_{i}(\vec{x}^{{\prime}})\right)\,\,=\,\,\vec{d}_{\ell}+\vec{\Delta}\,.$ at pos:656564(80%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[1] + 1.9999999999999964 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.998046875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.96875 * TOKEN_SCORE[)] + 1.9999923706054688 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.9375*0.0102451205633244+1.9999999999999964*5.92879328325965E-4+1.96875*0.00418257496311516+1.998046875*0.00257082788077282+1.75*0.367378648065486+1.96875*0.00417601612706465+1.9999923706054688*2.82855+1.75*0.0154682311502303+1.75*0.0366287198730455 = 10643.378900885164' final score ~ 10643 reviewer: xxx gave 0
Rendered MathML:
1Nc-1i=lightd3xqixxqix+Δ1Nc-1i=lightd3xqixqix=d+Δ.1subscriptNc1subscriptilightsuperscriptd3superscriptxsuperscriptsubscriptqisuperscriptxsuperscriptxsubscriptqisuperscriptxΔ1subscriptNc1subscriptilightsuperscriptd3superscriptxsuperscriptsubscriptqisuperscriptxsubscriptqisuperscriptxsubscriptdΔ\displaystyle\left(\frac{1}{N_{c}-1}\sum _{{i={\rm light}}}\,\int\, d^{3}x^{{\prime}}\, q_{i}^{\dagger}(\vec{x}^{{\prime}})\,\vec{x}^{{\prime}}\, q_{i}(\vec{x}^{{\prime}})\,+\,\vec{\Delta}\,\frac{1}{N_{c}-1}\sum _{{i={\rm light}}}\,\int\, d^{3}x^{{\prime}}\, q_{i}^{\dagger}(\vec{x}^{{\prime}})\, q_{i}(\vec{x}^{{\prime}})\right)\,\,=\,\,\vec{d}_{\ell}+\vec{\Delta}\,.
End of MathML
.

Hit id72388

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 20
  • Formulasearchengine score: 10642
  • Reference to collection: _PREFIX_/221/f088268.xhtml#id72388
found all required tokens in TeX $G_{1}\,=\,-\, 4\, N_{c}\,\bar{X}_{1}\, F(\xi)\, G_{1}\,;\quad G_{2}\,=\,-\, 4\, N_{c}\,\bar{X}_{2}\, F(\xi)\, G_{2}\,;\qquad\xi\,=\,\frac{k^{2}}{4\Lambda^{2}}\,.$ at pos:283723(38%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.9999999962747097 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.99609375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.75 * TOKEN_SCORE[)] + 1.9999980926513672 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.9999999962747097*5.92879328325965E-4+1.75*0.00418257496311516+1.99609375*0.00257082788077282+1.75*0.367378648065486+1.75*0.00417601612706465+1.9999980926513672*2.82855+1.75*0.0154682311502303+1.5*0.0366287198730455 = 10642.217423098971' final score ~ 10642 reviewer: xxx gave 0
Rendered MathML:
G1=- 4NcX¯1FξG1;G2=- 4NcX¯2FξG2;ξ=k24Λ2.subscriptG1 4subscriptNcsubscript¯X1FξsubscriptG1subscriptG2 4subscriptNcsubscript¯X2FξsubscriptG2ξsuperscriptk24superscriptΛ2G_{1}\,=\,-\, 4\, N_{c}\,\bar{X}_{1}\, F(\xi)\, G_{1}\,;\quad G_{2}\,=\,-\, 4\, N_{c}\,\bar{X}_{2}\, F(\xi)\, G_{2}\,;\qquad\xi\,=\,\frac{k^{2}}{4\Lambda^{2}}\,.
End of MathML
.

Hit id67395

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 21
  • Formulasearchengine score: 10641
  • Reference to collection: _PREFIX_/47/f018575.xhtml#id67395
found all required tokens in TeX $|\Psi _{T}(z,r_{{\perp}};Q^{2})|^{2}\,\,=\,\,\frac{\alpha^{{em}}N_{c}}{2\pi^{2}}\,\times\,\sum^{{N_{f}}}_{{1}}\, Z^{2}_{f}\,\,[\, z^{2}\,+\,(1-z)^{2}\,]\,\,\tilde{Q}^{2}\, K^{2}_{1}(\tilde{Q}\, r_{{\perp}})\,\,,$ at pos:201471(54%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.9999999981373549 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.99609375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.875 * TOKEN_SCORE[)] + 1.9999995231628418 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.9999999981373549*5.92879328325965E-4+1.875*0.00418257496311516+1.99609375*0.00257082788077282+1.75*0.367378648065486+1.875*0.00417601612706465+1.9999995231628418*2.82855+1.5*0.0154682311502303+1.5*0.0366287198730455 = 10641.935604336277' final score ~ 10641 reviewer: xxx gave 0
Rendered MathML:
ΨTz,r;Q22=αemNc2π2×Nf1Zf2z2+1-z2Q~2K12Q~r,superscriptsubscriptΨTzsubscriptrsuperscriptQ22superscriptαemsubscriptNc2superscriptπ2subscriptsuperscriptsubscriptNf1subscriptsuperscriptZ2fsuperscriptz2superscript1z2superscript~Q2subscriptsuperscriptK21~Qsubscriptr|\Psi _{T}(z,r_{{\perp}};Q^{2})|^{2}\,\,=\,\,\frac{\alpha^{{em}}N_{c}}{2\pi^{2}}\,\times\,\sum^{{N_{f}}}_{{1}}\, Z^{2}_{f}\,\,[\, z^{2}\,+\,(1-z)^{2}\,]\,\,\tilde{Q}^{2}\, K^{2}_{1}(\tilde{Q}\, r_{{\perp}})\,\,,
End of MathML
.

Hit id79801

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 22
  • Formulasearchengine score: 10635
  • Reference to collection: _PREFIX_/8/f003179.xhtml#id79801
found all required tokens in TeX $\Delta E^{{(2)}}=\frac{1}{4}\, g^{2}\langle\, 0\,|\,\int\!\rho _{{\mathrm{t}}}\,\frac{1}{\Delta}\,\rho _{{\mathrm{t}}}\,\frac{Q}{E-H_{0}}\int\!\rho _{{\mathrm{t}}}\,\frac{1}{\Delta}\,\rho _{{\mathrm{t}}}\,|\, 0\,\rangle=-g^{2}\int\! d^{3}\! k\,\rho _{{1}}^{{a}}({\bf k})\,\frac{1}{k^{2}}\,\rho _{{2}}^{{a}}({\bf k})\,\frac{N_{c}g^{{2}}}{48\pi^{2}}\,\ln\frac{\Lambda^{2}}{k^{2}}\ .$ at pos:404918(28%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.96875 * TOKEN_SCORE[1] + 1.9999999999999998 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.99609375 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.875 * TOKEN_SCORE[)] + 1.9999923706054688 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.9921875 * TOKEN_SCORE[frac] =+100.0+0.0+1.96875*0.0102451205633244+1.9999999999999998*5.92879328325965E-4+1.875*0.00418257496311516+1.99609375*0.00257082788077282+1.5*0.367378648065486+1.875*0.00417601612706465+1.9999923706054688*2.82855+1.75*0.0154682311502303+1.9921875*0.0366287198730455 = 10635.034688588423' final score ~ 10635 reviewer: xxx gave 0
Rendered MathML:
ΔE2=14g2 0ρt1ΔρtQE-H0ρt1Δρt 0=-g2d3kρ1ak1k2ρ2akNcg248π2lnΛ2k2.ΔsuperscriptE214superscriptg2 0subscriptρt1ΔsubscriptρtQEsubscriptH0subscriptρt1Δsubscriptρt 0superscriptg2superscriptd3ksuperscriptsubscriptρ1ak1superscriptk2superscriptsubscriptρ2aksubscriptNcsuperscriptg248superscriptπ2superscriptΛ2superscriptk2\Delta E^{{(2)}}=\frac{1}{4}\, g^{2}\langle\, 0\,|\,\int\!\rho _{{\mathrm{t}}}\,\frac{1}{\Delta}\,\rho _{{\mathrm{t}}}\,\frac{Q}{E-H_{0}}\int\!\rho _{{\mathrm{t}}}\,\frac{1}{\Delta}\,\rho _{{\mathrm{t}}}\,|\, 0\,\rangle=-g^{2}\int\! d^{3}\! k\,\rho _{{1}}^{{a}}({\bf k})\,\frac{1}{k^{2}}\,\rho _{{2}}^{{a}}({\bf k})\,\frac{N_{c}g^{{2}}}{48\pi^{2}}\,\ln\frac{\Lambda^{2}}{k^{2}}\ .
End of MathML
.

Hit id86503

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 23
  • Formulasearchengine score: 10635
  • Reference to collection: _PREFIX_/139/f055326.xhtml#id86503
found all required tokens in TeX $v_{2}(p_{T},\underline{B})\,=\,\alpha _{s}\,\left(\frac{\pi\, N_{c}\, K_{2}}{2\,\ln 2\, C_{F}\, S_{\bot}\, Q_{s}^{2}\, K_{1}^{2}}\right)^{{1/2}}\,\frac{\int _{0}^{\infty}\,\frac{dz}{z^{3}}\, J_{2}(p_{T}z)\,\left(1-e^{{-\underline{z}^{2}Q_{s}^{2}/4}}\right)^{2}}{\int _{0}^{\infty}\,\frac{dz}{z^{3}}\, J_{0}(p_{T}z)\,\left(1-e^{{-\underline{z}^{2}Q_{s}^{2}/4}}\right)^{2}}.$ at pos:497434(63%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[1] + 1.999999999996362 * TOKEN_SCORE[\] + 1.984375 * TOKEN_SCORE[(] + 1.9999923706054688 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.984375 * TOKEN_SCORE[)] + 1.9999961853027344 * TOKEN_SCORE[,] + 1.9375 * TOKEN_SCORE[-] + 1.9375 * TOKEN_SCORE[frac] =+100.0+0.0+1.9375*0.0102451205633244+1.999999999996362*5.92879328325965E-4+1.984375*0.00418257496311516+1.9999923706054688*0.00257082788077282+1.5*0.367378648065486+1.984375*0.00417601612706465+1.9999961853027344*2.82855+1.9375*0.0154682311502303+1.9375*0.0366287198730455 = 10635.18589197342' final score ~ 10635 reviewer: xxx gave 0
Rendered MathML:
v2pT,B¯=αsπNcK22ln2CFSQs2K121/20dzz3J2pTz1-e-z¯2Qs2/420dzz3J0pTz1-e-z¯2Qs2/42.subscriptv2subscriptpT¯BsubscriptαssuperscriptπsubscriptNcsubscriptK222subscriptCFsubscriptSsuperscriptsubscriptQs2superscriptsubscriptK1212superscriptsubscript0dzsuperscriptz3subscriptJ2subscriptpTzsuperscript1superscriptesuperscript¯z2superscriptsubscriptQs242superscriptsubscript0dzsuperscriptz3subscriptJ0subscriptpTzsuperscript1superscriptesuperscript¯z2superscriptsubscriptQs242v_{2}(p_{T},\underline{B})\,=\,\alpha _{s}\,\left(\frac{\pi\, N_{c}\, K_{2}}{2\,\ln 2\, C_{F}\, S_{\bot}\, Q_{s}^{2}\, K_{1}^{2}}\right)^{{1/2}}\,\frac{\int _{0}^{\infty}\,\frac{dz}{z^{3}}\, J_{2}(p_{T}z)\,\left(1-e^{{-\underline{z}^{2}Q_{s}^{2}/4}}\right)^{2}}{\int _{0}^{\infty}\,\frac{dz}{z^{3}}\, J_{0}(p_{T}z)\,\left(1-e^{{-\underline{z}^{2}Q_{s}^{2}/4}}\right)^{2}}.
End of MathML
.

Hit id57704

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 24
  • Formulasearchengine score: 10634
  • Reference to collection: _PREFIX_/71/f028363.xhtml#id57704
found all required tokens in TeX $\displaystyle\frac{dF_{2}^{D}}{d\,\ln Q^{2}}={\cal N}\,\, x_{{{I\!\! P}}}^{{1-2\,\alpha _{{{I\!\! P}}}(0)}}\,\left[\, eA\,\,\beta^{{-\Delta(Q^{2})}}\,(1-\beta)^{{n(Q^{2})\,+\, 2}}\,\left({\frac{Q^{2}}{Q^{2}+a}}\right)^{{1\,+\,\Delta(Q^{2})}}\, S_{{{I\!\! P}}}(Q^{2},\beta)\,\,\,+\,\,\right.$ at pos:69233(19%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.9999999999995453 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[(] + 1.9375 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.9921875 * TOKEN_SCORE[)] + 1.9999995231628418 * TOKEN_SCORE[,] + 1.875 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.9999999999995453*5.92879328325965E-4+1.9921875*0.00418257496311516+1.9375*0.00257082788077282+1.5*0.367378648065486+1.9921875*0.00417601612706465+1.9999995231628418*2.82855+1.875*0.0154682311502303+1.75*0.0366287198730455 = 10634.329803594434' final score ~ 10634 reviewer: xxx gave 0
Rendered MathML:
dF2DdlnQ2=NxIP1-2αIP0[eAβ-ΔQ2(1-β)nQ2+ 2(Q2Q2+a)1+ΔQ2SIP(Q2,β)+\displaystyle\frac{dF_{2}^{D}}{d\,\ln Q^{2}}={\cal N}\,\, x_{{{I\!\! P}}}^{{1-2\,\alpha _{{{I\!\! P}}}(0)}}\,\left[\, eA\,\,\beta^{{-\Delta(Q^{2})}}\,(1-\beta)^{{n(Q^{2})\,+\, 2}}\,\left({\frac{Q^{2}}{Q^{2}+a}}\right)^{{1\,+\,\Delta(Q^{2})}}\, S_{{{I\!\! P}}}(Q^{2},\beta)\,\,\,+\,\,\right.
End of MathML
.

Hit id59211

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 25
  • Formulasearchengine score: 10634
  • Reference to collection: _PREFIX_/30/f011890.xhtml#id59211
found all required tokens in TeX $\omega(f)\,\,\,=\,\,\,\frac{\alpha _{s}(r_{H})\, N_{c}}{\pi}\,\{\, 2\,\psi(1)\,-\,\psi(\frac{1}{2}\,-\, f)\,-\,\psi(\frac{1}{2}\,+\, f)\,\}\;.$ at pos:83430(6%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.9999999995343387 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.875 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.96875 * TOKEN_SCORE[)] + 1.9999980926513672 * TOKEN_SCORE[,] + 1.875 * TOKEN_SCORE[-] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.9999999995343387*5.92879328325965E-4+1.96875*0.00418257496311516+1.875*0.00257082788077282+1.5*0.367378648065486+1.96875*0.00417601612706465+1.9999980926513672*2.82855+1.875*0.0154682311502303+1.875*0.0366287198730455 = 10634.751599843374' final score ~ 10634 reviewer: xxx gave 0
Rendered MathML:
ωf=αsrHNcπ 2ψ1-ψ12-f-ψ12+f.ωfsubscriptαssubscriptrHsubscriptNcπ 2ψ1ψ12fψ12f\omega(f)\,\,\,=\,\,\,\frac{\alpha _{s}(r_{H})\, N_{c}}{\pi}\,\{\, 2\,\psi(1)\,-\,\psi(\frac{1}{2}\,-\, f)\,-\,\psi(\frac{1}{2}\,+\, f)\,\}\;.
End of MathML
.

Hit id77287

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 26
  • Formulasearchengine score: 10634
  • Reference to collection: _PREFIX_/239/f095562.xhtml#id77287
found all required tokens in TeX $N(y-y_{0},\xi-\xi^{{\prime}})\,\,=\,\,\int\frac{df}{2\pi i}\,\, e^{{\frac{\bar{\alpha}_{s}}{f}\,\,+\,(f-1)\,(\xi-\xi^{{\prime}})}}\,\,\propto\, e^{{2\sqrt{\bar{\alpha}_{s}\,(y-y_{0})\,(\xi-\xi^{{\prime}})}\,\,-\xi\,+\,\xi^{{\prime}}}}\,\,.$ at pos:348183(72%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.9999999999998863 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.9375 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.96875 * TOKEN_SCORE[)] + 1.999999761581421 * TOKEN_SCORE[,] + 1.9921875 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.9999999999998863*5.92879328325965E-4+1.96875*0.00418257496311516+1.9375*0.00257082788077282+1.5*0.367378648065486+1.96875*0.00417601612706465+1.999999761581421*2.82855+1.9921875*0.0154682311502303+1.75*0.0366287198730455 = 10634.10735689712' final score ~ 10634 reviewer: xxx gave 0
Rendered MathML:
Ny-y0,ξ-ξ=df2πieα¯sf+f-1ξ-ξe2α¯sy-y0ξ-ξ-ξ+ξ.Nysubscripty0ξsuperscriptξdf2πisuperscriptesubscript¯αsff1ξsuperscriptξsuperscripte2subscript¯αsysubscripty0ξsuperscriptξξsuperscriptξN(y-y_{0},\xi-\xi^{{\prime}})\,\,=\,\,\int\frac{df}{2\pi i}\,\, e^{{\frac{\bar{\alpha}_{s}}{f}\,\,+\,(f-1)\,(\xi-\xi^{{\prime}})}}\,\,\propto\, e^{{2\sqrt{\bar{\alpha}_{s}\,(y-y_{0})\,(\xi-\xi^{{\prime}})}\,\,-\xi\,+\,\xi^{{\prime}}}}\,\,.
End of MathML
.

Hit id93754

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 27
  • Formulasearchengine score: 10634
  • Reference to collection: _PREFIX_/192/f076616.xhtml#id93754
found all required tokens in TeX $\displaystyle\frac{d\sigma^{{pA}}}{d^{2}k\ dy}\,=\,\frac{C_{F}}{\alpha _{s}\,\pi\,(2\pi)^{3}}\,\frac{1}{{\underline{k}}^{2}}\,\int d^{2}B\, d^{2}b\, d^{2}z\,\nabla^{2}_{z}\, n_{G}({\underline{z}},{\underline{b}}-{\underline{B}},Y-y)\, e^{{-i{\underline{k}}\cdot{\underline{z}}}}\,\nabla^{2}_{z}\, N_{G}({\underline{z}},{\underline{b}},y),$ at pos:608988(35%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.9999999999417923 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.984375 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.875 * TOKEN_SCORE[)] + 1.9999961853027344 * TOKEN_SCORE[,] + 1.875 * TOKEN_SCORE[-] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.9999999999417923*5.92879328325965E-4+1.875*0.00418257496311516+1.984375*0.00257082788077282+1.5*0.367378648065486+1.875*0.00417601612706465+1.9999961853027344*2.82855+1.875*0.0154682311502303+1.875*0.0366287198730455 = 10634.316624957653' final score ~ 10634 reviewer: xxx gave 0
Rendered MathML:
dσpAd2kdy=CFαsπ2π31k¯2d2Bd2bd2zz2nGz¯,b¯-B¯,Y-ye-ik¯z¯z2NGz¯,b¯,y,dsuperscriptσpAsuperscriptd2kdysubscriptCFsubscriptαsπsuperscript2π31superscript¯k2superscriptd2Bsuperscriptd2bsuperscriptd2zsubscriptsuperscript2zsubscriptnG¯z¯b¯BYysuperscriptei¯k¯zsubscriptsuperscript2zsubscriptNG¯z¯by\displaystyle\frac{d\sigma^{{pA}}}{d^{2}k\ dy}\,=\,\frac{C_{F}}{\alpha _{s}\,\pi\,(2\pi)^{3}}\,\frac{1}{{\underline{k}}^{2}}\,\int d^{2}B\, d^{2}b\, d^{2}z\,\nabla^{2}_{z}\, n_{G}({\underline{z}},{\underline{b}}-{\underline{B}},Y-y)\, e^{{-i{\underline{k}}\cdot{\underline{z}}}}\,\nabla^{2}_{z}\, N_{G}({\underline{z}},{\underline{b}},y),
End of MathML
.

Hit id143754

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 28
  • Formulasearchengine score: 10633
  • Reference to collection: _PREFIX_/189/f075285.xhtml#id143754
found all required tokens in TeX $A^{{(1)}}\equiv-\frac{1}{t}\, J_{{(A)\,\alpha}}^{{(1)\, a}}\,(p_{A},q,\eta)\,\left(N^{{\alpha\beta}}(q,\eta)+\frac{1}{t}\, v_{{B}}^{{\alpha}}\, v_{A}^{{\mu}}\,{\Pi}_{{\mu\,\nu}}(q,\eta)\, v_{B}^{{\nu}}\, v_{A}^{{\beta}}\right)\, J_{{(B)\,\beta}}^{{(1)\, a}}\,(p_{B},q,\eta),$ at pos:1415948(69%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.96875 * TOKEN_SCORE[1] + 1.9999999999708962 * TOKEN_SCORE[\] + 1.9990234375 * TOKEN_SCORE[(] + 1.998046875 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.9990234375 * TOKEN_SCORE[)] + 1.999999761581421 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.96875*0.0102451205633244+1.9999999999708962*5.92879328325965E-4+1.9990234375*0.00418257496311516+1.998046875*0.00257082788077282+1.5*0.367378648065486+1.9990234375*0.00417601612706465+1.999999761581421*2.82855+1.5*0.0154682311502303+1.75*0.0366287198730455 = 10633.867139809528' final score ~ 10633 reviewer: xxx gave 0
Rendered MathML:
A1-1tJAα1apA,q,ηNαβq,η+1tvBαvAμΠμνq,ηvBνvAβJBβ1apB,q,η,superscriptA11tsuperscriptsubscriptJAα1asubscriptpAqηsuperscriptNαβqη1tsuperscriptsubscriptvBαsuperscriptsubscriptvAμsubscriptΠμνqηsuperscriptsubscriptvBνsuperscriptsubscriptvAβsuperscriptsubscriptJBβ1asubscriptpBqηA^{{(1)}}\equiv-\frac{1}{t}\, J_{{(A)\,\alpha}}^{{(1)\, a}}\,(p_{A},q,\eta)\,\left(N^{{\alpha\beta}}(q,\eta)+\frac{1}{t}\, v_{{B}}^{{\alpha}}\, v_{A}^{{\mu}}\,{\Pi}_{{\mu\,\nu}}(q,\eta)\, v_{B}^{{\nu}}\, v_{A}^{{\beta}}\right)\, J_{{(B)\,\beta}}^{{(1)\, a}}\,(p_{B},q,\eta),
End of MathML
.

Hit id96267

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 29
  • Formulasearchengine score: 10633
  • Reference to collection: _PREFIX_/189/f075494.xhtml#id96267
found all required tokens in TeX $C_{{0}}=\frac{1}{g_{{\rm op}}^{2}(2\alpha^{{\prime}})^{{\frac{d}{2}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, N_{{\rm op}}=2g_{{\rm op}}(2\alpha^{{\prime}})^{{\frac{d-2}{4}}}~,$ at pos:645578(27%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.9999999999708962 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.9375 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.75 * TOKEN_SCORE[)] + 1.9999999850988388 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.9999999999708962*5.92879328325965E-4+1.75*0.00418257496311516+1.9375*0.00257082788077282+1.5*0.367378648065486+1.75*0.00417601612706465+1.9999999850988388*2.82855+1.5*0.0154682311502303+1.875*0.0366287198730455 = 10633.621107936528' final score ~ 10633 reviewer: xxx gave 0
Rendered MathML:
C0=1gop22αd2Nop=2gop2αd-24,subscriptC01superscriptsubscriptgop2superscript2superscriptαd2subscriptNop2subscriptgopsuperscript2superscriptαd24C_{{0}}=\frac{1}{g_{{\rm op}}^{2}(2\alpha^{{\prime}})^{{\frac{d}{2}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, N_{{\rm op}}=2g_{{\rm op}}(2\alpha^{{\prime}})^{{\frac{d-2}{4}}}~,
End of MathML
.

Hit id160698

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 30
  • Formulasearchengine score: 10632
  • Reference to collection: _PREFIX_/148/f058874.xhtml#id160698
found all required tokens in TeX $\partial _{t}E_{{\rm PF}}+\frac{1}{r^{2}}\partial _{r}\left(Nr^{2}J^{r}_{{\rm PF}}\right)=NK^{{(r)}}_{{\,\,\,\,(r)}}\left({}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}+E_{{\rm PF}}\right)-4\,\pi rG_{0}\, NA^{2}J^{r}_{{\rm PF}}\left(S^{{(r)}}_{{\,\,\,\,(r)}}+E\right)-N^{2}{\cal F}^{t}\,\,\,\,.$ at pos:1662049(77%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.999999999985448 * TOKEN_SCORE[\] + 1.998046875 * TOKEN_SCORE[(] + 1.99951171875 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.998046875 * TOKEN_SCORE[)] + 1.9999980926513672 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.999999999985448*5.92879328325965E-4+1.998046875*0.00418257496311516+1.99951171875*0.00257082788077282+1.5*0.367378648065486+1.998046875*0.00417601612706465+1.9999980926513672*2.82855+1.75*0.0154682311502303+1.5*0.0366287198730455 = 10632.856975817296' final score ~ 10632 reviewer: xxx gave 0
Rendered MathML:
tEPF+1r2rNr2JPFr=NKrrSrrPF+EPF-4πrG0NA2JPFrSrr+E-N2Ft.subscripttsubscriptEPF1superscriptr2subscriptrNsuperscriptr2subscriptsuperscriptJrPFNsubscriptsuperscriptKrrsubscriptsubscriptsuperscriptSrrPFsubscriptEPF4πrsubscriptG0NsuperscriptA2subscriptsuperscriptJrPFsubscriptsuperscriptSrrEsuperscriptN2superscriptFt\partial _{t}E_{{\rm PF}}+\frac{1}{r^{2}}\partial _{r}\left(Nr^{2}J^{r}_{{\rm PF}}\right)=NK^{{(r)}}_{{\,\,\,\,(r)}}\left({}_{{\rm PF}}\,\! S^{{(r)}}_{{\,\,\,\,(r)}}+E_{{\rm PF}}\right)-4\,\pi rG_{0}\, NA^{2}J^{r}_{{\rm PF}}\left(S^{{(r)}}_{{\,\,\,\,(r)}}+E\right)-N^{2}{\cal F}^{t}\,\,\,\,.
End of MathML
.

Hit idp1631744

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 31
  • Formulasearchengine score: 10617
  • Reference to collection: _PREFIX_/15/f005991.xhtml#idp1631744
found all required tokens in TeX ${\cal N}_{\varepsilon}\lesssim\frac{\varepsilon}{N}\text{Im }\mbox{Tr}\,\frac{1}{H-E-i\frac{\varepsilon}{N}}=\frac{\varepsilon}{N}\text{Im }\sum _{{j=1}}^{N}\left(\frac{1}{H-E-i\frac{\varepsilon}{N}}\right)(j,j)\,.$ at pos:201295(22%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.9999995231628418 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.75 * TOKEN_SCORE[_] + 1.984375 * TOKEN_SCORE[N] + 1.75 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[,] + 1.9375 * TOKEN_SCORE[-] + 1.984375 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.9999995231628418*5.92879328325965E-4+1.75*0.00418257496311516+1.75*0.00257082788077282+1.984375*0.367378648065486+1.75*0.00417601612706465+1.875*2.82855+1.9375*0.0154682311502303+1.984375*0.0366287198730455 = 10617.472491123595' final score ~ 10617 reviewer: xxx gave 0
Rendered MathML:
NεεNIm Tr1H-E-iεN=εNIm j=1N(1H-E-iεN)(j,j).less-than-or-similar-tosubscriptNεεNIm Tr1HEiεNεNIm superscriptsubscriptj1N1HEiεNjj{\cal N}_{\varepsilon}\lesssim\frac{\varepsilon}{N}\text{Im }\mbox{Tr}\,\frac{1}{H-E-i\frac{\varepsilon}{N}}=\frac{\varepsilon}{N}\text{Im }\sum _{{j=1}}^{N}\left(\frac{1}{H-E-i\frac{\varepsilon}{N}}\right)(j,j)\,.
End of MathML
.

Hit id59548

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 32
  • Formulasearchengine score: 10605
  • Reference to collection: _PREFIX_/191/f076246.xhtml#id59548
found all required tokens in TeX $W_{1}(x)={1\over N}\left<{\,\rm tr}\:{1\over x-M_{1}}\right>{\qquad,\qquad}W_{2}(y)={1\over N}\left<{\,\rm tr}\:{1\over y-M_{2}}\right>$ at pos:80715(6%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[1] + 1.9999847412109375 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.9375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.75 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.0 * TOKEN_SCORE[frac] =+100.0+0.0+1.984375*0.0102451205633244+1.9999847412109375*5.92879328325965E-4+1.75*0.00418257496311516+1.9375*0.00257082788077282+1.75*0.367378648065486+1.75*0.00417601612706465+1.875*2.82855+1.75*0.0154682311502303+1.0*0.0366287198730455 = 10605.126643265525' final score ~ 10605 reviewer: xxx gave 0
Rendered MathML:
W1x=1Ntr1x-M1,W2y=1Ntr1y-M2subscriptW1x1Ntr1xsubscriptM1subscriptW2y1Ntr1ysubscriptM2W_{1}(x)={1\over N}\left<{\,\rm tr}\:{1\over x-M_{1}}\right>{\qquad,\qquad}W_{2}(y)={1\over N}\left<{\,\rm tr}\:{1\over y-M_{2}}\right>
End of MathML
.

Hit idp8431280

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 33
  • Formulasearchengine score: 10579
  • Reference to collection: _PREFIX_/113/f045184.xhtml#idp8431280
found all required tokens in TeX $C_{{1}}=(N+a)(\frac{N-p}{p-1})^{{p-1}},C_{{2}}=(N+b)(\frac{N-q}{q-1})^{{q-1}},$ at pos:1063454(35%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.96875 * TOKEN_SCORE[1] + 1.75 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.75 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[N] + 1.9375 * TOKEN_SCORE[)] + 1.75 * TOKEN_SCORE[,] + 1.984375 * TOKEN_SCORE[-] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.96875*0.0102451205633244+1.75*5.92879328325965E-4+1.9375*0.00418257496311516+1.75*0.00257082788077282+1.9375*0.367378648065486+1.9375*0.00417601612706465+1.75*2.82855+1.984375*0.0154682311502303+1.75*0.0366287198730455 = 10579.845500055564' final score ~ 10579 reviewer: xxx gave 0
Rendered MathML:
C1=(N+a)(N-pp-1)p-1,C2=(N+b)(N-qq-1)q-1,subscriptC1NasuperscriptNpp1p1subscriptC2NbsuperscriptNqq1q1C_{{1}}=(N+a)(\frac{N-p}{p-1})^{{p-1}},C_{{2}}=(N+b)(\frac{N-q}{q-1})^{{q-1}},
End of MathML
.

Hit idp3072752

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 34
  • Formulasearchengine score: 10571
  • Reference to collection: _PREFIX_/115/f045926.xhtml#idp3072752
found all required tokens in TeX ${(\alpha\beta)^{{-r}}\leq Q^{N}\text{, where }r=\lfloor\log _{{\frac{1}{1-\varepsilon}}}N\rfloor+1\,.}$ at pos:389058(58%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.9990234375 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.5 * TOKEN_SCORE[)] + 1.75 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.9990234375*5.92879328325965E-4+1.5*0.00418257496311516+1.5*0.00257082788077282+1.75*0.367378648065486+1.5*0.00417601612706465+1.75*2.82855+1.75*0.0154682311502303+1.5*0.0366287198730455 = 10571.167652762264' final score ~ 10571 reviewer: xxx gave 0
Rendered MathML:
(αβ)-rQN, where r=log11-εN+1 .superscriptαβrsuperscriptQN, where rsubscript11εN1 .{(\alpha\beta)^{{-r}}\leq Q^{N}\text{, where }r=\lfloor\log _{{\frac{1}{1-\varepsilon}}}N\rfloor+1\,.}
End of MathML
.

Hit id143491

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 35
  • Formulasearchengine score: 10540
  • Reference to collection: _PREFIX_/34/f013378.xhtml#id143491
found all required tokens in TeX $m:=\beta(1,1,2)+1$ at pos:1387489(64%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.5 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.0 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[N] + 1.5 * TOKEN_SCORE[)] + 1.75 * TOKEN_SCORE[,] + 1.0 * TOKEN_SCORE[-] + 1.0 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.5*5.92879328325965E-4+1.5*0.00418257496311516+1.0*0.00257082788077282+1.0*0.367378648065486+1.5*0.00417601612706465+1.75*2.82855+1.0*0.0154682311502303+1.0*0.0366287198730455 = 10540.464573365354' final score ~ 10540 reviewer: xxx gave 0
Rendered MathML:
m:=β1,1,2+1:=mβ1121m:=\beta(1,1,2)+1
End of MathML
.

Hit idp31747408

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 36
  • Formulasearchengine score: 10511
  • Reference to collection: _PREFIX_/16/f006323.xhtml#idp31747408
found all required tokens in TeX $\displaystyle\left(1-\frac{\mu}{N}\right)\left(\frac{N}{N-1}\right)^{{p}}\frac{h_{{N-1}}}{h_{N}}\, v_{{N-1}}+\frac{d_{N}}{N\log^{\nu}{N}}$ at pos:1532312(96%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[1] + 1.9998779296875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.9375 * TOKEN_SCORE[_] + 1.998046875 * TOKEN_SCORE[N] + 1.75 * TOKEN_SCORE[)] + 1.5 * TOKEN_SCORE[,] + 1.9375 * TOKEN_SCORE[-] + 1.9375 * TOKEN_SCORE[frac] =+100.0+0.0+1.9375*0.0102451205633244+1.9998779296875*5.92879328325965E-4+1.75*0.00418257496311516+1.9375*0.00257082788077282+1.998046875*0.367378648065486+1.75*0.00417601612706465+1.5*2.82855+1.9375*0.0154682311502303+1.9375*0.0366287198730455 = 10511.84467231185' final score ~ 10511 reviewer: xxx gave 0
Rendered MathML:
(1-μN)(NN-1)phN-1hNvN-1+dNNlogνN1μNsuperscriptNN1psubscripthN1subscripthNsubscriptvN1subscriptdNNsuperscriptνN\displaystyle\left(1-\frac{\mu}{N}\right)\left(\frac{N}{N-1}\right)^{{p}}\frac{h_{{N-1}}}{h_{N}}\, v_{{N-1}}+\frac{d_{N}}{N\log^{\nu}{N}}
End of MathML
.

Hit id61127

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 37
  • Formulasearchengine score: 10489
  • Reference to collection: _PREFIX_/209/f083547.xhtml#id61127
found all required tokens in TeX $W_{k}(z_{k}):={1\over N}\left<{\,\rm tr}\:{1\over z_{k}-M_{{k}}}\right>$ at pos:110064(4%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[1] + 1.9921875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.9375 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.5 * TOKEN_SCORE[)] + 1.5 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.0 * TOKEN_SCORE[frac] =+100.0+0.0+1.75*0.0102451205633244+1.9921875*5.92879328325965E-4+1.5*0.00418257496311516+1.9375*0.00257082788077282+1.5*0.367378648065486+1.5*0.00417601612706465+1.5*2.82855+1.5*0.0154682311502303+1.0*0.0366287198730455 = 10489.035299212359' final score ~ 10489 reviewer: xxx gave 0
Rendered MathML:
Wkzk:=1Ntr1zk-Mk:=subscriptWksubscriptzk1Ntr1subscriptzksubscriptMkW_{k}(z_{k}):={1\over N}\left<{\,\rm tr}\:{1\over z_{k}-M_{{k}}}\right>
End of MathML
.

Hit id61320

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 38
  • Formulasearchengine score: 10489
  • Reference to collection: _PREFIX_/209/f083547.xhtml#id61320
found all required tokens in TeX $W_{0}(z_{0}):={1\over N}\left<{\,\rm tr}\:{1\over z_{0}-M_{{0}}}\right>$ at pos:112954(4%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[1] + 1.9921875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.9375 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.5 * TOKEN_SCORE[)] + 1.5 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.0 * TOKEN_SCORE[frac] =+100.0+0.0+1.75*0.0102451205633244+1.9921875*5.92879328325965E-4+1.5*0.00418257496311516+1.9375*0.00257082788077282+1.5*0.367378648065486+1.5*0.00417601612706465+1.5*2.82855+1.5*0.0154682311502303+1.0*0.0366287198730455 = 10489.035299212359' final score ~ 10489 reviewer: xxx gave 0
Rendered MathML:
W0z0:=1Ntr1z0-M0:=subscriptW0subscriptz01Ntr1subscriptz0subscriptM0W_{0}(z_{0}):={1\over N}\left<{\,\rm tr}\:{1\over z_{0}-M_{{0}}}\right>
End of MathML
.

Hit idp20981904

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 39
  • Formulasearchengine score: 10472
  • Reference to collection: _PREFIX_/113/f045088.xhtml#idp20981904
found all required tokens in TeX $\displaystyle=\left[\frac{1}{1-A_{0}\beta}\right]^{2}(b_{{-1}})_{\text{ampli}}\leavevmode\nobreak\ ,$ at pos:178410(61%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.998046875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.875 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[N] + 1.5 * TOKEN_SCORE[)] + 1.5 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.998046875*5.92879328325965E-4+1.5*0.00418257496311516+1.875*0.00257082788077282+1.0*0.367378648065486+1.5*0.00417601612706465+1.5*2.82855+1.75*0.0154682311502303+1.5*0.0366287198730455 = 10472.99685230451' final score ~ 10472 reviewer: xxx gave 0
Rendered MathML:
=[11-A0β]2(b-1)ampli,superscript[11subscriptA0β]2subscript(subscriptb1)ampli,\displaystyle=\left[\frac{1}{1-A_{0}\beta}\right]^{2}(b_{{-1}})_{\text{ampli}}\leavevmode\nobreak\ ,
End of MathML
.

Hit id87538

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 40
  • Formulasearchengine score: 10470
  • Reference to collection: _PREFIX_/33/f012939.xhtml#id87538
found all required tokens in TeX ${\bf R}_{{S^{2}}}(z)={\bf g}\left\langle{\rm Tr}\,{1\over z-{\bf\Phi}}\right\rangle$ at pos:519438(61%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.99951171875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[N] + 1.5 * TOKEN_SCORE[)] + 1.5 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.0 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.99951171875*5.92879328325965E-4+1.5*0.00418257496311516+1.5*0.00257082788077282+1.0*0.367378648065486+1.5*0.00417601612706465+1.5*2.82855+1.5*0.0154682311502303+1.0*0.0366287198730455 = 10470.298199313009' final score ~ 10470 reviewer: xxx gave 0
Rendered MathML:
RS2z=gTr1z-ΦsubscriptRsuperscriptS2zgTr1zΦ{\bf R}_{{S^{2}}}(z)={\bf g}\left\langle{\rm Tr}\,{1\over z-{\bf\Phi}}\right\rangle
End of MathML
.

Hit id76183

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 41
  • Formulasearchengine score: 10367
  • Reference to collection: _PREFIX_/241/f096226.xhtml#id76183
found all required tokens in TeX $\displaystyle N_{k}(N+1)=\cases{N_{k}-1&\hbox{prob. ${\displaystyle{kN_{k}\over 2N}}$}\cr\cr N_{k}+1&\hbox{prob. ${\displaystyle{(k-1)N_{{k-1}}\over 2N}}$}\cr\cr N_{k}&\hbox{prob. ${\displaystyle 1-{(k-1)N_{{k-1}}+kN_{k}\over 2N}}$}}$ at pos:348807(42%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.99609375 * TOKEN_SCORE[1] + 1.999969482421875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.99609375 * TOKEN_SCORE[_] + 1.9990234375 * TOKEN_SCORE[N] + 1.875 * TOKEN_SCORE[)] + 1.0 * TOKEN_SCORE[,] + 1.984375 * TOKEN_SCORE[-] + 1.0 * TOKEN_SCORE[frac] =+100.0+0.0+1.99609375*0.0102451205633244+1.999969482421875*5.92879328325965E-4+1.875*0.00418257496311516+1.99609375*0.00257082788077282+1.9990234375*0.367378648065486+1.875*0.00417601612706465+1.0*2.82855+1.984375*0.0154682311502303+1.0*0.0366287198730455 = 10367.271195242884' final score ~ 10367 reviewer: xxx gave 0
Rendered MathML:
NkN+1=Nk-1prob. kNk2NNk+1prob. k-1Nk-12NNkprob. 1-k-1Nk-1+kNk2NsubscriptNkN1-Nk1prob. ⁢kNk⁢2N+Nk1prob. ⁢-k1N-k1⁢2NNkprob. -1+⁢-k1N-k1⁢kNk⁢2N\displaystyle N_{k}(N+1)=\cases{N_{k}-1&\hbox{prob. ${\displaystyle{kN_{k}\over 2N}}$}\cr\cr N_{k}+1&\hbox{prob. ${\displaystyle{(k-1)N_{{k-1}}\over 2N}}$}\cr\cr N_{k}&\hbox{prob. ${\displaystyle 1-{(k-1)N_{{k-1}}+kN_{k}\over 2N}}$}}
End of MathML
.

Hit idp28965760

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 42
  • Formulasearchengine score: 10359
  • Reference to collection: _PREFIX_/128/f051112.xhtml#idp28965760
found all required tokens in TeX $\displaystyle(1-q)^{{N}}\left(\frac{q}{1-q}\right)^{{N(1+m(\mbox{\boldmath$s$}))/2}}$ at pos:3867614(66%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[1] + 1.984375 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.0 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[N] + 1.9375 * TOKEN_SCORE[)] + 1.0 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.875*0.0102451205633244+1.984375*5.92879328325965E-4+1.9375*0.00418257496311516+1.0*0.00257082788077282+1.75*0.367378648065486+1.9375*0.00417601612706465+1.0*2.82855+1.75*0.0154682311502303+1.5*0.0366287198730455 = 10359.262681252843' final score ~ 10359 reviewer: xxx gave 0
Rendered MathML:
(1-q)N(q1-q)N(1+m())/2superscript1qNsuperscriptq1qN1msss2\displaystyle(1-q)^{{N}}\left(\frac{q}{1-q}\right)^{{N(1+m(\mbox{\boldmath$s$}))/2}}
End of MathML
.

Hit idp29907472

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 43
  • Formulasearchengine score: 10349
  • Reference to collection: _PREFIX_/203/f081179.xhtml#idp29907472
found all required tokens in TeX $\displaystyle\mathcal{N}_{q}=2^{{n-2}}\Bigg(\frac{1}{2\pi}\Bigg)^{n}$ at pos:1354057(67%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.984375 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[N] + 1.5 * TOKEN_SCORE[)] + 1.0 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.984375*5.92879328325965E-4+1.5*0.00418257496311516+1.5*0.00257082788077282+1.5*0.367378648065486+1.5*0.00417601612706465+1.0*2.82855+1.5*0.0154682311502303+1.5*0.0366287198730455 = 10349.07017028517' final score ~ 10349 reviewer: xxx gave 0
Rendered MathML:
Nq=2n-2(12π)nsubscriptNqsuperscript2n2superscript12πn\displaystyle\mathcal{N}_{q}=2^{{n-2}}\Bigg(\frac{1}{2\pi}\Bigg)^{n}
End of MathML
.

Hit idp4122832

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 44
  • Formulasearchengine score: 10332
  • Reference to collection: _PREFIX_/113/f044928.xhtml#idp4122832
found all required tokens in TeX $\displaystyle C\|\rho^{{\frac{1}{r}}}u\| _{{L^{r}(\Omega)}}\big(\|\nabla w\| _{{L^{{\frac{2r}{r-2}}}(\Omega)}}+\|\nabla v\| _{{L^{{\frac{2r}{r-2}}}(\Omega)}}\big)$ at pos:503030(58%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.9999961853027344 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.875 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[N] + 1.9375 * TOKEN_SCORE[)] + 1.0 * TOKEN_SCORE[,] + 1.75 * TOKEN_SCORE[-] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.9999961853027344*5.92879328325965E-4+1.9375*0.00418257496311516+1.875*0.00257082788077282+1.0*0.367378648065486+1.9375*0.00417601612706465+1.0*2.82855+1.75*0.0154682311502303+1.875*0.0366287198730455 = 10332.924541209399' final score ~ 10332 reviewer: xxx gave 0
Rendered MathML:
Cρ1ruLr(Ω)(wL2rr-2(Ω)+vL2rr-2(Ω))Csubscriptnormsuperscriptρ1rusuperscriptLrΩsubscriptnormwsuperscriptL2rr2ΩsubscriptnormvsuperscriptL2rr2Ω\displaystyle C\|\rho^{{\frac{1}{r}}}u\| _{{L^{r}(\Omega)}}\big(\|\nabla w\| _{{L^{{\frac{2r}{r-2}}}(\Omega)}}+\|\nabla v\| _{{L^{{\frac{2r}{r-2}}}(\Omega)}}\big)
End of MathML
.

Hit id59018

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 45
  • Formulasearchengine score: 10328
  • Reference to collection: _PREFIX_/31/f012174.xhtml#id59018
found all required tokens in TeX $f^{{-1}}(\mbox{Regular values of }f)\cup A$ at pos:84959(15%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.75 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.0 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[N] + 1.5 * TOKEN_SCORE[)] + 1.0 * TOKEN_SCORE[,] + 1.5 * TOKEN_SCORE[-] + 1.0 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.75*5.92879328325965E-4+1.5*0.00418257496311516+1.0*0.00257082788077282+1.0*0.367378648065486+1.5*0.00417601612706465+1.0*2.82855+1.5*0.0154682311502303+1.0*0.0366287198730455 = 10328.727364884948' final score ~ 10328 reviewer: xxx gave 0
Rendered MathML:
f-1Regular values of fAsuperscriptf1Regular values of fAf^{{-1}}(\mbox{Regular values of }f)\cup A
End of MathML
.

Hit id59727

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 46
  • Formulasearchengine score: 10327
  • Reference to collection: _PREFIX_/137/f054679.xhtml#id59727
found all required tokens in TeX $\partial{\mathbb{D}}_{\rho}\cap D_{1}\not=\varnothing$ at pos:90983(24%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[1] + 1.984375 * TOKEN_SCORE[\] + 1.0 * TOKEN_SCORE[(] + 1.75 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[N] + 1.0 * TOKEN_SCORE[)] + 1.0 * TOKEN_SCORE[,] + 1.0 * TOKEN_SCORE[-] + 1.0 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.0102451205633244+1.984375*5.92879328325965E-4+1.0*0.00418257496311516+1.75*0.00257082788077282+1.0*0.367378648065486+1.0*0.00417601612706465+1.0*2.82855+1.0*0.0154682311502303+1.0*0.0366287198730455 = 10327.742731473241' final score ~ 10327 reviewer: xxx gave 0
Rendered MathML:
DρD1subscriptDρsubscriptD1\partial{\mathbb{D}}_{\rho}\cap D_{1}\not=\varnothing
End of MathML
.

Hit id101343

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 49
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/147/f058444.xhtml#id101343
no match at pos:704539(000092%) VariableMap:[subset, f, SQF, mathcal, supp, \ x 3, _, (, mathrm, ), k] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 1 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
suppfkSQFsuppsubscriptfkSQF\mathrm{supp}(f_{k})\subset\mathcal{SQF}
End of MathML
.

Hit id114925

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 50
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/55/f021845.xhtml#id114925
no match at pos:960281(000053%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
bql/C,bsuperscriptqlC
End of MathML
.

Hit id141345

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 51
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/143/f057005.xhtml#id141345
no match at pos:1345107(000057%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ϕ0exp-λ2δ-111-δln11-δη,subscriptϕ0superscriptsubscriptλ2δ111δsuperscript11δη
End of MathML
.

Hit id54299

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 52
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/54/f021481.xhtml#id54299
no match at pos:12293(000001%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
mnmodpp-1mnmodpp1
End of MathML
.

Hit id54306

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 53
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/44/f017542.xhtml#id54306
no match at pos:11939(000001%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
GHz=1NTr1z1N-H.subscriptGHz1NTr1zsubscript1NH
End of MathML
.

Hit id54408

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 54
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/58/f023146.xhtml#id54408
no match at pos:12671(000006%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
1NTr1z-ϕ1NTr1zϕ
End of MathML
.

Hit id54600

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 55
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/126/f050316.xhtml#id54600
no match at pos:14965(000005%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
x-1/ϕ,1/ϕx1ϕ1ϕ
End of MathML
.

Hit id54976

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 56
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/189/f075388.xhtml#id54976
no match at pos:22519(000005%) VariableMap:[tilde, d, ! x 4, A, int, ,, 0, r, times, nabla, bm, bf x 3, \ x 13, =] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
×A~dr=0~Adr0\int{\bm{\nabla}}\!\times\!\tilde{\bf A}\, d{\bf r}\!=\!{\bf 0}
End of MathML
.

Hit id55320

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 57
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/124/f049383.xhtml#id55320
no match at pos:27691(000004%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
fn=d|ngdfnsubscriptd|ngd
End of MathML
.

Hit id55964

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 58
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/52/f020544.xhtml#id55964
no match at pos:35985(000003%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ha=aλloga.hasuperscriptaλa
End of MathML
.

Hit id56822

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 59
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/195/f077710.xhtml#id56822
no match at pos:51371(000004%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
x,y*,z*KxsuperscriptysuperscriptzK
End of MathML
.

Hit id57418

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 60
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/33/f012835.xhtml#id57418
no match at pos:61090(000004%) VariableMap:[f, lambda x 2, \ x 4, _, ( x 2, |, ) x 2, Lambda, X, in] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
fλλX|ΛsubscriptfλλX|Λ(f(\lambda))_{\lambda}\in X|\Lambda
End of MathML
.

Hit id57436

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 61
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/127/f050559.xhtml#id57436
no match at pos:66770(000048%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
lnvφ-1G-Γlnvφ1GΓ
End of MathML
.

Hit id57473

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 62
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/32/f012443.xhtml#id57473
no match at pos:59396(000006%) VariableMap:[prime, \, +, ^, | x 6, k x 2, h, <] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
k+k<hksuperscriptkh|k|+|k^{\prime}|<|h|
End of MathML
.

Hit id59032

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 63
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/34/f013572.xhtml#id59032
no match at pos:85081(000054%) VariableMap:[S, 4, _, ABAAB, =] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
S4=ABAABsubscriptS4ABAABS_{4}=ABAAB
End of MathML
.

Hit id59315

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 64
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/85/f033612.xhtml#id59315
no match at pos:90789(000004%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
R+d=ordd-a0Rdordda0
End of MathML
.

Hit id59346

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 65
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/13/f004802.xhtml#id59346
no match at pos:91239(000023%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Gz=1Nk1λk-zGz1Nsubscriptk1subscriptλkz
End of MathML
.

Hit id59352

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 66
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/218/f086969.xhtml#id59352
no match at pos:84817(000005%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
a=b=12,c=1ab12c1
End of MathML
.

Hit id60202

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 67
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/172/f068650.xhtml#id60202
no match at pos:102722(000045%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
α>β>2αn-1αβ2αn1
End of MathML
.

Hit id60536

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 68
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/51/f020073.xhtml#id60536
no match at pos:106681(000005%) VariableMap:[n, \ x 8, (, _, ), |, perm, NC, in, pi x 2, mbox] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 1 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
permπ|πNCnsubscriptpermππNCn\{\mbox{perm}_{{\pi}}\ |\ \pi\in NC(n)\}
End of MathML
.

Hit id60668

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 69
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/241/f096308.xhtml#id60668
no match at pos:107333(000006%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
χp=1NTr1p-MAi2χp1NTr1pMsuperscriptsubscriptAi2
End of MathML
.

Hit id61488

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 70
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/80/f031906.xhtml#id61488
no match at pos:120656(000043%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
fMEα,α1fMEαα1
End of MathML
.

Hit id61508

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 71
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/95/f037673.xhtml#id61508
no match at pos:116817(000008%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ζWξ,tDζWξtD
End of MathML
.

Hit id61543

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 72
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/178/f070956.xhtml#id61543
no match at pos:122939(000055%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Gz=12NNfN*Tr1z-QGz12NsubscriptNfsubscriptNTr1zQ
End of MathML
.

Hit id61600

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 73
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/44/f017542.xhtml#id61600
no match at pos:118665(000014%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
G=1NbTr21Zϵ-H.G1NsubscriptbTr21subscriptZϵH
End of MathML
.

Hit id62893

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 74
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/52/f020453.xhtml#id62893
no match at pos:136145(000008%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Dabk,-ksubscriptDabkk
End of MathML
.

Hit id63045

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 75
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/180/f071939.xhtml#id63045
no match at pos:145042(000020%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Gλ,μz=1N-1tr1z-MsubscriptGλμz1N11zM
End of MathML
.

Hit id63737

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 76
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/116/f046318.xhtml#id63737
no match at pos:157192(000054%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
πsx=πx¯πsx¯πx
End of MathML
.

Hit id63901

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 77
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/93/f036974.xhtml#id63901
no match at pos:158180(000034%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Wz=1NTr1z-A,Wz1NTr1zA
End of MathML
.

Hit id64078

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 78
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/177/f070520.xhtml#id64078
no match at pos:158961(000044%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Gz=1NTrN1z-QGz1NsubscriptTrN1zQ
End of MathML
.

Hit id64199

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 79
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/93/f036974.xhtml#id64199
no match at pos:162619(000035%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
W2z=1NTr1z-AB2,subscriptW2z1NTr1zAsuperscriptB2
End of MathML
.

Hit id64786

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 80
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/236/f094137.xhtml#id64786
no match at pos:174615(000021%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ψ1x=expx-1subscriptψ1xx1
End of MathML
.

Hit id65084

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 81
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/216/f086339.xhtml#id65084
no match at pos:173403(000032%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
N-m-1a1-mNm1subscripta1m
End of MathML
.

Hit id65405

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 82
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/172/f068593.xhtml#id65405
no match at pos:182977(000016%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Fabt,r,zsubscriptFabtrz
End of MathML
.

Hit id66858

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 83
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/44/f017542.xhtml#id66858
no match at pos:193701(000023%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
GXQ=1NbTr21QU-XD,subscriptGXQ1NsubscriptbTr21superscriptQUsuperscriptXD
End of MathML
.

Hit id67265

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 84
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/108/f043140.xhtml#id67265
no match at pos:209859(000014%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
dS0F;YdsubscriptsuperscriptS0FY
End of MathML
.

Hit id67736

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 85
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/221/f088237.xhtml#id67736
no match at pos:225175(000035%) VariableMap:[g, 0, s x 2, \, ( x 2, _, ) x 2, Gamma, ,, =, -] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
g0s=Γ-s,subscriptg0sΓsg_{0}(s)=\Gamma(-s),
End of MathML
.

Hit id67870

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 86
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/147/f058788.xhtml#id67870
no match at pos:222446(000050%) VariableMap:[Tr, xi x 2, R, \ x 6, rangle, _, langle, | x 2, rho, textrm, =] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ρ=TrRξξρsubscriptTrRξξ\rho=\textrm{Tr}_{{R}}|\xi\rangle\langle\xi|
End of MathML
.

Hit id67949

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 87
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/163/f064979.xhtml#id67949
no match at pos:221287(000052%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
AQn1ω-L0B.AsubscriptQn1ωsubscriptL0B
End of MathML
.

Hit id71807

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 88
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/82/f032480.xhtml#id71807
no match at pos:275327(000033%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
s=N-1/2assuperscriptN12a
End of MathML
.

Hit id72517

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 89
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/23/f008842.xhtml#id72517
no match at pos:295922(000019%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
χ0x=1Lsubscriptχ0x1L
End of MathML
.

Hit id74632

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 90
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/178/f070841.xhtml#id74632
no match at pos:314781(000088%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Γhad=1744.83.0subscriptΓhad1744.83.0
End of MathML
.

Hit id75992

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 91
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/106/f042100.xhtml#id75992
no match at pos:343564(000046%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
fLdd-1UcfW1,1UsubscriptfsuperscriptLdd1UcsubscriptfsuperscriptW11U
End of MathML
.

Hit id78122

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 92
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/105/f041863.xhtml#id78122
no match at pos:376568(000030%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
p+1/23,5,p1235
End of MathML
.

Hit id80040

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 93
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/218/f086904.xhtml#id80040
no match at pos:398051(000048%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
λb,W,Nx=ϕWlogWx+b/WN if xN and Wx+b is prime,0otherwise.subscriptλbWNx⁢/⁢ϕWlog+⁢WxbWN⩽⁢ if x+⁢N and Wx⁢b is prime0otherwise
End of MathML
.

Hit id80711

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 94
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/46/f018010.xhtml#id80711
no match at pos:409492(000077%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ZΩeA3ZΩesuperscriptA3
End of MathML
.

Hit id82550

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 95
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/195/f077984.xhtml#id82550
no match at pos:428920(000046%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
x*=jϵ-1superscriptxjsuperscriptϵ1
End of MathML
.

Hit id83275

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 96
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/156/f062258.xhtml#id83275
no match at pos:447374(000038%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Gλλi=1MTr1λi-X.subscriptGλsubscriptλi1MTr1subscriptλiX
End of MathML
.

Hit id84006

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 97
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/107/f042552.xhtml#id84006
no match at pos:448315(000013%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
1ρ>1γ1R1ρ1γ1R
End of MathML
.

Hit id84406

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 98
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/248/f098929.xhtml#id84406
no match at pos:459027(000056%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
fu-1b=0fsuperscriptu1b0
End of MathML
.

Hit id91640

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 99
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/101/f040124.xhtml#id91640
no match at pos:571193(000035%) VariableMap:[] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for 'N' but has only 0 Expects 2 occurences for ')' but has only 0 Expects 1 occurences for ',' but has only 0 Expects 1 occurences for '-' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Logζ-a>εLogsuperscriptζaε
End of MathML
.

Hit idp334352

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 100
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/128/f050901.xhtml#idp334352
no match at pos:36678(000011%) VariableMap:[d, leq, delta x 2, N, ( x 2, ) x 2, ., -, frac, 2 x 3, \ x 6, _, left, ^, right, X] Expects 1 occurences for '1' but has only 0 Expects 1 occurences for ',' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
NX(δ)2(22-δ)d.subscriptNXδ2superscript22δdN_{{X}}(\delta)\leq 2\left(\frac{2}{2-\delta}\right)^{d}.
End of MathML
.

Tags: