Convergence

Results for NTCIR10-FT-14

Query

Original Query

NTCIR10-FT-14 Full Text Query Convergence \sum\qvar{p}_{n}\qvar{a}_{n} n n subscript n subscript n convergence

Compiled by FSE

Token-Filter

  • TeXFilter:[n x 2, sum, \, _ x 2]
  • Presentation-MathML:[∑, n x 2]

MathML-Filter

mrow[mo[∑];mrow[msub[(.*?);mi[n]];msub[(.*?);mi[n]]]] apply[sum;apply[times;apply[csymbol[subscript];(.*);ci[n]];apply[csymbol[subscript];(.*);ci[n]]]]

Word filter

Keywords:[convergence] Rendered Presentation-MathML: nn

Results

Summary

Reviewer score 4

  • Items reviewd: 7
  • Accumulated score: -26223206
  • Formulasearchengine found: 6

Reviewer score 2

  • Items reviewd: 10
  • Accumulated score: -8027912
  • Formulasearchengine found: 5

Reviewer score 0

  • Items reviewd: 83
  • Accumulated score: -6200623
  • Formulasearchengine found: 65
.
+++o
200000+1124
5000-200000546372
<5000151824
71083100
50000000:0 200000:4 10000:71 5000:71

Short result list

Detailed results for reviewer score 4

Hit id73874

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 1
  • Formulasearchengine score: 1015504
  • Reference to collection: _PREFIX_/190/f075790.xhtml#id73874
found all required tokens in TeX $\sum a_{n}b_{n}$ at pos:309247(23%) CMML match: 0=apply[sum;apply[times;apply[ csymbol[subscript];ci[a];ci[n]];apply[ csymbol[subscript];ci[b];ci[n]]]] 1=ci[a] 2=ci[b] CMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + CMML_SCORE + 1.9921875 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+5000.0*1.0+5000.0+1.9921875*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.5*5.92879328325965E-4+1.75*0.00257082788077282 = 1015504.2757148981' final score ~ 1015504 reviewer: xxx gave 4
Rendered MathML:
anbnsubscriptansubscriptbn\sum a_{n}b_{n}
End of MathML
.

Hit idp107344

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 30
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/16/f006112.xhtml#idp107344
found all required tokens in TeX $\sum^{\infty}_{{n=1}}g_{n}x_{n}.$ at pos:6722(1%) Scoringfunction: ' + TeX_HIT_SCORE + 1.999755859375 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.75 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.999755859375*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.75*5.92879328325965E-4+1.875*0.00257082788077282 = 15525.764374528655' final score ~ 15525 reviewer: xxx gave 4
Rendered MathML:
n=1gnxn.subscriptsuperscriptn1subscriptgnsubscriptxn\sum^{\infty}_{{n=1}}g_{n}x_{n}.
End of MathML
.

Hit idp164048

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 31
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/16/f006112.xhtml#idp164048
found all required tokens in TeX $\sum^{\infty}_{{n=1}}\varepsilon _{n}x_{n}.$ at pos:13696(2%) Scoringfunction: ' + TeX_HIT_SCORE + 1.999755859375 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.999755859375*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.875*0.00257082788077282 = 15525.77178552026' final score ~ 15525 reviewer: xxx gave 4
Rendered MathML:
n=1εnxn.subscriptsuperscriptn1subscriptεnsubscriptxn\sum^{\infty}_{{n=1}}\varepsilon _{n}x_{n}.
End of MathML
.

Hit idp561824

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 72
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/132/f052473.xhtml#idp561824
no match at pos:63271(000002%) VariableMap:[F, mathbb, a, alpha x 3, n, +, sum, \ x 6, _ x 4, ^, in, Z] Expects 2 occurences for 'n' but has only 1 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 4
Rendered MathML:
αFn+aαZαsubscriptαsuperscriptsubscriptFnsubscriptaαsubscriptZα\sum _{{\alpha\in{\mathbb{F}}_{n}^{+}}}a_{\alpha}Z_{\alpha}
End of MathML
.

Hit idp21005616

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 96
  • Formulasearchengine score: -9089920
  • Reference to collection: _PREFIX_/15/f005755.xhtml#idp21005616
found all required tokens in TeX $\sum a_{{n}}\lambda _{{n}}$ at pos:176389(35%) CMML match: 0=apply[sum;apply[times;apply[ csymbol[subscript];ci[a];ci[n]];apply[ csymbol[subscript];ci[λ];ci[n]]]] 1=ci[a] 2=ci[λ] PMML match: 0=mrow[mo[∑];mrow[msub[mi[a];mi[n]];msub[mi[λ];mi[n]]]] 1=mi[a] 2=mi[λ] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.75 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+-100000.0+1.75*0.06672875812593+1.5*0.450727438769192+1.75*5.92879328325965E-4+1.75*0.00257082788077282 = -9089920.159702752' final score ~ -9089920 reviewer: xxx gave 4
Rendered MathML:
anλnsubscriptansubscriptλn\sum a_{{n}}\lambda _{{n}}
End of MathML
.

Hit idp49072

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 97
  • Formulasearchengine score: -9089920
  • Reference to collection: _PREFIX_/15/f005755.xhtml#idp49072
found all required tokens in TeX $\sum\lambda _{{n}}a_{{n}}$ at pos:2649(1%) CMML match: 0=apply[sum;apply[times;apply[ csymbol[subscript];ci[λ];ci[n]];apply[ csymbol[subscript];ci[a];ci[n]]]] 1=ci[λ] 2=ci[a] PMML match: 0=mrow[mo[∑];mrow[msub[mi[λ];mi[n]];msub[mi[a];mi[n]]]] 1=mi[λ] 2=mi[a] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.75 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+-100000.0+1.75*0.06672875812593+1.5*0.450727438769192+1.75*5.92879328325965E-4+1.75*0.00257082788077282 = -9089920.159702752' final score ~ -9089920 reviewer: xxx gave 4
Rendered MathML:
λnansubscriptλnsubscriptan\sum\lambda _{{n}}a_{{n}}
End of MathML
.

Hit idp964144

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 98
  • Formulasearchengine score: -9089920
  • Reference to collection: _PREFIX_/15/f005755.xhtml#idp964144
found all required tokens in TeX $\sum a_{{n}}\lambda _{{n}}$ at pos:114079(23%) CMML match: 0=apply[sum;apply[times;apply[ csymbol[subscript];ci[a];ci[n]];apply[ csymbol[subscript];ci[λ];ci[n]]]] 1=ci[a] 2=ci[λ] PMML match: 0=mrow[mo[∑];mrow[msub[mi[a];mi[n]];msub[mi[λ];mi[n]]]] 1=mi[a] 2=mi[λ] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.75 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+-100000.0+1.75*0.06672875812593+1.5*0.450727438769192+1.75*5.92879328325965E-4+1.75*0.00257082788077282 = -9089920.159702752' final score ~ -9089920 reviewer: xxx gave 4
Rendered MathML:
anλnsubscriptansubscriptλn\sum a_{{n}}\lambda _{{n}}
End of MathML
.

Detailed results for reviewer score 2

Hit id73499

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 2
  • Formulasearchengine score: 1015504
  • Reference to collection: _PREFIX_/190/f075790.xhtml#id73499
found all required tokens in TeX $\sum a_{n}b_{n}$ at pos:303178(23%) CMML match: 0=apply[sum;apply[times;apply[ csymbol[subscript];ci[a];ci[n]];apply[ csymbol[subscript];ci[b];ci[n]]]] 1=ci[a] 2=ci[b] CMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + CMML_SCORE + 1.9921875 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+5000.0*1.0+5000.0+1.9921875*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.5*5.92879328325965E-4+1.75*0.00257082788077282 = 1015504.2757148981' final score ~ 1015504 reviewer: xxx gave 2
Rendered MathML:
anbnsubscriptansubscriptbn\sum a_{n}b_{n}
End of MathML
.

Hit id107670

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 13
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id107670
found all required tokens in TeX $E^{{(m)}}(\beta)\;=\;\sum _{{n=0}}^{{\infty}}\, b_{{n}}^{{(m)}}\,\beta^{n}$ at pos:836868(36%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.99609375 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.99609375*5.92879328325965E-4+1.75*0.00257082788077282 = 15526.411590628646' final score ~ 15526 reviewer: xxx gave 2
Rendered MathML:
Emβ=n=0bnmβnsuperscriptEmβsuperscriptsubscriptn0superscriptsubscriptbnmsuperscriptβnE^{{(m)}}(\beta)\;=\;\sum _{{n=0}}^{{\infty}}\, b_{{n}}^{{(m)}}\,\beta^{n}
End of MathML
.

Hit id54140

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 32
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id54140
found all required tokens in TeX $s_{n}\;=\;\sum _{{k=0}}^{{n}}\, a_{k}\,.$ at pos:11187(0%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.96875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.96875*5.92879328325965E-4+1.875*0.00257082788077282 = 15525.607995346167' final score ~ 15525 reviewer: xxx gave 2
Rendered MathML:
sn=k=0nak.subscriptsnsuperscriptsubscriptk0nsubscriptaks_{n}\;=\;\sum _{{k=0}}^{{n}}\, a_{k}\,.
End of MathML
.

Hit idp221584

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 61
  • Formulasearchengine score: 15453
  • Reference to collection: _PREFIX_/61/f024152.xhtml#idp221584
found all required tokens in TeX $g(z)=\sum _{{n=0}}^{\infty}t_{n}z^{n}\quad\text{and}\quad g^{{(a)}}(z)=\sum _{{n=0}}^{\infty}a_{n}z^{n}$ at pos:22218(6%) Scoringfunction: ' + TeX_HIT_SCORE + 1.96875 * WORD_SCORE[ convergence] + 1.984375 * TOKEN_SCORE[n] + 1.75 * TOKEN_SCORE[sum] + 1.9921875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[_] =+100.0+1.96875*27.2286129675667+1.984375*0.06672875812593+1.75*0.450727438769192+1.9921875*5.92879328325965E-4+1.9375*0.00257082788077282 = 15453.368178295508' final score ~ 15453 reviewer: xxx gave 2
Rendered MathML:
g(z)=n=0tnznandg(a)(z)=n=0anzngzsuperscriptsubscriptn0subscripttnsuperscriptznandsuperscriptgazsuperscriptsubscriptn0subscriptansuperscriptzng(z)=\sum _{{n=0}}^{\infty}t_{n}z^{n}\quad\text{and}\quad g^{{(a)}}(z)=\sum _{{n=0}}^{\infty}a_{n}z^{n}
End of MathML
.

Hit id159867

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 73
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/150/f059767.xhtml#id159867
no match at pos:1632481(000084%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
n=1znnsuperscriptsubscriptn1superscriptznn
End of MathML
.

Hit id68956

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 74
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/45/f017851.xhtml#id68956
no match at pos:225300(000013%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
Hzn0cnn!znHzsubscriptn0subscriptcnnsuperscriptzn
End of MathML
.

Hit id69193

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 75
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/45/f017851.xhtml#id69193
no match at pos:228599(000013%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
Gzn0bnn!znGzsubscriptn0subscriptbnnsuperscriptzn
End of MathML
.

Hit id86175

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 76
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/84/f033423.xhtml#id86175
no match at pos:500298(000058%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
Fz=k=0znxn!Fzsuperscriptsubscriptk0superscriptznsubscriptxn
End of MathML
.

Hit id92563

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 77
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/150/f059767.xhtml#id92563
no match at pos:591499(000030%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
j=0ansuperscriptsubscriptj0subscriptan
End of MathML
.

Hit idp349456

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 99
  • Formulasearchengine score: -9089920
  • Reference to collection: _PREFIX_/15/f005755.xhtml#idp349456
found all required tokens in TeX $\sum a_{{n}}\lambda _{{n}}$ at pos:37823(8%) CMML match: 0=apply[sum;apply[times;apply[ csymbol[subscript];ci[a];ci[n]];apply[ csymbol[subscript];ci[λ];ci[n]]]] 1=ci[a] 2=ci[λ] PMML match: 0=mrow[mo[∑];mrow[msub[mi[a];mi[n]];msub[mi[λ];mi[n]]]] 1=mi[a] 2=mi[λ] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.75 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+-100000.0+1.75*0.06672875812593+1.5*0.450727438769192+1.75*5.92879328325965E-4+1.75*0.00257082788077282 = -9089920.159702752' final score ~ -9089920 reviewer: xxx gave 2
Rendered MathML:
anλnsubscriptansubscriptλn\sum a_{{n}}\lambda _{{n}}
End of MathML
.

Detailed results for reviewer score 0

Hit id73885

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 3
  • Formulasearchengine score: 1015355
  • Reference to collection: _PREFIX_/208/f083100.xhtml#id73885
found all required tokens in TeX $\sum\lambda _{n}Q_{n}$ at pos:318766(22%) CMML match: 0=apply[sum;apply[times;apply[ csymbol[subscript];ci[λ];ci[n]];apply[ csymbol[subscript];ci[Q];ci[n]]]] 1=ci[λ] 2=ci[Q] CMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + CMML_SCORE + 1.9375 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.75 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+5000.0*1.0+5000.0+1.9375*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.75*5.92879328325965E-4+1.75*0.00257082788077282 = 1015355.384059715' final score ~ 1015355 reviewer: xxx gave 0
Rendered MathML:
λnQnsubscriptλnsubscriptQn\sum\lambda _{n}Q_{n}
End of MathML
.

Hit idp23210528

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 4
  • Formulasearchengine score: 915524
  • Reference to collection: _PREFIX_/16/f006112.xhtml#idp23210528
found all required tokens in TeX $\sum\varepsilon _{n}x_{n}$ at pos:463041(77%) CMML match: 0=apply[sum;apply[times;apply[ csymbol[subscript];ci[ε];ci[n]];apply[ csymbol[subscript];ci[x];ci[n]]]] 1=ci[ε] 2=ci[x] PMML match: 0=mrow[mo[∑];mrow[msub[mi[ε];mi[n]];msub[mi[x];mi[n]]]] 1=mi[ε] 2=mi[x] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + 1.999755859375 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.75 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+1.999755859375*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.75*5.92879328325965E-4+1.75*0.00257082788077282 = 915524.8981297035' final score ~ 915524 reviewer: xxx gave 0
Rendered MathML:
εnxnsubscriptεnsubscriptxn\sum\varepsilon _{n}x_{n}
End of MathML
.

Hit idp22946624

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 5
  • Formulasearchengine score: 15544
  • Reference to collection: _PREFIX_/16/f006146.xhtml#idp22946624
found all required tokens in TeX $\sum _{n}(x_{n}-m_{n})=\sum _{n}x_{n}-\sum _{n}m_{n}$ at pos:431495(26%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.9921875 * TOKEN_SCORE[n] + 1.875 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.9921875*0.06672875812593+1.875*0.450727438769192+1.875*5.92879328325965E-4+1.9921875*0.00257082788077282 = 15544.150930056398' final score ~ 15544 reviewer: xxx gave 0
Rendered MathML:
n(xn-mn)=nxn-nmnsubscriptnsubscriptxnsubscriptmnsubscriptnsubscriptxnsubscriptnsubscriptmn\sum _{n}(x_{n}-m_{n})=\sum _{n}x_{n}-\sum _{n}m_{n}
End of MathML
.

Hit id100526

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 6
  • Formulasearchengine score: 15538
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id100526
found all required tokens in TeX $\displaystyle\;=\;\frac{\displaystyle\sum _{{j=0}}^{{k}}\;(-1)^{{j}}\;{{k}\choose{j}}\;\frac{(\zeta+n+j)^{{k-1}}}{(\zeta+n+k)^{{k-1}}}\;\frac{s_{{n+j}}}{\omega _{{n+j}}}}{\displaystyle\sum _{{j=0}}^{{k}}\;(-1)^{{j}}\;{{k}\choose{j}}\;\frac{(\zeta+n+j)^{{k-1}}}{(\zeta+n+k)^{{k-1}}}\;\frac{1}{\omega _{{n+j}}}}\;.$ at pos:726458(32%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.9921875 * TOKEN_SCORE[n] + 1.75 * TOKEN_SCORE[sum] + 1.9999999981373549 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.9921875*0.06672875812593+1.75*0.450727438769192+1.9999999981373549*5.92879328325965E-4+1.96875*0.00257082788077282 = 15538.51822268543' final score ~ 15538 reviewer: xxx gave 0
Rendered MathML:
=j=0k-1jkjζ+n+jk-1ζ+n+kk-1sn+jωn+jj=0k-1jkjζ+n+jk-1ζ+n+kk-11ωn+j.superscriptsubscriptj0ksuperscript1jkjsuperscriptζnjk1superscriptζnkk1subscriptsnjsubscriptωnjsuperscriptsubscriptj0ksuperscript1jkjsuperscriptζnjk1superscriptζnkk11subscriptωnj\displaystyle\;=\;\frac{\displaystyle\sum _{{j=0}}^{{k}}\;(-1)^{{j}}\;{{k}\choose{j}}\;\frac{(\zeta+n+j)^{{k-1}}}{(\zeta+n+k)^{{k-1}}}\;\frac{s_{{n+j}}}{\omega _{{n+j}}}}{\displaystyle\sum _{{j=0}}^{{k}}\;(-1)^{{j}}\;{{k}\choose{j}}\;\frac{(\zeta+n+j)^{{k-1}}}{(\zeta+n+k)^{{k-1}}}\;\frac{1}{\omega _{{n+j}}}}\;.
End of MathML
.

Hit id102882

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 7
  • Formulasearchengine score: 15538
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id102882
found all required tokens in TeX $\displaystyle\;=\;\frac{\displaystyle\sum _{{j=0}}^{{k}}\;(-1)^{{j}}\;{{k}\choose{j}}\;\frac{(\zeta+n+j)_{{k-1}}}{(\zeta+n+k)_{{k-1}}}\;\frac{s_{{n+j}}}{\omega _{{n+j}}}}{\displaystyle\sum _{{j=0}}^{{k}}\;(-1)^{{j}}\;{{k}\choose{j}}\;\frac{(\zeta+n+j)_{{k-1}}}{(\zeta+n+k)_{{k-1}}}\;\frac{1}{\omega _{{n+j}}}}$ at pos:763360(33%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.9921875 * TOKEN_SCORE[n] + 1.75 * TOKEN_SCORE[sum] + 1.9999999962747097 * TOKEN_SCORE[\] + 1.998046875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.9921875*0.06672875812593+1.75*0.450727438769192+1.9999999962747097*5.92879328325965E-4+1.998046875*0.00257082788077282 = 15538.525754407627' final score ~ 15538 reviewer: xxx gave 0
Rendered MathML:
=j=0k-1jkjζ+n+jk-1ζ+n+kk-1sn+jωn+jj=0k-1jkjζ+n+jk-1ζ+n+kk-11ωn+jsuperscriptsubscriptj0ksuperscript1jkjsubscriptζnjk1subscriptζnkk1subscriptsnjsubscriptωnjsuperscriptsubscriptj0ksuperscript1jkjsubscriptζnjk1subscriptζnkk11subscriptωnj\displaystyle\;=\;\frac{\displaystyle\sum _{{j=0}}^{{k}}\;(-1)^{{j}}\;{{k}\choose{j}}\;\frac{(\zeta+n+j)_{{k-1}}}{(\zeta+n+k)_{{k-1}}}\;\frac{s_{{n+j}}}{\omega _{{n+j}}}}{\displaystyle\sum _{{j=0}}^{{k}}\;(-1)^{{j}}\;{{k}\choose{j}}\;\frac{(\zeta+n+j)_{{k-1}}}{(\zeta+n+k)_{{k-1}}}\;\frac{1}{\omega _{{n+j}}}}
End of MathML
.

Hit id61597

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 8
  • Formulasearchengine score: 15538
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id61597
found all required tokens in TeX $P(G,\theta)=\sum _{{n=0}}^{{{c(G)\over 2}}}\theta^{{2n}}P_{{2n}}(\alpha),~~~~P_{{2n}}=\sum _{{\{ i_{1},i_{2},\ldots,i_{{L-2n}}\}}}\alpha _{{i_{1}}}\alpha _{{i_{2}}}\cdots\alpha _{{i_{{L-2n}}}}$ at pos:117887(4%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.984375 * TOKEN_SCORE[n] + 1.75 * TOKEN_SCORE[sum] + 1.9998779296875 * TOKEN_SCORE[\] + 1.9998779296875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.984375*0.06672875812593+1.75*0.450727438769192+1.9998779296875*5.92879328325965E-4+1.9998779296875*0.00257082788077282 = 15538.474086060913' final score ~ 15538 reviewer: xxx gave 0
Rendered MathML:
PG,θ=n=0cG2θ2nP2nα,P2n=i1,i2,,iL-2nαi1αi2αiL-2nPGθsuperscriptsubscriptn0cG2superscriptθ2nsubscriptP2nαsubscriptP2nsubscriptsubscripti1subscripti2subscriptiL2nsubscriptαsubscripti1subscriptαsubscripti2subscriptαsubscriptiL2nP(G,\theta)=\sum _{{n=0}}^{{{c(G)\over 2}}}\theta^{{2n}}P_{{2n}}(\alpha),~~~~P_{{2n}}=\sum _{{\{ i_{1},i_{2},\ldots,i_{{L-2n}}\}}}\alpha _{{i_{1}}}\alpha _{{i_{2}}}\cdots\alpha _{{i_{{L-2n}}}}
End of MathML
.

Hit idp16822672

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 9
  • Formulasearchengine score: 15538
  • Reference to collection: _PREFIX_/133/f052843.xhtml#idp16822672
found all required tokens in TeX $\sum _{n}v(I_{n})=\sum _{n}v_{c}(I_{n})=v_{c}(A)\leq v_{c}(X)=v(X)<\infty.$ at pos:2118360(51%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9999999999708962 * WORD_SCORE[ convergence] + 1.9375 * TOKEN_SCORE[n] + 1.75 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[_] =+100.0+1.9999999999708962*27.2286129675667+1.9375*0.06672875812593+1.75*0.450727438769192+1.9375*5.92879328325965E-4+1.9921875*0.00257082788077282 = 15538.15561959234' final score ~ 15538 reviewer: xxx gave 0
Rendered MathML:
nv(In)=nvc(In)=vc(A)vc(X)=v(X)<.subscriptnvsubscriptInsubscriptnsubscriptvcsubscriptInsubscriptvcAsubscriptvcXvX\sum _{n}v(I_{n})=\sum _{n}v_{c}(I_{n})=v_{c}(A)\leq v_{c}(X)=v(X)<\infty.
End of MathML
.

Hit id182367

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 10
  • Formulasearchengine score: 15537
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id182367
found all required tokens in TeX $\theta^{3}\sum\limits _{{m=N_{0}+1}}^{I}\sum\limits _{{k=1}}^{I}(-)^{{a_{2}+a_{4}}}I_{{1n}}I_{{1m}}I_{{nk}}\left(\det{\cal A}[T^{*},{\hat{1}},{\hat{n}},{\hat{k}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{m}},{\hat{n}}]+({\hat{m}}\longleftrightarrow{\hat{k}})\right)$ at pos:1952356(65%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.75 * TOKEN_SCORE[sum] + 1.9999980926513672 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.75*0.450727438769192+1.9999980926513672*5.92879328325965E-4+1.99609375*0.00257082788077282 = 15537.743274545659' final score ~ 15537 reviewer: xxx gave 0
Rendered MathML:
θ3m=N0+1Ik=1I(-)a2+a4I1nI1mInk(detA[T*,1,n,k|T*,1,m,n]+(mk))superscriptθ3\theta^{3}\sum\limits _{{m=N_{0}+1}}^{I}\sum\limits _{{k=1}}^{I}(-)^{{a_{2}+a_{4}}}I_{{1n}}I_{{1m}}I_{{nk}}\left(\det{\cal A}[T^{*},{\hat{1}},{\hat{n}},{\hat{k}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{m}},{\hat{n}}]+({\hat{m}}\longleftrightarrow{\hat{k}})\right)
End of MathML
.

Hit id57001

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 11
  • Formulasearchengine score: 15537
  • Reference to collection: _PREFIX_/73/f029017.xhtml#id57001
found all required tokens in TeX ${f(x_{{\rm LSO}})\sim\sum _{n}\ (x_{{\rm LSO}}/x_{{\rm LR}})^{n}\sim\sum\ 2^{{-n}}}$ at pos:54555(4%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9999923706054688 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.75 * TOKEN_SCORE[sum] + 1.998046875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[_] =+100.0+1.9999923706054688*27.2286129675667+1.875*0.06672875812593+1.75*0.450727438769192+1.998046875*5.92879328325965E-4+1.9375*0.00257082788077282 = 15537.707321634298' final score ~ 15537 reviewer: xxx gave 0
Rendered MathML:
fxLSOnxLSO/xLRn 2-nfsubscriptxLSOsubscriptnsuperscriptsubscriptxLSOsubscriptxLRnsuperscript 2n{f(x_{{\rm LSO}})\sim\sum _{n}\ (x_{{\rm LSO}}/x_{{\rm LR}})^{n}\sim\sum\ 2^{{-n}}}
End of MathML
.

Hit idp11353056

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 12
  • Formulasearchengine score: 15527
  • Reference to collection: _PREFIX_/62/f024729.xhtml#idp11353056
found all required tokens in TeX $\mathrm{trace\,}(P_{n}T(b)K_{{\mu}}(a)P_{n})=-\frac{\iota _{\mu}(2n)}{2}\sum _{{m=-\infty}}^{\infty}c_{m}+o(\iota _{\mu}(2n)),\qquad n\to\infty,$ at pos:1436813(76%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9999999962747097 * WORD_SCORE[ convergence] + 1.96875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.99993896484375 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[_] =+100.0+1.9999999962747097*27.2286129675667+1.96875*0.06672875812593+1.5*0.450727438769192+1.99993896484375*5.92879328325965E-4+1.9921875*0.00257082788077282 = 15527.099652805202' final score ~ 15527 reviewer: xxx gave 0
Rendered MathML:
trace(PnT(b)Kμ(a)Pn)=-ιμ(2n)2m=-cm+o(ιμ(2n)),n,tracesubscriptPnTbsubscriptKμasubscriptPnsubscriptιμ2n2superscriptsubscriptmsubscriptcmosubscriptιμ2nn\mathrm{trace\,}(P_{n}T(b)K_{{\mu}}(a)P_{n})=-\frac{\iota _{\mu}(2n)}{2}\sum _{{m=-\infty}}^{\infty}c_{m}+o(\iota _{\mu}(2n)),\qquad n\to\infty,
End of MathML
.

Hit id102366

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 14
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id102366
found all required tokens in TeX $s_{n}\;=\; s\,+\,\omega _{n}\,\sum _{{j=0}}^{{\infty}}c_{j}/(n+\zeta)_{j}\,,$ at pos:755659(33%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9990234375 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.9990234375*5.92879328325965E-4+1.96875*0.00257082788077282 = 15526.468001183654' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
sn=s+ωnj=0cj/n+ζj,subscriptsnssubscriptωnsuperscriptsubscriptj0subscriptcjsubscriptnζjs_{n}\;=\; s\,+\,\omega _{n}\,\sum _{{j=0}}^{{\infty}}c_{j}/(n+\zeta)_{j}\,,
End of MathML
.

Hit id108030

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 15
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id108030
found all required tokens in TeX $E^{{(m)}}(\beta)\;=\;\beta^{{1/(m+1)}}\,\sum _{{n=0}}^{{\infty}}\, K_{{n}}^{{(m)}}\,\beta^{{-2n/(m+1)}}\,.$ at pos:841633(37%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.99951171875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.99951171875*5.92879328325965E-4+1.75*0.00257082788077282 = 15526.411793272948' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
Emβ=β1/m+1n=0Knmβ-2n/m+1.superscriptEmβsuperscriptβ1m1superscriptsubscriptn0superscriptsubscriptKnmsuperscriptβ2nm1E^{{(m)}}(\beta)\;=\;\beta^{{1/(m+1)}}\,\sum _{{n=0}}^{{\infty}}\, K_{{n}}^{{(m)}}\,\beta^{{-2n/(m+1)}}\,.
End of MathML
.

Hit id108759

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 16
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id108759
found all required tokens in TeX $E^{{(m)}}(\beta)\;=\;(1-\kappa)^{{-1/2}}\,\sum _{{n=0}}^{{\infty}}\, c_{{n}}^{{(m)}}\,\kappa^{n}\,.$ at pos:852916(37%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.99951171875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.99951171875*5.92879328325965E-4+1.75*0.00257082788077282 = 15526.411793272948' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
Emβ=1-κ-1/2n=0cnmκn.superscriptEmβsuperscript1κ12superscriptsubscriptn0superscriptsubscriptcnmsuperscriptκnE^{{(m)}}(\beta)\;=\;(1-\kappa)^{{-1/2}}\,\sum _{{n=0}}^{{\infty}}\, c_{{n}}^{{(m)}}\,\kappa^{n}\,.
End of MathML
.

Hit id111644

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 17
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id111644
found all required tokens in TeX $\displaystyle-\, G_{{j-1}}^{{(n-1)}}\,-\, 2\,\sum _{{k=1}}^{{n-1}}\, G_{1}^{{(k)}}\, G_{j}^{{(n-k)}}\,.$ at pos:896294(39%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.998046875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.998046875*5.92879328325965E-4+1.9375*0.00257082788077282 = 15526.459909448153' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
-Gj-1n-1- 2k=1n-1G1kGjn-k.superscriptsubscriptGj1n1 2superscriptsubscriptk1n1superscriptsubscriptG1ksuperscriptsubscriptGjnk\displaystyle-\, G_{{j-1}}^{{(n-1)}}\,-\, 2\,\sum _{{k=1}}^{{n-1}}\, G_{1}^{{(k)}}\, G_{j}^{{(n-k)}}\,.
End of MathML
.

Hit id114471

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 18
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id114471
found all required tokens in TeX $P(G,\theta)=\sum _{{n=0}}^{{r(G)/2}}\theta^{{2n}}P_{{2n}}(G)$ at pos:906364(30%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.75*0.00257082788077282 = 15526.40441123053' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
PG,θ=n=0rG/2θ2nP2nGPGθsuperscriptsubscriptn0rG2superscriptθ2nsubscriptP2nGP(G,\theta)=\sum _{{n=0}}^{{r(G)/2}}\theta^{{2n}}P_{{2n}}(G)
End of MathML
.

Hit id160998

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 19
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id160998
found all required tokens in TeX $\displaystyle~~~=\theta^{2}(I_{{12}}(G_{{i_{1}j}}))^{2}\det{\cal A}[T^{*},{\hat{1}},{\hat{2}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{2}}](G_{{i_{1}j}})+\sum\limits _{{n\geq 3}}(-)^{{n}}\theta^{2}I_{{12}}(G_{{i_{1}j}})I_{{1n}}(G_{{i_{1}j}})\times$ at pos:1623280(54%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.99993896484375 * TOKEN_SCORE[\] + 1.999755859375 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.99993896484375*5.92879328325965E-4+1.999755859375*0.00257082788077282 = 15526.476026536153' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
=θ2(I12(Gi1j))2detA[T*,1,2|T*,1,2](Gi1j)+n3(-)nθ2I12(Gi1j)I1n(Gi1j)×\displaystyle~~~=\theta^{2}(I_{{12}}(G_{{i_{1}j}}))^{2}\det{\cal A}[T^{*},{\hat{1}},{\hat{2}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{2}}](G_{{i_{1}j}})+\sum\limits _{{n\geq 3}}(-)^{{n}}\theta^{2}I_{{12}}(G_{{i_{1}j}})I_{{1n}}(G_{{i_{1}j}})\times
End of MathML
.

Hit id172845

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 20
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id172845
found all required tokens in TeX $X(G,\theta|M)=\sum _{{n=0}}^{{r(G)/2}}\theta _{i}^{{2n}}X_{{2n}}(G|M)$ at pos:1804856(60%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.875*0.00257082788077282 = 15526.436546579038' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
X(G,θ|M)=n=0rG/2θi2nX2n(G|M)XX(G,\theta|M)=\sum _{{n=0}}^{{r(G)/2}}\theta _{i}^{{2n}}X_{{2n}}(G|M)
End of MathML
.

Hit id179359

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 21
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id179359
found all required tokens in TeX $\displaystyle\theta^{2}\sum\limits _{{n,m=1}}^{{N_{0}}}(-)^{{a_{1}}}I_{{1m}}I_{{1n}}\det{\cal A}[T^{*},{\hat{1}},{\hat{m}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{n}}]$ at pos:1905427(63%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.99951171875 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.99951171875*5.92879328325965E-4+1.96875*0.00257082788077282 = 15526.468030132839' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
θ2n,m=1N0(-)a1I1mI1ndetA[T*,1,m|T*,1,n]superscriptθ2\displaystyle\theta^{2}\sum\limits _{{n,m=1}}^{{N_{0}}}(-)^{{a_{1}}}I_{{1m}}I_{{1n}}\det{\cal A}[T^{*},{\hat{1}},{\hat{m}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{n}}]
End of MathML
.

Hit id179663

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 22
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id179663
found all required tokens in TeX $\displaystyle\!\!\!\!\!\sum\limits _{{m=N_{0}+1}}^{I}(-)^{{a_{2}}}I_{{1n}}I_{{1m}}[\det{\cal A}[T^{*},{\hat{1}},{\hat{n}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{m}}]+\det{\cal A}[T^{*},{\hat{1}},{\hat{m}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{n}}]]$ at pos:1910233(64%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.999999761581421 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.999999761581421*5.92879328325965E-4+1.96875*0.00257082788077282 = 15526.468059067889' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
m=N0+1I(-)a2I1nI1m[detA[T*,1,n|T*,1,m]+detA[T*,1,m|T*,1,n]]\displaystyle\!\!\!\!\!\sum\limits _{{m=N_{0}+1}}^{I}(-)^{{a_{2}}}I_{{1n}}I_{{1m}}[\det{\cal A}[T^{*},{\hat{1}},{\hat{n}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{m}}]+\det{\cal A}[T^{*},{\hat{1}},{\hat{m}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{n}}]]
End of MathML
.

Hit id179965

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 23
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id179965
found all required tokens in TeX $\displaystyle\theta^{2}\sum\limits _{{n,m=N_{0}+1}}^{I}(-)^{{a_{3}}}I_{{1m}}I_{{1n}}\det{\cal A}[T^{*},{\hat{1}},{\hat{n}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{m}}]$ at pos:1915083(64%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.99951171875 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.99951171875*5.92879328325965E-4+1.96875*0.00257082788077282 = 15526.468030132839' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
θ2n,m=N0+1I(-)a3I1mI1ndetA[T*,1,n|T*,1,m]superscriptθ2\displaystyle\theta^{2}\sum\limits _{{n,m=N_{0}+1}}^{I}(-)^{{a_{3}}}I_{{1m}}I_{{1n}}\det{\cal A}[T^{*},{\hat{1}},{\hat{n}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{m}}]
End of MathML
.

Hit id182046

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 24
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id182046
found all required tokens in TeX $\theta^{2}\sum\limits _{{m=N_{0}+1}}^{I}(-)^{{a_{2}}}I_{{1n}}I_{{1m}}\left(\det{\cal A}[T^{*},{\hat{1}},{\hat{n}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{m}}]+\det{\cal A}[T^{*},{\hat{1}},{\hat{m}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{n}}]\right)$ at pos:1947435(65%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9999980926513672 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.9999980926513672*5.92879328325965E-4+1.96875*0.00257082788077282 = 15526.468058968941' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
θ2m=N0+1I(-)a2I1nI1m(detA[T*,1,n|T*,1,m]+detA[T*,1,m|T*,1,n])superscriptθ2\theta^{2}\sum\limits _{{m=N_{0}+1}}^{I}(-)^{{a_{2}}}I_{{1n}}I_{{1m}}\left(\det{\cal A}[T^{*},{\hat{1}},{\hat{n}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{m}}]+\det{\cal A}[T^{*},{\hat{1}},{\hat{m}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{n}}]\right)
End of MathML
.

Hit id183032

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 25
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id183032
found all required tokens in TeX $\det{\cal A}[T^{*}|{T^{{\prime}}}^{*}]=\theta^{2}\sum\limits _{{n,m=N_{0}+1}}^{I}(-)^{{a_{3}}}I_{{1m}}I_{{1n}}\det{\cal A}[T^{*},{\hat{1}},{\hat{m}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{n}}]$ at pos:1962823(65%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9998779296875 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.9998779296875*5.92879328325965E-4+1.96875*0.00257082788077282 = 15526.468051844728' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
detA[T*|T*]=θ2n,m=N0+1I(-)a3I1mI1ndetA[T*,1,m|T*,1,n]\det{\cal A}[T^{*}|{T^{{\prime}}}^{*}]=\theta^{2}\sum\limits _{{n,m=N_{0}+1}}^{I}(-)^{{a_{3}}}I_{{1m}}I_{{1n}}\det{\cal A}[T^{*},{\hat{1}},{\hat{m}}|{T^{{\prime}}}^{*},{\hat{1}},{\hat{n}}]
End of MathML
.

Hit idp22937552

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 26
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/16/f006146.xhtml#idp22937552
found all required tokens in TeX $\sum _{n}(x_{n}-m_{n})$ at pos:430121(25%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.5 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.5*5.92879328325965E-4+1.875*0.00257082788077282 = 15526.414313604224' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
n(xn-mn)subscriptnsubscriptxnsubscriptmn\sum _{n}(x_{n}-m_{n})
End of MathML
.

Hit idp27419648

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 27
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/16/f006146.xhtml#idp27419648
found all required tokens in TeX $\sum _{n}(x_{n}-p_{n})$ at pos:1004300(59%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.5 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.5*5.92879328325965E-4+1.875*0.00257082788077282 = 15526.414313604224' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
n(xn-pn)subscriptnsubscriptxnsubscriptpn\sum _{n}(x_{n}-p_{n})
End of MathML
.

Hit idp27514704

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 28
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/16/f006146.xhtml#idp27514704
found all required tokens in TeX $\sum _{n}v_{n}/g(A_{n})=\infty$ at pos:1016235(60%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.75 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.75*5.92879328325965E-4+1.875*0.00257082788077282 = 15526.429135587432' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
nvn/g(An)=subscriptnsubscriptvngsubscriptAn\sum _{n}v_{n}/g(A_{n})=\infty
End of MathML
.

Hit idp30025648

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 29
  • Formulasearchengine score: 15526
  • Reference to collection: _PREFIX_/16/f006146.xhtml#idp30025648
found all required tokens in TeX $\sum _{n}\frac{v_{n}}{g(A_{n})}=\infty$ at pos:1347503(80%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.875*0.00257082788077282 = 15526.436546579038' final score ~ 15526 reviewer: xxx gave 0
Rendered MathML:
nvng(An)=subscriptnsubscriptvngsubscriptAn\sum _{n}\frac{v_{n}}{g(A_{n})}=\infty
End of MathML
.

Hit id109812

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 33
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id109812
found all required tokens in TeX $k_{3}\;=\;[45/4]^{{1/4}}\,\sum _{{n=0}}^{{\infty}}\, c_{{n}}^{{(3)}}\,.$ at pos:868801(38%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9921875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.9921875*5.92879328325965E-4+1.875*0.00257082788077282 = 15525.609384907091' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
k3=45/41/4n=0cn3.subscriptk3superscript45414superscriptsubscriptn0superscriptsubscriptcn3k_{3}\;=\;[45/4]^{{1/4}}\,\sum _{{n=0}}^{{\infty}}\, c_{{n}}^{{(3)}}\,.
End of MathML
.

Hit id113383

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 34
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id113383
found all required tokens in TeX $s_{{n}}^{{(l)}}\;=\;[45/4]^{{1/4}}\,\sum _{{\nu=0}}^{{n+l}}\, c_{{\nu}}^{{(3)}}$ at pos:923705(40%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9921875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.9921875*5.92879328325965E-4+1.875*0.00257082788077282 = 15525.609384907091' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
snl=45/41/4ν=0n+lcν3superscriptsubscriptsnlsuperscript45414superscriptsubscriptν0nlsuperscriptsubscriptcν3s_{{n}}^{{(l)}}\;=\;[45/4]^{{1/4}}\,\sum _{{\nu=0}}^{{n+l}}\, c_{{\nu}}^{{(3)}}
End of MathML
.

Hit id59499

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 35
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/36/f014237.xhtml#id59499
found all required tokens in TeX ${\rm exp}~(i\phi(p))={\rm exp}~\left(i\sum _{{m,n}}I_{{mn}}(G)\Theta _{{\mu\nu}}p_{m}^{{\mu}}p_{n}^{{\nu}}\right)$ at pos:85836(3%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.99951171875 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.99951171875*5.92879328325965E-4+1.96875*0.00257082788077282 = 15525.633920656264' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
expiϕp=expim,nImnGΘμνpmμpnνexpiϕpexpisubscriptmnsubscriptImnGsubscriptΘμνsuperscriptsubscriptpmμsuperscriptsubscriptpnν{\rm exp}~(i\phi(p))={\rm exp}~\left(i\sum _{{m,n}}I_{{mn}}(G)\Theta _{{\mu\nu}}p_{m}^{{\mu}}p_{n}^{{\nu}}\right)
End of MathML
.

Hit id60273

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 36
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id60273
found all required tokens in TeX $f_{n}(z)\;=\;\sum _{{\nu=0}}^{{n}}\gamma _{{\nu}}z^{{\nu}}$ at pos:103709(5%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9921875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.9921875*5.92879328325965E-4+1.875*0.00257082788077282 = 15525.609384907091' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
fnz=ν=0nγνzνsubscriptfnzsuperscriptsubscriptν0nsubscriptγνsuperscriptzνf_{n}(z)\;=\;\sum _{{\nu=0}}^{{n}}\gamma _{{\nu}}z^{{\nu}}
End of MathML
.

Hit id67356

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 37
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id67356
found all required tokens in TeX $s_{n}(z)\;=\;\sum _{{m=0}}^{{n}}\,\frac{(-1)^{m}z^{{m+1}}}{m+1}$ at pos:212483(9%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.96875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.96875*5.92879328325965E-4+1.75*0.00257082788077282 = 15525.575859997658' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
snz=m=0n-1mzm+1m+1subscriptsnzsuperscriptsubscriptm0nsuperscript1msuperscriptzm1m1s_{n}(z)\;=\;\sum _{{m=0}}^{{n}}\,\frac{(-1)^{m}z^{{m+1}}}{m+1}
End of MathML
.

Hit id73092

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 38
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id73092
found all required tokens in TeX $s_{n}(z)\;=\;\sum _{{m=0}}^{{n}}\,\frac{(2/3)_{m}(4/3)_{m}}{(1/3)_{m}m!}\, z^{m}$ at pos:300233(13%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.984375 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.984375*5.92879328325965E-4+1.96875*0.00257082788077282 = 15525.633023231501' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
snz=m=0n2/3m4/3m1/3mm!zmsubscriptsnzsuperscriptsubscriptm0nsubscript23msubscript43msubscript13mmsuperscriptzms_{n}(z)\;=\;\sum _{{m=0}}^{{n}}\,\frac{(2/3)_{m}(4/3)_{m}}{(1/3)_{m}m!}\, z^{m}
End of MathML
.

Hit id78716

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 39
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id78716
found all required tokens in TeX $s_{n}(z)\;=\;\sum _{{m=0}}^{{n}}\,\frac{(3/7)_{m}(5/2)_{m}}{(7/2)_{m}m!}\, z^{m}$ at pos:384537(17%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.984375 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.984375*5.92879328325965E-4+1.96875*0.00257082788077282 = 15525.633023231501' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
snz=m=0n3/7m5/2m7/2mm!zmsubscriptsnzsuperscriptsubscriptm0nsubscript37msubscript52msubscript72mmsuperscriptzms_{n}(z)\;=\;\sum _{{m=0}}^{{n}}\,\frac{(3/7)_{m}(5/2)_{m}}{(7/2)_{m}m!}\, z^{m}
End of MathML
.

Hit id80388

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 40
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id80388
found all required tokens in TeX $s_{n}(z)\;=\;\sum _{{m=0}}^{{n}}\,\frac{(3/7)_{m}(5/2)_{m}}{(-7/2)_{m}m!}\, z^{m}\,.$ at pos:409820(18%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9921875 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.9921875*5.92879328325965E-4+1.96875*0.00257082788077282 = 15525.633486418474' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
snz=m=0n3/7m5/2m-7/2mm!zm.subscriptsnzsuperscriptsubscriptm0nsubscript37msubscript52msubscript72mmsuperscriptzms_{n}(z)\;=\;\sum _{{m=0}}^{{n}}\,\frac{(3/7)_{m}(5/2)_{m}}{(-7/2)_{m}m!}\, z^{m}\,.
End of MathML
.

Hit id83670

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 41
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/226/f090169.xhtml#id83670
found all required tokens in TeX $s_{{n}}^{{(22)}}(z)\;=\;\sum _{{m=0}}^{{n+22}}\,\frac{(3/7)_{m}(5/2)_{m}}{(-7/2)_{m}m!}\, z^{m}$ at pos:462931(20%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.984375 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.984375*5.92879328325965E-4+1.96875*0.00257082788077282 = 15525.633023231501' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
sn22z=m=0n+223/7m5/2m-7/2mm!zmsuperscriptsubscriptsn22zsuperscriptsubscriptm0n22subscript37msubscript52msubscript72mmsuperscriptzms_{{n}}^{{(22)}}(z)\;=\;\sum _{{m=0}}^{{n+22}}\,\frac{(3/7)_{m}(5/2)_{m}}{(-7/2)_{m}m!}\, z^{m}
End of MathML
.

Hit idp27428640

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 42
  • Formulasearchengine score: 15525
  • Reference to collection: _PREFIX_/16/f006146.xhtml#idp27428640
found all required tokens in TeX $\sum _{{k\leq n}}(x_{k}-p_{k})/\sqrt{g(\bar{A}_{n})}\to 0$ at pos:1005601(60%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.96875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.96875*5.92879328325965E-4+1.9375*0.00257082788077282 = 15525.624063020421' final score ~ 15525 reviewer: xxx gave 0
Rendered MathML:
kn(xk-pk)/g(A¯n)0subscriptknsubscriptxksubscriptpkgsubscript¯An0\sum _{{k\leq n}}(x_{k}-p_{k})/\sqrt{g(\bar{A}_{n})}\to 0
End of MathML
.

Hit idp977904

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 43
  • Formulasearchengine score: 15514
  • Reference to collection: _PREFIX_/130/f051779.xhtml#idp977904
found all required tokens in TeX $\sum _{{n=1}}^{{\infty}}f_{{n}}(\xi)$ at pos:117004(9%) Scoringfunction: ' + TeX_HIT_SCORE + 1.99609375 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+1.99609375*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.75*0.00257082788077282 = 15514.934124813499' final score ~ 15514 reviewer: xxx gave 0
Rendered MathML:
n=1fn(ξ)superscriptsubscriptn1subscriptfnξ\sum _{{n=1}}^{{\infty}}f_{{n}}(\xi)
End of MathML
.

Hit idp24635472

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 44
  • Formulasearchengine score: 15505
  • Reference to collection: _PREFIX_/60/f023627.xhtml#idp24635472
found all required tokens in TeX $F=\sum\limits _{{n=0}}\limits^{{\infty}}I_{{n}}(f_{{n}}).$ at pos:646488(23%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9921875 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.9921875*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.9375*5.92879328325965E-4+1.875*0.00257082788077282 = 15505.167898193926' final score ~ 15505 reviewer: xxx gave 0
Rendered MathML:
F=n=0In(fn).Fsuperscriptsubscriptn0subscriptInsubscriptfnF=\sum\limits _{{n=0}}\limits^{{\infty}}I_{{n}}(f_{{n}}).
End of MathML
.

Hit idp31350240

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 45
  • Formulasearchengine score: 15504
  • Reference to collection: _PREFIX_/62/f024737.xhtml#idp31350240
found all required tokens in TeX $|\mathcal{L}^{n}_{{\widehat{v}^{n}_{{[p_{n}s_{n}]}}}}-\mathcal{L}^{n}_{{v^{n}_{{[p_{n}s_{n}]}}}}|\leq 1$ at pos:1580912(63%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.99609375 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.99609375*0.06672875812593+1.0*0.450727438769192+1.9375*5.92879328325965E-4+1.99609375*0.00257082788077282 = 15504.743054810675' final score ~ 15504 reviewer: xxx gave 0
Rendered MathML:
|Lv^[pnsn]nn-Lv[pnsn]nn|1subscriptsuperscriptLnsubscriptsuperscript^vnsubscriptpnsubscriptsnsubscriptsuperscriptLnsubscriptsuperscriptvnsubscriptpnsubscriptsn1|\mathcal{L}^{n}_{{\widehat{v}^{n}_{{[p_{n}s_{n}]}}}}-\mathcal{L}^{n}_{{v^{n}_{{[p_{n}s_{n}]}}}}|\leq 1
End of MathML
.

Hit idp31378544

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 46
  • Formulasearchengine score: 15504
  • Reference to collection: _PREFIX_/62/f024737.xhtml#idp31378544
found all required tokens in TeX $\mathcal{L}^{n}_{{v^{n}_{{[p_{n}s_{n}]}}}}=\tilde{\mathcal{L}}^{n}_{{u^{n}_{{[p_{n}s_{n}]}}}}$ at pos:1584770(63%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.99609375 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.99609375*0.06672875812593+1.0*0.450727438769192+1.875*5.92879328325965E-4+1.99609375*0.00257082788077282 = 15504.739349314874' final score ~ 15504 reviewer: xxx gave 0
Rendered MathML:
Lv[pnsn]nn=L~u[pnsn]nnsubscriptsuperscriptLnsubscriptsuperscriptvnsubscriptpnsubscriptsnsubscriptsuperscript~Lnsubscriptsuperscriptunsubscriptpnsubscriptsn\mathcal{L}^{n}_{{v^{n}_{{[p_{n}s_{n}]}}}}=\tilde{\mathcal{L}}^{n}_{{u^{n}_{{[p_{n}s_{n}]}}}}
End of MathML
.

Hit idp31950096

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 47
  • Formulasearchengine score: 15504
  • Reference to collection: _PREFIX_/62/f024737.xhtml#idp31950096
found all required tokens in TeX $u^{n}_{{k_{n}}}\in[[u^{n}_{{[p_{n}s_{n}]}},u^{n}_{{[p_{n}t_{n}]}}]]$ at pos:1660581(66%) Scoringfunction: ' + TeX_HIT_SCORE + 2.0 * WORD_SCORE[ convergence] + 1.99609375 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.5 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[_] =+100.0+2.0*27.2286129675667+1.99609375*0.06672875812593+1.0*0.450727438769192+1.5*5.92879328325965E-4+1.99609375*0.00257082788077282 = 15504.71711634006' final score ~ 15504 reviewer: xxx gave 0
Rendered MathML:
uknn[[u[pnsn]n,u[pntn]n]]subscriptsuperscriptunsubscriptknsubscriptsuperscriptunsubscriptpnsubscriptsnsubscriptsuperscriptunsubscriptpnsubscripttnu^{n}_{{k_{n}}}\in[[u^{n}_{{[p_{n}s_{n}]}},u^{n}_{{[p_{n}t_{n}]}}]]
End of MathML
.

Hit idp32161056

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 48
  • Formulasearchengine score: 15504
  • Reference to collection: _PREFIX_/130/f051743.xhtml#idp32161056
found all required tokens in TeX $a_{{b_{n},\phi _{n}}}(e_{n})\geq a_{{0,\phi _{n}}}(e_{n})\geq M.$ at pos:1614023(60%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9998779296875 * WORD_SCORE[ convergence] + 1.96875 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[_] =+100.0+1.9998779296875*27.2286129675667+1.96875*0.06672875812593+1.0*0.450727438769192+1.9375*5.92879328325965E-4+1.9921875*0.00257082788077282 = 15504.227208603643' final score ~ 15504 reviewer: xxx gave 0
Rendered MathML:
abn,ϕn(en)a0,ϕn(en)M.subscriptasubscriptbnsubscriptϕnsubscriptensubscripta0subscriptϕnsubscriptenMa_{{b_{n},\phi _{n}}}(e_{n})\geq a_{{0,\phi _{n}}}(e_{n})\geq M.
End of MathML
.

Hit idp6281504

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 49
  • Formulasearchengine score: 15504
  • Reference to collection: _PREFIX_/132/f052576.xhtml#idp6281504
found all required tokens in TeX $n^{{-7/2}}(\widetilde{{\boldsymbol{A}}}_{n}{\boldsymbol{d}}_{n})_{{n\in\mathbb{N}}}$ at pos:788549(29%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9999999403953552 * WORD_SCORE[ convergence] + 1.9375 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.96875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.9999999403953552*27.2286129675667+1.9375*0.06672875812593+1.0*0.450727438769192+1.96875*5.92879328325965E-4+1.875*0.00257082788077282 = 15504.322625327388' final score ~ 15504 reviewer: xxx gave 0
Rendered MathML:
n-7/2(A~ndn)nNsuperscriptn72subscriptsubscript~AnsubscriptdnnNn^{{-7/2}}(\widetilde{{\boldsymbol{A}}}_{n}{\boldsymbol{d}}_{n})_{{n\in\mathbb{N}}}
End of MathML
.

Hit id68007

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 50
  • Formulasearchengine score: 15503
  • Reference to collection: _PREFIX_/31/f012082.xhtml#id68007
found all required tokens in TeX $\delta(F_{n})[d(F_{n})]^{{-1}}$ at pos:222092(7%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9999980926513672 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+1.9999980926513672*27.2286129675667+1.75*0.06672875812593+1.0*0.450727438769192+1.5*5.92879328325965E-4+1.75*0.00257082788077282 = 15503.006503394909' final score ~ 15503 reviewer: xxx gave 0
Rendered MathML:
δFndFn-1δsubscriptFnsuperscriptdsubscriptFn1\delta(F_{n})[d(F_{n})]^{{-1}}
End of MathML
.

Hit id69838

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 51
  • Formulasearchengine score: 15503
  • Reference to collection: _PREFIX_/4/f001506.xhtml#id69838
found all required tokens in TeX $E\left[n^{{-1}}H_{{\xi _{n}}}({\cal X}_{{n}})\right]$ at pos:248814(24%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9998779296875 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.9998779296875*27.2286129675667+1.875*0.06672875812593+1.0*0.450727438769192+1.9375*5.92879328325965E-4+1.875*0.00257082788077282 = 15503.571499606986' final score ~ 15503 reviewer: xxx gave 0
Rendered MathML:
En-1HξnXnEsuperscriptn1subscriptHsubscriptξnsubscriptXnE\left[n^{{-1}}H_{{\xi _{n}}}({\cal X}_{{n}})\right]
End of MathML
.

Hit idp20708144

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 52
  • Formulasearchengine score: 15503
  • Reference to collection: _PREFIX_/113/f045150.xhtml#idp20708144
found all required tokens in TeX $\mathbb{E}[Z_{n}^{\vartheta}\,|\, Z_{n}>0]$ at pos:133855(7%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9999980926513672 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+1.9999980926513672*27.2286129675667+1.75*0.06672875812593+1.0*0.450727438769192+1.9375*5.92879328325965E-4+1.75*0.00257082788077282 = 15503.032441865522' final score ~ 15503 reviewer: xxx gave 0
Rendered MathML:
E[Znϑ|Zn>0]EsuperscriptsubscriptZnϑketsubscriptZn0\mathbb{E}[Z_{n}^{\vartheta}\,|\, Z_{n}>0]
End of MathML
.

Hit idp28381376

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 53
  • Formulasearchengine score: 15503
  • Reference to collection: _PREFIX_/115/f045903.xhtml#idp28381376
found all required tokens in TeX $\| T_{n}-T\| _{\infty}=O(\eta^{*}(u_{n}))$ at pos:1139765(72%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9999999990686774 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.9999999990686774*27.2286129675667+1.75*0.06672875812593+1.0*0.450727438769192+1.9375*5.92879328325965E-4+1.875*0.00257082788077282 = 15503.069768123938' final score ~ 15503 reviewer: xxx gave 0
Rendered MathML:
Tn-T=O(η*(un))subscriptnormsubscriptTnTOsuperscriptηsubscriptun\| T_{n}-T\| _{\infty}=O(\eta^{*}(u_{n}))
End of MathML
.

Hit idp290688

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 54
  • Formulasearchengine score: 15503
  • Reference to collection: _PREFIX_/130/f051809.xhtml#idp290688
found all required tokens in TeX $\displaystyle{Y_{n}V\over\| Y_{n}V\|}$ at pos:30586(7%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9999999962747097 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+1.9999999962747097*27.2286129675667+1.75*0.06672875812593+1.0*0.450727438769192+1.9375*5.92879328325965E-4+1.75*0.00257082788077282 = 15503.037625167846' final score ~ 15503 reviewer: xxx gave 0
Rendered MathML:
YnVYnVsubscriptYnVnormsubscriptYnV\displaystyle{Y_{n}V\over\| Y_{n}V\|}
End of MathML
.

Hit idp31743824

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 55
  • Formulasearchengine score: 15503
  • Reference to collection: _PREFIX_/130/f051743.xhtml#idp31743824
found all required tokens in TeX $a_{{b_{n},\phi _{{f_{n}}}}}(e_{n})\rightarrow a_{{b,\phi _{f}}}(e).$ at pos:1559677(58%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9998779296875 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[_] =+100.0+1.9998779296875*27.2286129675667+1.875*0.06672875812593+1.0*0.450727438769192+1.875*5.92879328325965E-4+1.9921875*0.00257082788077282 = 15503.597921000415' final score ~ 15503 reviewer: xxx gave 0
Rendered MathML:
abn,ϕfn(en)ab,ϕf(e).subscriptasubscriptbnsubscriptϕsubscriptfnsubscriptensubscriptabsubscriptϕfea_{{b_{n},\phi _{{f_{n}}}}}(e_{n})\rightarrow a_{{b,\phi _{f}}}(e).
End of MathML
.

Hit idp32187280

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 56
  • Formulasearchengine score: 15503
  • Reference to collection: _PREFIX_/130/f051743.xhtml#idp32187280
found all required tokens in TeX $a_{{b_{n},\phi _{n}}}(e_{n})$ at pos:1617299(60%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9998779296875 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.5 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[_] =+100.0+1.9998779296875*27.2286129675667+1.875*0.06672875812593+1.0*0.450727438769192+1.5*5.92879328325965E-4+1.9375*0.00257082788077282 = 15503.561628810627' final score ~ 15503 reviewer: xxx gave 0
Rendered MathML:
abn,ϕn(en)subscriptasubscriptbnsubscriptϕnsubscriptena_{{b_{n},\phi _{n}}}(e_{n})
End of MathML
.

Hit idp26032032

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 57
  • Formulasearchengine score: 15493
  • Reference to collection: _PREFIX_/133/f052865.xhtml#idp26032032
found all required tokens in TeX $\displaystyle[(\alpha _{n}+1)(2\alpha _{n}+1)]^{{-1}}\left(\int Q^{2}_{{[\alpha _{n}]}}\right)^{{\alpha _{n}}}$ at pos:826667(29%) Scoringfunction: ' + TeX_HIT_SCORE + 1.99609375 * WORD_SCORE[ convergence] + 1.9375 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.99609375 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+1.99609375*27.2286129675667+1.9375*0.06672875812593+1.0*0.450727438769192+1.99609375*5.92879328325965E-4+1.96875*0.00257082788077282 = 15493.712333347907' final score ~ 15493 reviewer: xxx gave 0
Rendered MathML:
[(αn+1)(2αn+1)]-1(Q[αn]2)αnsuperscriptsubscriptαn12subscriptαn11superscriptsubscriptsuperscriptQ2subscriptαnsubscriptαn\displaystyle[(\alpha _{n}+1)(2\alpha _{n}+1)]^{{-1}}\left(\int Q^{2}_{{[\alpha _{n}]}}\right)^{{\alpha _{n}}}
End of MathML
.

Hit idp35294224

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 58
  • Formulasearchengine score: 15493
  • Reference to collection: _PREFIX_/133/f052865.xhtml#idp35294224
found all required tokens in TeX $\|\eta _{n}(s_{n})\| _{{L^{2}}}\geq\frac{1}{2}b_{n}$ at pos:2021919(71%) Scoringfunction: ' + TeX_HIT_SCORE + 1.99609375 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.0 * TOKEN_SCORE[sum] + 1.96875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[_] =+100.0+1.99609375*27.2286129675667+1.875*0.06672875812593+1.0*0.450727438769192+1.96875*5.92879328325965E-4+1.9375*0.00257082788077282 = 15493.285623618078' final score ~ 15493 reviewer: xxx gave 0
Rendered MathML:
ηn(sn)L212bnsubscriptnormsubscriptηnsubscriptsnsuperscriptL212subscriptbn\|\eta _{n}(s_{n})\| _{{L^{2}}}\geq\frac{1}{2}b_{n}
End of MathML
.

Hit id73310

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 59
  • Formulasearchengine score: 15483
  • Reference to collection: _PREFIX_/2/f000524.xhtml#id73310
found all required tokens in TeX $\sum _{{n=0}}^{\infty}\frac{c_{{2n+1}}}{(2n+1)!}$ at pos:296477(78%) Scoringfunction: ' + TeX_HIT_SCORE + 1.984375 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+1.984375*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.75*0.00257082788077282 = 15483.859703468706' final score ~ 15483 reviewer: xxx gave 0
Rendered MathML:
n=0c2n+12n+1!superscriptsubscriptn0subscriptc2n12n1\sum _{{n=0}}^{\infty}\frac{c_{{2n+1}}}{(2n+1)!}
End of MathML
.

Hit id73450

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 60
  • Formulasearchengine score: 15483
  • Reference to collection: _PREFIX_/2/f000524.xhtml#id73450
found all required tokens in TeX $\sum _{{n=0}}^{\infty}\frac{d_{{2n+1}}}{(2n+1)!}$ at pos:298748(78%) Scoringfunction: ' + TeX_HIT_SCORE + 1.984375 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+1.984375*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.75*0.00257082788077282 = 15483.859703468706' final score ~ 15483 reviewer: xxx gave 0
Rendered MathML:
n=0d2n+12n+1!superscriptsubscriptn0subscriptd2n12n1\sum _{{n=0}}^{\infty}\frac{d_{{2n+1}}}{(2n+1)!}
End of MathML
.

Hit idp2549104

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 62
  • Formulasearchengine score: 15441
  • Reference to collection: _PREFIX_/61/f024152.xhtml#idp2549104
found all required tokens in TeX $\sum _{{n=0}}^{\infty}f_{n}z_{0}^{n}=\mathrm{e}$ at pos:314417(92%) Scoringfunction: ' + TeX_HIT_SCORE + 1.96875 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.96875*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.875*0.00257082788077282 = 15441.347131055392' final score ~ 15441 reviewer: xxx gave 0
Rendered MathML:
n=0fnz0n=esuperscriptsubscriptn0subscriptfnsuperscriptsubscriptz0ne\sum _{{n=0}}^{\infty}f_{n}z_{0}^{n}=\mathrm{e}
End of MathML
.

Hit idp21924592

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 63
  • Formulasearchengine score: 15367
  • Reference to collection: _PREFIX_/18/f007189.xhtml#idp21924592
found all required tokens in TeX $\mathbf{E}_{{4}}[X_{{n}}|T>n]=\sum _{{x\geqslant 4}}xq_{{n}}(x)\xrightarrow[n\to\infty]{}\sum _{{x\geqslant 4}}xg_{{1/2}}(x)=G_{{1/2}}^{{\prime}}(1)=\frac{e^{2}+3}{2}.$ at pos:294466(38%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9375 * WORD_SCORE[ convergence] + 1.9375 * TOKEN_SCORE[n] + 1.75 * TOKEN_SCORE[sum] + 1.9990234375 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[_] =+100.0+1.9375*27.2286129675667+1.9375*0.06672875812593+1.75*0.450727438769192+1.9990234375*5.92879328325965E-4+1.9921875*0.00257082788077282 = 15367.980436221726' final score ~ 15367 reviewer: xxx gave 0
Rendered MathML:
E4[Xn|T>n]=x4xqn(x)x4xg1/2(x)=G1/2(1)=e2+32.subscriptE4subscriptXnketTnsubscriptx4xsubscriptqnxabsentnsubscriptx4xsubscriptg12xsuperscriptsubscriptG121superscripte232\mathbf{E}_{{4}}[X_{{n}}|T>n]=\sum _{{x\geqslant 4}}xq_{{n}}(x)\xrightarrow[n\to\infty]{}\sum _{{x\geqslant 4}}xg_{{1/2}}(x)=G_{{1/2}}^{{\prime}}(1)=\frac{e^{2}+3}{2}.
End of MathML
.

Hit idp1597088

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 64
  • Formulasearchengine score: 15356
  • Reference to collection: _PREFIX_/130/f051799.xhtml#idp1597088
found all required tokens in TeX $\displaystyle\sum _{{n=0}}^{\infty}\displaystyle\frac{c_{n}}{a_{0}a_{1}\dots a_{n}}$ at pos:190508(37%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9375 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.984375 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+1.9375*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.984375*5.92879328325965E-4+1.96875*0.00257082788077282 = 15356.288301660783' final score ~ 15356 reviewer: xxx gave 0
Rendered MathML:
n=0cna0a1ansuperscriptsubscriptn0subscriptcnsubscripta0subscripta1subscriptan\displaystyle\sum _{{n=0}}^{\infty}\displaystyle\frac{c_{n}}{a_{0}a_{1}\dots a_{n}}
End of MathML
.

Hit idp1620400

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 65
  • Formulasearchengine score: 15356
  • Reference to collection: _PREFIX_/130/f051799.xhtml#idp1620400
found all required tokens in TeX $\displaystyle\sum _{{n=0}}^{\infty}\displaystyle\frac{c_{n}}{a_{0}a_{1}\dots a_{n}}=s\quad(s\in\mathcal{X})$ at pos:193478(38%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9375 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.998046875 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+1.9375*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.998046875*5.92879328325965E-4+1.96875*0.00257082788077282 = 15356.289112237988' final score ~ 15356 reviewer: xxx gave 0
Rendered MathML:
n=0cna0a1an=s(sX)superscriptsubscriptn0subscriptcnsubscripta0subscripta1subscriptans(sX)\displaystyle\sum _{{n=0}}^{\infty}\displaystyle\frac{c_{n}}{a_{0}a_{1}\dots a_{n}}=s\quad(s\in\mathcal{X})
End of MathML
.

Hit idp877872

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 66
  • Formulasearchengine score: 15355
  • Reference to collection: _PREFIX_/130/f051799.xhtml#idp877872
found all required tokens in TeX $\displaystyle\sum _{{n=0}}^{\infty}|a_{n}|$ at pos:102592(20%) Scoringfunction: ' + TeX_HIT_SCORE + 1.9375 * WORD_SCORE[ convergence] + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+1.9375*27.2286129675667+1.75*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.75*0.00257082788077282 = 15355.391470706663' final score ~ 15355 reviewer: xxx gave 0
Rendered MathML:
n=0|an|superscriptsubscriptn0subscriptan\displaystyle\sum _{{n=0}}^{\infty}|a_{n}|
End of MathML
.

Hit idp4177232

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 67
  • Formulasearchengine score: 15186
  • Reference to collection: _PREFIX_/203/f081141.xhtml#idp4177232
found all required tokens in TeX $\sum _{{n}}\frac{\ln(r_{{n}}!)}{\ell _{{n-1}}}.$ at pos:523182(39%) Scoringfunction: ' + TeX_HIT_SCORE + 1.875 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.875*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.9375*5.92879328325965E-4+1.875*0.00257082788077282 = 15186.082589980253' final score ~ 15186 reviewer: xxx gave 0
Rendered MathML:
nln(rn!)n-1.subscriptnsubscriptrnsubscriptn1\sum _{{n}}\frac{\ln(r_{{n}}!)}{\ell _{{n-1}}}.
End of MathML
.

Hit idp654528

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 68
  • Formulasearchengine score: 15186
  • Reference to collection: _PREFIX_/203/f081141.xhtml#idp654528
found all required tokens in TeX $\displaystyle\sum _{{n}}\frac{\ln(r_{{n}})}{\ell _{{n}}}$ at pos:81152(6%) Scoringfunction: ' + TeX_HIT_SCORE + 1.875 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.96875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.875*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.96875*5.92879328325965E-4+1.875*0.00257082788077282 = 15186.084442728155' final score ~ 15186 reviewer: xxx gave 0
Rendered MathML:
nln(rn)nsubscriptnsubscriptrnsubscriptn\displaystyle\sum _{{n}}\frac{\ln(r_{{n}})}{\ell _{{n}}}
End of MathML
.

Hit idp7218576

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 69
  • Formulasearchengine score: 15186
  • Reference to collection: _PREFIX_/13/f005174.xhtml#idp7218576
found all required tokens in TeX $\displaystyle\sum _{{n=0}}^{{\infty}}(u_{{n+1}}-u_{{n}})a_{{u_{{n}}}}$ at pos:916206(72%) Scoringfunction: ' + TeX_HIT_SCORE + 1.875 * WORD_SCORE[ convergence] + 1.9375 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.875 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[_] =+100.0+1.875*27.2286129675667+1.9375*0.06672875812593+1.5*0.450727438769192+1.875*5.92879328325965E-4+1.96875*0.00257082788077282 = 15186.520040734124' final score ~ 15186 reviewer: xxx gave 0
Rendered MathML:
n=0(un+1-un)aunsuperscriptsubscriptn0subscriptun1subscriptunsubscriptasubscriptun\displaystyle\sum _{{n=0}}^{{\infty}}(u_{{n+1}}-u_{{n}})a_{{u_{{n}}}}
End of MathML
.

Hit id62062

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 70
  • Formulasearchengine score: 14845
  • Reference to collection: _PREFIX_/193/f076862.xhtml#id62062
found all required tokens in TeX ${\tilde{e}}_{q}(x):=\sum _{{n=0}}^{{\infty}}\frac{x^{n}}{(q;q)_{{n}}}.$ at pos:124332(38%) Scoringfunction: ' + TeX_HIT_SCORE + 1.75 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.75*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.9375*5.92879328325965E-4+1.875*0.00257082788077282 = 14845.724927885669' final score ~ 14845 reviewer: xxx gave 0
Rendered MathML:
e~qx:=n=0xnq;qn.:=subscript~eqxsuperscriptsubscriptn0superscriptxnsubscriptqqn{\tilde{e}}_{q}(x):=\sum _{{n=0}}^{{\infty}}\frac{x^{n}}{(q;q)_{{n}}}.
End of MathML
.

Hit idp1331744

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 71
  • Formulasearchengine score: 14165
  • Reference to collection: _PREFIX_/61/f024157.xhtml#idp1331744
found all required tokens in TeX $\sum _{{n\geq 0}}a_{n}x^{n}\in{\mathbf{C}}[[x]]_{{1/k}}$ at pos:166670(7%) Scoringfunction: ' + TeX_HIT_SCORE + 1.5 * WORD_SCORE[ convergence] + 1.875 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.9375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[_] =+100.0+1.5*27.2286129675667+1.875*0.06672875812593+1.5*0.450727438769192+1.9375*5.92879328325965E-4+1.875*0.00257082788077282 = 14165.0096036965' final score ~ 14165 reviewer: xxx gave 0
Rendered MathML:
n0anxnC[[x]]1/ksubscriptn0subscriptansuperscriptxnCsubscriptx1k\sum _{{n\geq 0}}a_{n}x^{n}\in{\mathbf{C}}[[x]]_{{1/k}}
End of MathML
.

Hit id108568

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 78
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/154/f061521.xhtml#id108568
no match at pos:818470(000078%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
limNϕn=0Niznn!f¯nΩsubscriptNϕsuperscriptsubscriptn0Nsuperscriptiznnsubscript¯fnΩ
End of MathML
.

Hit id113759

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 79
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/101/f040055.xhtml#id113759
no match at pos:932256(000098%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
n=0s¯nhnn=01rnhnrnD+1=n=0rnDhnn=0hnDD+δ-1n=0(2δD+δ)<-nsuperscriptsubscriptn0
End of MathML
.

Hit id126210

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 80
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/179/f071223.xhtml#id126210
no match at pos:1236106(000032%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Ψasyjz=n=0jψr,nUn,asy0z=n=0jφnλnrUn,asy0zsuperscriptsubscriptΨasyjzsuperscriptsubscriptn0jsubscriptψrnsubscriptsuperscriptU0nasyzsuperscriptsubscriptn0jsubscriptφnsuperscriptsubscriptλnrsubscriptsuperscriptU0nasyz
End of MathML
.

Hit id127626

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 81
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/199/f079212.xhtml#id127626
no match at pos:1131183(000070%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
n2α+2nδn+11jnδjajα+2jxnsubscriptn2subscriptα2nsuperscriptδn1subscript1jnsuperscriptδjsubscriptajsubscriptα2jsuperscriptxn
End of MathML
.

Hit id129920

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 82
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/199/f079212.xhtml#id129920
no match at pos:1168298(000072%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
n2α+2nδn+11jnδjajα+2jxnsubscriptn2subscriptα2nsuperscriptδn1subscript1jnsuperscriptδjsubscriptajsubscriptα2jsuperscriptxn
End of MathML
.

Hit id150689

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 83
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/86/f034320.xhtml#id150689
no match at pos:1514927(000063%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
EujEuiEui.EsubscriptujEusubscriptiEsuperscriptui
End of MathML
.

Hit id53757

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 84
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/152/f060660.xhtml#id53757
no match at pos:7441(000000%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
vtnvsubscripttn
End of MathML
.

Hit id58409

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 85
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/53/f020807.xhtml#id58409
no match at pos:71807(000012%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
PXnYn:=PX1Y1PXnYn:=subscriptPsuperscriptXnsuperscriptYnsubscriptPsubscriptX1subscriptY1subscriptPsubscriptXnsubscriptYn
End of MathML
.

Hit id61842

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 86
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/108/f042956.xhtml#id61842
no match at pos:119445(000058%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ϕ=neinθnϕsubscriptnsuperscripteinθn
End of MathML
.

Hit id61946

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 87
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/180/f071706.xhtml#id61946
no match at pos:139523(000051%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
=xnanxsubscriptnsubscriptan
End of MathML
.

Hit id64651

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 88
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/183/f072964.xhtml#id64651
no match at pos:180727(000055%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
n=1Gn2n-2!A2n-2e-nA2superscriptsubscriptn1subscriptGn2n2superscriptA2n2superscriptenA2
End of MathML
.

Hit id69724

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 89
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/242/f096710.xhtml#id69724
no match at pos:254620(000036%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
=xnanxsubscriptnsubscriptan
End of MathML
.

Hit id69768

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 90
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/228/f091140.xhtml#id69768
no match at pos:241026(000047%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
QFnQsubscriptFn
End of MathML
.

Hit id84143

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 91
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/232/f092436.xhtml#id84143
no match at pos:456490(000092%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
n=1eλ0npnx,xsubscriptsuperscriptn1superscriptesubscriptλ0nsubscriptpnxx
End of MathML
.

Hit id85105

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 92
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/83/f032966.xhtml#id85105
no match at pos:463105(000020%) VariableMap:[] Expects 2 occurences for 'n' but has only 0 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 2 occurences for '_' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
NJk=n=0Jkndnρn=eJk,NsubscriptJksuperscriptsubscriptn0subscriptsuperscriptJnkdnsubscriptρnsuperscriptesubscriptJk
End of MathML
.

Hit idp2213184

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 93
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/14/f005313.xhtml#idp2213184
no match at pos:274238(000040%) VariableMap:[to, lim, sum, beta, infty, frac, 1 x 2, s x 3, r x 2, alpha, ;, \ x 7, _ x 3, ^, = x 2] Expects 2 occurences for 'n' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
lims1sr=1sαr=β;subscripts1ssuperscriptsubscriptr1ssubscriptαrβ\lim _{{s\to\infty}}\frac{1}{s}\sum _{{r=1}}^{s}\alpha _{r}=\beta;
End of MathML
.

Hit idp26122224

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 94
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/133/f052865.xhtml#idp26122224
no match at pos:838606(000030%) VariableMap:[Q, alpha, ], n, \, _ x 2, [] Expects 2 occurences for 'n' but has only 1 Expects 1 occurences for 'sum' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Q[αn]subscriptQsubscriptαnQ_{{[\alpha _{n}]}}
End of MathML
.

Hit idp27005712

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 95
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/17/f006653.xhtml#idp27005712
no match at pos:964993(000057%) VariableMap:[T, u, n, (, _ x 2, ), k] Expects 2 occurences for 'n' but has only 1 Expects 1 occurences for 'sum' but has only 0 Expects 1 occurences for '\' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Tk(un)subscriptTksubscriptunT_{k}(u_{n})
End of MathML
.

Hit idp20821520

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 100
  • Formulasearchengine score: -9089920
  • Reference to collection: _PREFIX_/15/f005755.xhtml#idp20821520
found all required tokens in TeX $\sum a_{n}\lambda _{{n}}$ at pos:152588(30%) CMML match: 0=apply[sum;apply[times;apply[ csymbol[subscript];ci[a];ci[n]];apply[ csymbol[subscript];ci[λ];ci[n]]]] 1=ci[a] 2=ci[λ] PMML match: 0=mrow[mo[∑];mrow[msub[mi[a];mi[n]];msub[mi[λ];mi[n]]]] 1=mi[a] 2=mi[λ] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[n] + 1.5 * TOKEN_SCORE[sum] + 1.75 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[_] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+-100000.0+1.75*0.06672875812593+1.5*0.450727438769192+1.75*5.92879328325965E-4+1.75*0.00257082788077282 = -9089920.159702752' final score ~ -9089920 reviewer: xxx gave 0
Rendered MathML:
anλnsubscriptansubscriptλn\sum a_{n}\lambda _{{n}}
End of MathML
.

Tags: