Excluding Keywords from Formula Search

Results for NTCIR10-FT-2

Query

Original Query

NTCIR10-FT-2 Full Text Query Excluding Keywords from Formula Search \int^{{\qvar{a}}}_{{\qvar{b}}}\qvar{f}^{2}(x)dx 2 ( x ) d x subscript superscript superscript 2 x d x NOT(Parseval) Parseval’s theorem should not be in the set of hits

Compiled by FSE

Token-Filter

  • TeXFilter:[2, dx, int, \, (, _, ), ^ x 2, x]
  • Presentation-MathML:[2, d, x x 2, ∫]

MathML-Filter

mrow[msubsup[mo[∫];(.*?);(.*?)];mrow[msup[(.*?);mn[2]];mfenced[mi[x]];mi[d];mi[x]]] apply[apply[csymbol[subscript];apply[csymbol[superscript];int;(.*)];(.*)];apply[times;apply[csymbol[superscript];(.*);cn[2]];ci[x];ci[d];ci[x]]]

Word filter

Keywords:[not(parseval)] Rendered Presentation-MathML: 2(x)dx

Results

Summary

Reviewer score 4

  • Items reviewd: 2
  • Accumulated score: -9989609
  • Formulasearchengine found: 1

Reviewer score 2

  • Items reviewd: 26
  • Accumulated score: -119372487
  • Formulasearchengine found: 12

Reviewer score 0

  • Items reviewd: 72
  • Accumulated score: -449022389
  • Formulasearchengine found: 45
.
+++o
200000+0000
5000-2000001124558
<50001142742
22672100
50000000:0 200000:0 10000:0 5000:0

Short result list

Detailed results for reviewer score 4

Hit id91560

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 1
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/82/f032493.xhtml#id91560
no match at pos:589756(000032%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 4
Rendered MathML:
0ψx2dx=φE2dσE.superscriptsubscript0superscriptψx2dxsuperscriptφE2dσE
End of MathML
.

Hit idp19978208

  • Reviwer: xxx
  • Reviwer score: 4
  • Formulasearchengine rank: 96
  • Formulasearchengine score: -9989609
  • Reference to collection: _PREFIX_/63/f025126.xhtml#idp19978208
found all required tokens in TeX $A\| x\|^{2}=\int _{{K}}|\langle x,y\rangle|^{2}d\mu(y),\quad\text{for all $x\in\mathbb{R}^{d}$.}$ at pos:252835(27%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9990234375 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.75*0.00999347474837536+1.0*3.34781974734961+1.5*0.279351653691737+1.9990234375*5.92879328325965E-4+1.5*0.00418257496311516+1.5*0.00257082788077282+1.5*0.00417601612706465+1.875*0.00338742677192689+1.75*0.053601160227971 = -9989609.793142758' final score ~ -9989609 reviewer: xxx gave 4
Rendered MathML:
Ax2=K|x,y|2dμ(y),for all .Asuperscriptnormx2subscriptKsuperscriptxy2dμyfor all x∈RdxsuperscriptRdx\in\mathbb{R}^{d}.A\| x\|^{2}=\int _{{K}}|\langle x,y\rangle|^{2}d\mu(y),\quad\text{for all $x\in\mathbb{R}^{d}$.}
End of MathML
.

Detailed results for reviewer score 2

Hit id115138

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 2
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/249/f099533.xhtml#id115138
no match at pos:921320(000063%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
0x21νdx<superscriptsubscript0superscriptx21νdx
End of MathML
.

Hit id127625

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 3
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/231/f092326.xhtml#id127625
no match at pos:1114277(000078%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
ϕ20=-0ϕ2xdx=-20ϕϕxdx20cϕx22+ϕ22cdx.superscriptϕ20superscriptsubscript0subscriptsuperscriptϕ2xdx2superscriptsubscript0ϕsubscriptϕxdx2superscriptsubscript0csuperscriptsubscriptϕx22superscriptϕ22cdx
End of MathML
.

Hit id128033

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 4
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/228/f091072.xhtml#id128033
no match at pos:1100351(000088%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
Rt(aou)(,t)L2ΩdtRΩtaoux,t2dxdt+RΩaotux,t2dxdtRt2e-14t2Ωux,t2dxdt+Re-14t2Ωtux,t2dxdtcGu,0 , ∫R∥∂t(aou)(⋅,t)∥⁢L2Ωdt≤+∫R⁢∫Ω⁢⁢∂t⁢aouxt2dxdt∫R⁢∫Ω⁢⁢ao∂tuxt2dxdt≤+∫R⁢t2e-⁢14t2∫Ω⁢uxt2dxdt∫R⁢e-⁢14t2∫Ω⁢∂tuxt2dxdt≤⁢c⁢Gu0 ,
End of MathML
.

Hit id130404

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 5
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/228/f091072.xhtml#id130404
no match at pos:1134878(000091%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
R3τ<λφg^ξ,τdξdτcλλ2R3τ<λk=0,1,2t2-kφg^ξ,τ2dξdτ+cλR3τ<λΔφg^ξ,τ2dξdτ+cλR3τ<λφxo,tφx,0g^ξ,τ2dξdτ .∫R3∫<τλ⁢⁢^⁢φgξτdξdτ≤⁢cλλ2∫R3∫<τλ∑=k012⁢⁢^∂t-2k⁢φgξτ2dξdτ+⁢cλ∫R3∫<τλ⁢⁢^⁢Δφgξτ2dξdτ+⁢cλ∫R3∫<τλ⁢⁢^⁢φxot∇φx0∇gξτ2dξdτ .
End of MathML
.

Hit id58350

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 6
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/165/f065741.xhtml#id58350
no match at pos:72376(000013%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
-F*xGxdx=-F*θGθdθ,superscriptsubscriptsuperscriptFxGxdxsuperscriptsubscriptsuperscriptFθGθdθ
End of MathML
.

Hit id59698

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 7
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/144/f057371.xhtml#id59698
no match at pos:92515(000033%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
x2fxdx=2x2fxdxxfxdxsuperscriptx2fxdx2superscriptx2fxdxxfxdx
End of MathML
.

Hit id66485

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 8
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/81/f032178.xhtml#id66485
no match at pos:183206(000035%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
0xft2dt+n=12cnμns˙μn0xf¯tsinμntdt0xfssinμnsds--n=12π0xf¯tsinntdt0xfssinnsds=0.+∫0x⁢⁢ft2dt∑=n1∞⁢⁢2cn⁢μn˙sμn∫0x⁢¯ftsin⁢μntdt∫0x⁢fssin⁢μnsds-=-∑=n1∞⁢2π∫0x⁢¯ftsin⁢ntdt∫0x⁢fssin⁢nsds0.
End of MathML
.

Hit id69175

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 9
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/247/f098621.xhtml#id69175
no match at pos:233442(000037%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
trTnϕ2n-ππϕ2xdx.trsuperscriptsubscriptTnϕ2nsuperscriptsubscriptππsuperscriptϕ2xdx
End of MathML
.

Hit id74848

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 10
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/173/f068945.xhtml#id74848
no match at pos:304857(000023%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
0xft2dt+n=12cnμns˙μn0xf¯tsinμntdt0xfssinμnsds--n=12π0xf¯tsinntdt0xfssinnsds=0.+∫0x⁢⁢ft2dt∑=n1∞⁢⁢2cn⁢μn˙sμn∫0x⁢¯ftsin⁢μntdt∫0x⁢fssin⁢μnsds-=-∑=n1∞⁢2π∫0x⁢¯ftsin⁢ntdt∫0x⁢fssin⁢nsds0.
End of MathML
.

Hit id77087

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 11
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/229/f091306.xhtml#id77087
no match at pos:380433(000021%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
Mφ2x,ydxdyC2Λ2μΛ1-Λ.superscriptsubscriptMsuperscriptφ2xydxdysuperscriptC2superscriptΛ2superscriptμsubscriptΛ1Λ
End of MathML
.

Hit id85117

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 12
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/216/f086250.xhtml#id85117
no match at pos:488907(000030%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
SN2=xminxmaxh2xσ2xdx.superscriptSN2superscriptsubscriptsubscriptxsubscriptxsuperscripth2xsuperscriptσ2xdx
End of MathML
.

Hit id91251

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 13
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/82/f032493.xhtml#id91251
no match at pos:585546(000032%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
ψx=φEux;EdσE,φE=0ux;EψxdxLσ2ψxφEuxEdσEφEsuperscriptsubscript0uxEψxdxsuperscriptsubscriptLσ2
End of MathML
.

Hit id95725

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 14
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/124/f049554.xhtml#id95725
no match at pos:628983(000054%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
Rm|2n,xfxgx¯=Rm|2n,yFm|2n±fyFm|2n±gy¯.subscriptsuperscriptRm|2nxfx¯gxsubscriptsuperscriptRm|2nysuperscriptsubscriptFm|2n±fy¯superscriptsubscriptFm|2n±gy
End of MathML
.

Hit id99721

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 15
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/162/f064583.xhtml#id99721
no match at pos:683809(000079%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 2
Rendered MathML:
12-x0px2dx+12x0qx2dx,12superscriptsubscriptsubscriptx0superscriptsubscriptpx2dx12subscriptsuperscriptsubscriptx0superscriptsubscriptqx2dx
End of MathML
.

Hit id122101

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 43
  • Formulasearchengine score: -9489350
  • Reference to collection: _PREFIX_/50/f019687.xhtml#id122101
found all required tokens in TeX $\displaystyle\frac{\int^{{\infty}}_{{-\alpha^{{\prime}}_{{n_{{z}}}}}}x\mathrm{Ai}^{{2}}(x)dx}{\int^{{\infty}}_{{-\alpha^{{\prime}}_{{n_{{z}}}}}}\mathrm{Ai}^{{2}}(x)dx},$ at pos:1049529(62%) CMML match: 0=apply[apply[ csymbol[subscript];apply[ csymbol[superscript];int;infinity];apply[minus;apply[ csymbol[subscript];apply[ csymbol[superscript];ci[α];ci[′]];apply[ csymbol[subscript];ci[n];ci[z]]]]];apply[times;ci[x];apply[ csymbol[superscript];ci[Ai];cn[2]];ci[x];ci[d];ci[x]]];apply[apply[ csymbol[subscript];apply[ csymbol[superscript];int;infinity];apply[minus;apply[ csymbol[subscript];apply[ csymbol[superscript];ci[α];ci[′]];apply[ csymbol[subscript];ci[n];ci[z]]]]];apply[times;apply[ csymbol[superscript];ci[Ai];cn[2]];ci[x];ci[d];ci[x]]] 1=infinity];apply[minus;apply[ csymbol[subscript];apply[ csymbol[superscript];ci[α];ci[′]];apply[ csymbol[subscript];ci[n];ci[z]]]]];apply[times;ci[x];apply[ csymbol[superscript];ci[Ai];cn[2]];ci[x];ci[d];ci[x]]];apply[apply[ csymbol[subscript];apply[ csymbol[superscript];int;infinity];apply[minus;apply[ csymbol[subscript];apply[ csymbol[superscript];ci[α];ci[′]];apply[ csymbol[subscript];ci[n 2=ci[z]]]] 3=ci[Ai] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[2] + 1.75 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.999755859375 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.984375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[x] =+100.0+5000.0*1.0+-100000.0+1.75*0.00999347474837536+1.75*3.34781974734961+1.75*0.279351653691737+1.999755859375*5.92879328325965E-4+1.75*0.00418257496311516+1.984375*0.00257082788077282+1.75*0.00417601612706465+1.984375*0.00338742677192689+1.875*0.053601160227971 = -9489350.682273205' final score ~ -9489350 reviewer: xxx gave 2
Rendered MathML:
-αnzxAi2xdx-αnzAi2xdx,subscriptsuperscriptsubscriptsuperscriptαsubscriptnzxsuperscriptAi2xdxsubscriptsuperscriptsubscriptsuperscriptαsubscriptnzsuperscriptAi2xdx\displaystyle\frac{\int^{{\infty}}_{{-\alpha^{{\prime}}_{{n_{{z}}}}}}x\mathrm{Ai}^{{2}}(x)dx}{\int^{{\infty}}_{{-\alpha^{{\prime}}_{{n_{{z}}}}}}\mathrm{Ai}^{{2}}(x)dx},
End of MathML
.

Hit id129785

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 49
  • Formulasearchengine score: -9989281
  • Reference to collection: _PREFIX_/147/f058441.xhtml#id129785
found all required tokens in TeX $\int _{0}^{{\infty}}|v^{\prime}(x)|^{2}\, dx+\int _{0}^{{\infty}}x^{m}|v(x)|^{2}\, dx-\alpha\int _{0}^{{\infty}}x^{{\frac{m}{2}-1}}|v(x)|^{2}\, dx=-E_{*}\int _{0}^{{\infty}}|v(x)|^{2}\, dx.$ at pos:1179417(96%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.96875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.999969482421875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.96875 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[)] + 1.99951171875 * TOKEN_SCORE[^] + 1.984375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.96875*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.999969482421875*5.92879328325965E-4+1.9375*0.00418257496311516+1.96875*0.00257082788077282+1.9375*0.00417601612706465+1.99951171875*0.00338742677192689+1.984375*0.053601160227971 = -9989281.710092705' final score ~ -9989281 reviewer: xxx gave 2
Rendered MathML:
0vx2dx+0xmvx2dx-α0xm2-1vx2dx=-E*0vx2dx.superscriptsubscript0superscriptsuperscriptvx2dxsuperscriptsubscript0superscriptxmsuperscriptvx2dxαsuperscriptsubscript0superscriptxm21superscriptvx2dxsubscriptEsuperscriptsubscript0superscriptvx2dx\int _{0}^{{\infty}}|v^{\prime}(x)|^{2}\, dx+\int _{0}^{{\infty}}x^{m}|v(x)|^{2}\, dx-\alpha\int _{0}^{{\infty}}x^{{\frac{m}{2}-1}}|v(x)|^{2}\, dx=-E_{*}\int _{0}^{{\infty}}|v(x)|^{2}\, dx.
End of MathML
.

Hit id65577

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 50
  • Formulasearchengine score: -9989281
  • Reference to collection: _PREFIX_/220/f087979.xhtml#id65577
found all required tokens in TeX $\sigma _{s}(x)=N{\int _{{-\infty}}^{\infty}dx_{2}\cdots\int _{{-\infty}}^{\infty}dx_{N}\phi _{s}^{2}(x,x_{2},\cdots,x_{N})\over\int _{{-\infty}}^{\infty}dx_{1}\cdots\int _{{-\infty}}^{\infty}dx_{N}\phi _{s}^{2}(x_{1},x_{2},\cdots,x_{N})}.$ at pos:180408(41%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.96875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.9999990463256836 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.9999847412109375 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.9921875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.96875*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.9999990463256836*5.92879328325965E-4+1.875*0.00418257496311516+1.9999847412109375*0.00257082788077282+1.875*0.00417601612706465+1.984375*0.00338742677192689+1.9921875*0.053601160227971 = -9989281.717553776' final score ~ -9989281 reviewer: xxx gave 2
Rendered MathML:
σsx=N-dx2-dxNϕs2x,x2,,xN-dx1-dxNϕs2x1,x2,,xN.subscriptσsxNsuperscriptsubscriptdsubscriptx2superscriptsubscriptdsubscriptxNsuperscriptsubscriptϕs2xsubscriptx2subscriptxNsuperscriptsubscriptdsubscriptx1superscriptsubscriptdsubscriptxNsuperscriptsubscriptϕs2subscriptx1subscriptx2subscriptxN\sigma _{s}(x)=N{\int _{{-\infty}}^{\infty}dx_{2}\cdots\int _{{-\infty}}^{\infty}dx_{N}\phi _{s}^{2}(x,x_{2},\cdots,x_{N})\over\int _{{-\infty}}^{\infty}dx_{1}\cdots\int _{{-\infty}}^{\infty}dx_{N}\phi _{s}^{2}(x_{1},x_{2},\cdots,x_{N})}.
End of MathML
.

Hit id74734

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 51
  • Formulasearchengine score: -9989281
  • Reference to collection: _PREFIX_/238/f095185.xhtml#id74734
found all required tokens in TeX $\displaystyle 12\int _{{1}}^{{0}}dx_{3}\int _{{1}}^{{x_{3}}}dx_{2}\int _{{1}}^{{x_{2}}}dx_{1}q(x_{1},x_{2},x_{3})^{{2}}+\int _{{1}}^{{0}}dx_{1}2x_{1}^{2}q(x_{1}^{{2}})+$ at pos:323388(49%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.99609375 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.96875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.999969482421875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.9921875 * TOKEN_SCORE[^] + 1.9921875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.99609375*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.96875*5.92879328325965E-4+1.75*0.00418257496311516+1.999969482421875*0.00257082788077282+1.75*0.00417601612706465+1.9921875*0.00338742677192689+1.9921875*0.053601160227971 = -9989281.793920444' final score ~ -9989281 reviewer: xxx gave 2
Rendered MathML:
1210dx31x3dx21x2dx1qx1,x2,x32+10dx12x12qx12+12superscriptsubscript10dsubscriptx3superscriptsubscript1subscriptx3dsubscriptx2superscriptsubscript1subscriptx2dsubscriptx1qsuperscriptsubscriptx1subscriptx2subscriptx32superscriptsubscript10dsubscriptx12superscriptsubscriptx12qsuperscriptsubscriptx12\displaystyle 12\int _{{1}}^{{0}}dx_{3}\int _{{1}}^{{x_{3}}}dx_{2}\int _{{1}}^{{x_{2}}}dx_{1}q(x_{1},x_{2},x_{3})^{{2}}+\int _{{1}}^{{0}}dx_{1}2x_{1}^{2}q(x_{1}^{{2}})+
End of MathML
.

Hit id75255

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 52
  • Formulasearchengine score: -9989281
  • Reference to collection: _PREFIX_/238/f095185.xhtml#id75255
found all required tokens in TeX $\displaystyle 4\int _{{1}}^{{0}}dx_{2}\int _{{1}}^{{x_{2}}}x_{1}dx_{1}q(x_{1},x_{2})^{{2}}+6\int _{{1}}^{{0}}x_{2}dx_{2}\int _{{1}}^{{x_{2}}}dx_{1}q(x_{1},x_{2})^{{2}}.$ at pos:331151(50%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.998046875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.96875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.9999847412109375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.99609375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.998046875*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.96875*5.92879328325965E-4+1.75*0.00418257496311516+1.9999847412109375*0.00257082788077282+1.75*0.00417601612706465+1.984375*0.00338742677192689+1.99609375*0.053601160227971 = -9989281.773673145' final score ~ -9989281 reviewer: xxx gave 2
Rendered MathML:
410dx21x2x1dx1qx1,x22+610x2dx21x2dx1qx1,x22.4superscriptsubscript10dsubscriptx2superscriptsubscript1subscriptx2subscriptx1dsubscriptx1qsuperscriptsubscriptx1subscriptx226superscriptsubscript10subscriptx2dsubscriptx2superscriptsubscript1subscriptx2dsubscriptx1qsuperscriptsubscriptx1subscriptx22\displaystyle 4\int _{{1}}^{{0}}dx_{2}\int _{{1}}^{{x_{2}}}x_{1}dx_{1}q(x_{1},x_{2})^{{2}}+6\int _{{1}}^{{0}}x_{2}dx_{2}\int _{{1}}^{{x_{2}}}dx_{1}q(x_{1},x_{2})^{{2}}.
End of MathML
.

Hit id62456

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 63
  • Formulasearchengine score: -9989287
  • Reference to collection: _PREFIX_/146/f058110.xhtml#id62456
found all required tokens in TeX $\chi(x_{1})=\frac{m\int|\triangle _{m}(x)|^{2}\;\prod _{{k=1}}^{m}\mu(x_{k})\;\; dx_{2}...dx_{m}}{\int|\triangle _{m}(x)|^{2}\;\prod _{{k=1}}^{m}\mu(x_{k})\;\; dx_{1}...dx_{m}},$ at pos:134688(47%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.9999847412109375 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.99951171875 * TOKEN_SCORE[_] + 1.96875 * TOKEN_SCORE[)] + 1.9375 * TOKEN_SCORE[^] + 1.96875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.875*0.00999347474837536+1.9375*3.34781974734961+1.75*0.279351653691737+1.9999847412109375*5.92879328325965E-4+1.96875*0.00418257496311516+1.99951171875*0.00257082788077282+1.96875*0.00417601612706465+1.9375*0.00338742677192689+1.96875*0.053601160227971 = -9989287.112353053' final score ~ -9989287 reviewer: xxx gave 2
Rendered MathML:
χx1=mmx2k=1mμxkdx2dxmmx2k=1mμxkdx1dxm,χsubscriptx1msuperscriptsubscriptmx2superscriptsubscriptk1mμsubscriptxkdsubscriptx2dsubscriptxmsuperscriptsubscriptmx2superscriptsubscriptk1mμsubscriptxkdsubscriptx1dsubscriptxm\chi(x_{1})=\frac{m\int|\triangle _{m}(x)|^{2}\;\prod _{{k=1}}^{m}\mu(x_{k})\;\; dx_{2}...dx_{m}}{\int|\triangle _{m}(x)|^{2}\;\prod _{{k=1}}^{m}\mu(x_{k})\;\; dx_{1}...dx_{m}},
End of MathML
.

Hit id56432

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 67
  • Formulasearchengine score: -9989294
  • Reference to collection: _PREFIX_/221/f088368.xhtml#id56432
found all required tokens in TeX $\rho _{\psi}(x)=\sum _{{i=1}}^{N}\int _{{{\mathbb{R}}^{{N-1}}}}|\psi(x_{1},\dots,x_{{i-1}},x,x_{{i+1}},\dots,x_{N})|^{2}dx_{1}\dots dx_{{i-1}}dx_{{i+1}}\dots dx_{N}.$ at pos:42965(10%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9990234375 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.99951171875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.984375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.9375*3.34781974734961+1.5*0.279351653691737+1.9990234375*5.92879328325965E-4+1.75*0.00418257496311516+1.99951171875*0.00257082788077282+1.75*0.00417601612706465+1.875*0.00338742677192689+1.984375*0.053601160227971 = -9989294.591220478' final score ~ -9989294 reviewer: xxx gave 2
Rendered MathML:
ρψx=i=1NRN-1ψx1,,xi-1,x,xi+1,,xN2dx1dxi-1dxi+1dxN.subscriptρψxsuperscriptsubscripti1NsubscriptsuperscriptRN1superscriptψsubscriptx1subscriptxi1xsubscriptxi1subscriptxN2dsubscriptx1dsubscriptxi1dsubscriptxi1dsubscriptxN\rho _{\psi}(x)=\sum _{{i=1}}^{N}\int _{{{\mathbb{R}}^{{N-1}}}}|\psi(x_{1},\dots,x_{{i-1}},x,x_{{i+1}},\dots,x_{N})|^{2}dx_{1}\dots dx_{{i-1}}dx_{{i+1}}\dots dx_{N}.
End of MathML
.

Hit idp21182976

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 73
  • Formulasearchengine score: -9989350
  • Reference to collection: _PREFIX_/63/f024809.xhtml#idp21182976
found all required tokens in TeX $(2\pi)^{n}\int _{{S^{{2n-1}}}}\| x\| _{K}^{{-2n}}dx\leq(2\pi)^{n}\int _{{S^{{2n-1}}}}\| x\| _{L}^{{-2n+2}}\| x\| _{K}^{{-2}}dx$ at pos:193227(59%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.99609375 * TOKEN_SCORE[2] + 1.75 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.99951171875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.96875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.9921875 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.99609375*0.00999347474837536+1.75*3.34781974734961+1.75*0.279351653691737+1.99951171875*5.92879328325965E-4+1.75*0.00418257496311516+1.96875*0.00257082788077282+1.75*0.00417601612706465+1.9921875*0.00338742677192689+1.875*0.053601160227971 = -9989350.437725002' final score ~ -9989350 reviewer: xxx gave 2
Rendered MathML:
(2π)nS2n-1xK-2ndx(2π)nS2n-1xL-2n+2xK-2dxsuperscript2πnsubscriptsuperscriptS2n1superscriptsubscriptnormxK2ndxsuperscript2πnsubscriptsuperscriptS2n1superscriptsubscriptnormxL2n2superscriptsubscriptnormxK2dx(2\pi)^{n}\int _{{S^{{2n-1}}}}\| x\| _{K}^{{-2n}}dx\leq(2\pi)^{n}\int _{{S^{{2n-1}}}}\| x\| _{L}^{{-2n+2}}\| x\| _{K}^{{-2}}dx
End of MathML
.

Hit idp21613888

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 79
  • Formulasearchengine score: -9989435
  • Reference to collection: _PREFIX_/62/f024753.xhtml#idp21613888
found all required tokens in TeX $\int\limits _{{S^{{n-1}}}}\| x\| _{K}^{{-1}}\left(\int\limits _{{0}}^{{\| x\|^{{-1}}_{K}}}t^{{n-2}}f(tx)dt\right)\ dx$ at pos:256051(68%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.99951171875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.9375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.96875 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.5*3.34781974734961+1.75*0.279351653691737+1.99951171875*5.92879328325965E-4+1.75*0.00418257496311516+1.9375*0.00257082788077282+1.75*0.00417601612706465+1.96875*0.00338742677192689+1.75*0.053601160227971 = -9989435.314976346' final score ~ -9989435 reviewer: xxx gave 2
Rendered MathML:
Sn-1xK-1(0xK-1tn-2f(tx)dt)dxsubscriptsuperscriptSn1superscriptsubscriptnormxK1superscriptsubscript0subscriptsuperscriptnormx1Ksuperscripttn2ftxdtdx\int\limits _{{S^{{n-1}}}}\| x\| _{K}^{{-1}}\left(\int\limits _{{0}}^{{\| x\|^{{-1}}_{K}}}t^{{n-2}}f(tx)dt\right)\ dx
End of MathML
.

Hit idp24569152

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 83
  • Formulasearchengine score: -9989442
  • Reference to collection: _PREFIX_/18/f007003.xhtml#idp24569152
found all required tokens in TeX $\displaystyle\frac{1}{2}\frac{d}{dt}\| u_{x}\| _{2}^{2}=\int _{0}^{{2\pi}}u_{{xt}}u_{x}dx$ at pos:624438(47%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9375 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9921875 * TOKEN_SCORE[\] + 1.0 * TOKEN_SCORE[(] + 1.96875 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[)] + 1.75 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9375*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.9921875*5.92879328325965E-4+1.0*0.00418257496311516+1.96875*0.00257082788077282+1.0*0.00417601612706465+1.75*0.00338742677192689+1.75*0.053601160227971 = -9989442.554947857' final score ~ -9989442 reviewer: xxx gave 2
Rendered MathML:
12ddtux22=02πuxtuxdx12ddtsuperscriptsubscriptnormsubscriptux22superscriptsubscript02πsubscriptuxtsubscriptuxdx\displaystyle\frac{1}{2}\frac{d}{dt}\| u_{x}\| _{2}^{2}=\int _{0}^{{2\pi}}u_{{xt}}u_{x}dx
End of MathML
.

Hit idp32430432

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 90
  • Formulasearchengine score: -9989597
  • Reference to collection: _PREFIX_/64/f025268.xhtml#idp32430432
found all required tokens in TeX $\int _{{{{\mathfrak{m}}}}}E(x,y;\alpha)^{2}E(x,y;-\alpha)d\alpha\ll x^{{\frac{3}{4}+\epsilon}}\int _{{{\mathfrak{m}}}}|E(x,y;\alpha)|^{2}d\alpha\ll x^{{\frac{3}{4}+\epsilon}}\int _{0}^{1}|E(x,y;\alpha)|^{2}d\alpha,$ at pos:1672921(82%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.875 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.875 * TOKEN_SCORE[int] + 1.9999961853027344 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.875 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.984375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.875*0.00999347474837536+1.0*3.34781974734961+1.875*0.279351653691737+1.9999961853027344*5.92879328325965E-4+1.9375*0.00418257496311516+1.875*0.00257082788077282+1.9375*0.00417601612706465+1.984375*0.00338742677192689+1.984375*0.053601160227971 = -9989597.43705806' final score ~ -9989597 reviewer: xxx gave 2
Rendered MathML:
mE(x,y;α)2E(x,y;-α)dαx34+ϵm|E(x,y;α)|2dαx34+ϵ01|E(x,y;α)|2dα,much-less-thansubscriptmEsuperscriptxyα2Exyαdαsuperscriptx34ϵsubscriptmsuperscriptExyα2dαmuch-less-thansuperscriptx34ϵsuperscriptsubscript01superscriptExyα2dα\int _{{{{\mathfrak{m}}}}}E(x,y;\alpha)^{2}E(x,y;-\alpha)d\alpha\ll x^{{\frac{3}{4}+\epsilon}}\int _{{{\mathfrak{m}}}}|E(x,y;\alpha)|^{2}d\alpha\ll x^{{\frac{3}{4}+\epsilon}}\int _{0}^{1}|E(x,y;\alpha)|^{2}d\alpha,
End of MathML
.

Hit idp32508576

  • Reviwer: xxx
  • Reviwer score: 2
  • Formulasearchengine rank: 94
  • Formulasearchengine score: -9989608
  • Reference to collection: _PREFIX_/64/f025268.xhtml#idp32508576
found all required tokens in TeX $\int _{{0}}^{1}|E(x,y;\alpha)|^{2}d\alpha=\sum _{{n\in{\mathcal{S}}(y)}}\Big|\Phi\Big(\frac{n}{x}\Big)\Big|^{2}\ll E(x,y;0)\ll\Psi(x,y),$ at pos:1681328(82%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.999969482421875 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.75 * TOKEN_SCORE[_] + 1.96875 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.75*0.00999347474837536+1.0*3.34781974734961+1.5*0.279351653691737+1.999969482421875*5.92879328325965E-4+1.96875*0.00418257496311516+1.75*0.00257082788077282+1.96875*0.00417601612706465+1.875*0.00338742677192689+1.9375*0.053601160227971 = -9989608.331985261' final score ~ -9989608 reviewer: xxx gave 2
Rendered MathML:
01|E(x,y;α)|2dα=nS(y)|Φ(nx)|2E(x,y;0)Ψ(x,y),superscriptsubscript01superscriptExyα2dαsubscriptnSysuperscriptΦnx2much-less-thanExy0much-less-thanΨxy\int _{{0}}^{1}|E(x,y;\alpha)|^{2}d\alpha=\sum _{{n\in{\mathcal{S}}(y)}}\Big|\Phi\Big(\frac{n}{x}\Big)\Big|^{2}\ll E(x,y;0)\ll\Psi(x,y),
End of MathML
.

Detailed results for reviewer score 0

Hit id101375

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 16
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/101/f040042.xhtml#id101375
no match at pos:703800(000087%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Md2xC0dτ2Msuperscriptd2superscriptsubscriptxC0dsuperscriptτ2
End of MathML
.

Hit id102318

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 17
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/51/f020300.xhtml#id102318
no match at pos:718612(000092%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Kp,qH+=R-d3pxdx3+xd2pxdx2+2dpxdxqxdxsubscriptKpqsubscriptHsubscriptRsuperscriptd3pxdsuperscriptx3xsuperscriptd2pxdsuperscriptx22dpxdxqxdx
End of MathML
.

Hit id157240

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 18
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/242/f096568.xhtml#id157240
no match at pos:1619923(000098%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
1x2-xx2-1-1/2lnxdxsuperscriptsubscript1superscriptx2xsuperscriptx2112xdx
End of MathML
.

Hit id53870

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 19
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/195/f077984.xhtml#id53870
no match at pos:5705(000001%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
RdV2x1+xd-1dx<subscriptsuperscriptRdsuperscriptV2x1superscriptxd1dx
End of MathML
.

Hit id53898

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 20
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/153/f060877.xhtml#id53898
no match at pos:5793(000001%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
RdV2x1+xd-1dx<subscriptsuperscriptRdsuperscriptV2x1superscriptxd1dx
End of MathML
.

Hit id53945

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 21
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/246/f098168.xhtml#id53945
no match at pos:9086(000001%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
md2xdt2=-Vxx.msuperscriptd2xdsuperscriptt2Vxx
End of MathML
.

Hit id56713

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 22
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/91/f036075.xhtml#id56713
no match at pos:49122(000024%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
AFBs=01d2Γdxdsdx--10d2ΓdxdsdxdΓds,subscriptAFBssuperscriptsubscript01superscriptd2Γdxdsdxsuperscriptsubscript10superscriptd2ΓdxdsdxdΓds
End of MathML
.

Hit id57017

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 23
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/246/f098377.xhtml#id57017
no match at pos:53336(000011%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Md2xjmds2=jmQ.Msuperscriptd2subscriptsuperscriptxmjdsuperscripts2subscriptsuperscriptmjQ
End of MathML
.

Hit id57474

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 24
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/235/f093989.xhtml#id57474
no match at pos:60273(000028%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
xdxdx=xxdxdxx
End of MathML
.

Hit id58147

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 25
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/165/f065741.xhtml#id58147
no match at pos:69633(000012%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
fθ=-ei2πθxfxdx.fθsuperscriptsubscriptsuperscriptei2πθxfxdx
End of MathML
.

Hit id59643

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 26
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/214/f085391.xhtml#id59643
no match at pos:106002(000053%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
41Åd2NQdWQdzdWQ=1Åd2NGdWGdzdWG=xxÅd2NQdWQdzdWQ4superscriptsubscript1Åsuperscriptd2subscriptNQdsubscriptWQdzdsubscriptWQsuperscriptsubscript1Åsuperscriptd2subscriptNGdsubscriptWGdzdsubscriptWGxsuperscriptsubscriptxÅsuperscriptd2subscriptNQdsubscriptWQdzdsubscriptWQ
End of MathML
.

Hit id60332

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 27
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/25/f009857.xhtml#id60332
no match at pos:97098(000054%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
OnFx/x2dxOsuperscriptsubscriptnFxsuperscriptx2dx
End of MathML
.

Hit id61064

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 28
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/241/f096393.xhtml#id61064
no match at pos:117256(000039%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
δmnx0=x01xn-1dΓFQDMdxdxx01dΓFQDMdxdx,δsubscriptmnsubscriptx0superscriptsubscriptsubscriptx01superscriptxn1dsubscriptΓFQDMdxdxsuperscriptsubscriptsubscriptx01dsubscriptΓFQDMdxdx
End of MathML
.

Hit id61070

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 29
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/43/f017073.xhtml#id61070
no match at pos:116328(000068%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
x0x1e-x/x2dxx0-1x0x1e-x/xdxsuperscriptsubscriptsubscriptx0subscriptx1superscriptexsuperscriptx2dxsuperscriptsubscriptx01superscriptsubscriptsubscriptx0subscriptx1superscriptexxdx
End of MathML
.

Hit id62388

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 30
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/25/f009857.xhtml#id62388
no match at pos:128212(000071%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
OnFx/x2dxOsuperscriptsubscriptnFxsuperscriptx2dx
End of MathML
.

Hit id62575

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 31
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/243/f096979.xhtml#id62575
no match at pos:144713(000029%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ζΩ2ω3ω0=01dx1x10x1dx2x20x2dx3-1-x30x3dx41-x4ζsuperscriptΩ2subscriptω3subscriptω0superscriptsubscript01dsubscriptx1subscriptx1superscriptsubscript0subscriptx1dsubscriptx2subscriptx2superscriptsubscript0subscriptx2dsubscriptx31subscriptx3superscriptsubscript0subscriptx3dsubscriptx41subscriptx4
End of MathML
.

Hit id64763

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 32
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/83/f033087.xhtml#id64763
no match at pos:170732(000042%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
=eyddxxrxssuperscripteyddxsuperscriptxrsuperscriptxs
End of MathML
.

Hit id67731

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 33
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/142/f056562.xhtml#id67731
no match at pos:223467(000021%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Vx.Vx
End of MathML
.

Hit id72461

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 34
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/121/f048293.xhtml#id72461
no match at pos:283309(000065%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
-d/2d/2dx-d/2d/2dxsuperscriptsubscriptd2d2dxsuperscriptsubscriptd2d2dsuperscriptx
End of MathML
.

Hit id75828

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 35
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/171/f068386.xhtml#id75828
no match at pos:340734(000072%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ddxσ2dξdxddxsuperscriptσ2dξdx
End of MathML
.

Hit id76773

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 36
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/101/f040042.xhtml#id76773
no match at pos:343713(000042%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Md2xP0dτ2Msuperscriptd2superscriptsubscriptxP0dsuperscriptτ2
End of MathML
.

Hit id80527

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 37
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/101/f040042.xhtml#id80527
no match at pos:398745(000049%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Md2xT0dτ2Msuperscriptd2superscriptsubscriptxT0dsuperscriptτ2
End of MathML
.

Hit id80783

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 38
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/78/f030926.xhtml#id80783
no match at pos:405804(000046%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
0K14xxqdx=-0ddxK0xK1x3xqdxsuperscriptsubscript0superscriptsubscriptK14xsuperscriptxqdxsuperscriptsubscript0ddxsubscriptK0xsubscriptK1superscriptx3superscriptxqdx
End of MathML
.

Hit id86452

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 39
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/135/f053632.xhtml#id86452
no match at pos:509251(000058%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
ω0ωddxlnRdxωsuperscriptsubscript0ωddxRdx
End of MathML
.

Hit id88258

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 40
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/173/f069158.xhtml#id88258
no match at pos:516610(000089%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
-4x3dQdx+4x2d2Qdx2.4superscriptx3dQdx4superscriptx2superscriptd2Qdsuperscriptx2
End of MathML
.

Hit id91018

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 41
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/164/f065567.xhtml#id91018
no match at pos:529359(000038%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
Dxθ=12dx2θdθ=0θdτLxxτ.subscriptDxθ12dsuperscriptx2θdθsuperscriptsubscript0θdτsubscriptLxxτ
End of MathML
.

Hit id93972

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 42
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/82/f032493.xhtml#id93972
no match at pos:626268(000034%) VariableMap:[] Expects 1 occurences for '2' but has only 0 Expects 1 occurences for 'dx' but has only 0 Expects 1 occurences for 'int' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for '(' but has only 0 Expects 1 occurences for '_' but has only 0 Expects 1 occurences for ')' but has only 0 Expects 2 occurences for '^' but has only 0 Expects 1 occurences for 'x' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: xxx gave 0
Rendered MathML:
φE=0uExψxdx,φn=unx0unxψxdx,φEsuperscriptsubscript0subscriptuExψxdxsubscriptφnsubscriptunxsuperscriptsubscript0subscriptunxψxdx
End of MathML
.

Hit id121191

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 44
  • Formulasearchengine score: -9489351
  • Reference to collection: _PREFIX_/50/f019687.xhtml#id121191
found all required tokens in TeX $\displaystyle\frac{1}{2}\frac{(\int^{{\infty}}_{{-\alpha^{{\prime}}_{{n_{{z}}}}}}\mathrm{Ai}(x)dx)^{{2}}}{\int^{{\infty}}_{{-\alpha^{{\prime}}_{{n_{{z}}}}}}\mathrm{Ai}^{{2}}(x)dx},$ at pos:1034822(61%) CMML match: 0=apply[apply[ csymbol[subscript];apply[ csymbol[superscript];int;infinity];apply[minus;apply[ csymbol[subscript];apply[ csymbol[superscript];ci[α];ci[′]];apply[ csymbol[subscript];ci[n];ci[z]]]]];apply[times;ci[Ai];ci[x];ci[d];ci[x]]];cn[2]];apply[apply[ csymbol[subscript];apply[ csymbol[superscript];int;infinity];apply[minus;apply[ csymbol[subscript];apply[ csymbol[superscript];ci[α];ci[′]];apply[ csymbol[subscript];ci[n];ci[z]]]]];apply[times;apply[ csymbol[superscript];ci[Ai];cn[2]];ci[x];ci[d];ci[x]]] 1=infinity];apply[minus;apply[ csymbol[subscript];apply[ csymbol[superscript];ci[α];ci[′]];apply[ csymbol[subscript];ci[n];ci[z]]]]];apply[times;ci[Ai];ci[x];ci[d];ci[x]]];cn[2]];apply[apply[ csymbol[subscript];apply[ csymbol[superscript];int;infinity];apply[minus;apply[ csymbol[subscript];apply[ csymbol[superscript];ci[α];ci[′]];apply[ csymbol[subscript];ci[n 2=ci[z]]]] 3=ci[Ai] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + NO_TEXT_FOUND + 1.875 * TOKEN_SCORE[2] + 1.75 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.9998779296875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.984375 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+5000.0*1.0+-100000.0+1.875*0.00999347474837536+1.75*3.34781974734961+1.75*0.279351653691737+1.9998779296875*5.92879328325965E-4+1.875*0.00418257496311516+1.984375*0.00257082788077282+1.875*0.00417601612706465+1.984375*0.00338742677192689+1.75*0.053601160227971 = -9489351.122879647' final score ~ -9489351 reviewer: xxx gave 0
Rendered MathML:
12-αnzAixdx2-αnzAi2xdx,12superscriptsubscriptsuperscriptsubscriptsuperscriptαsubscriptnzAixdx2subscriptsuperscriptsubscriptsuperscriptαsubscriptnzsuperscriptAi2xdx\displaystyle\frac{1}{2}\frac{(\int^{{\infty}}_{{-\alpha^{{\prime}}_{{n_{{z}}}}}}\mathrm{Ai}(x)dx)^{{2}}}{\int^{{\infty}}_{{-\alpha^{{\prime}}_{{n_{{z}}}}}}\mathrm{Ai}^{{2}}(x)dx},
End of MathML
.

Hit id125598

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 45
  • Formulasearchengine score: -9989261
  • Reference to collection: _PREFIX_/186/f074143.xhtml#id125598
found all required tokens in TeX $f_{s}(p;\theta)=\left\{\begin{array}[]{lcr}\int _{{x_{0}}}^{\infty}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{--}}(x))\right)&,&\;\;\sigma^{2}-\mu^{2}<0\cr\int _{{x_{0}}}^{{x_{-}}}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{--}}(x))\right)\cr+\int _{{x_{-}}}^{{x_{+}}}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{-+}}(x))\right)\cr+\int _{{x_{+}}}^{\infty}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{--}}(x))\right)&,&\;\; 0<\sigma^{2}-\mu^{2}<1\cr\int _{{x_{0}}}^{{x_{-}}}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{+-}}(x))+Res(z_{{-+}}(x))\right)\cr+\int _{{x_{-}}}^{{x_{+}}}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{-+}}(x))\right)\cr+\int _{{x_{+}}}^{\infty}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{--}}(x))\right)&,&\;\;\sigma^{2}-\mu^{2}>1\cr&\end{array}\right.$ at pos:1109001(90%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9999999925494194 * TOKEN_SCORE[2] + 1.9921875 * TOKEN_SCORE[dx] + 1.9921875 * TOKEN_SCORE[int] + 2.0 * TOKEN_SCORE[\] + 1.999999999985448 * TOKEN_SCORE[(] + 1.9999999998835847 * TOKEN_SCORE[_] + 1.999999999985448 * TOKEN_SCORE[)] + 1.9999999999417923 * TOKEN_SCORE[^] + 1.9999999997671694 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9999999925494194*0.00999347474837536+1.9921875*3.34781974734961+1.9921875*0.279351653691737+2.0*5.92879328325965E-4+1.999999999985448*0.00418257496311516+1.9999999998835847*0.00257082788077282+1.999999999985448*0.00417601612706465+1.9999999999417923*0.00338742677192689+1.9999999997671694*0.053601160227971 = -9989261.698575448' final score ~ -9989261 reviewer: xxx gave 0
Rendered MathML:
fsp;θ=x0dxe-p22Λ2x1+Resz++x+Resz--x,σ2-μ2<0x0x-dxe-p22Λ2x1+Resz++x+Resz--x+x-x+dxe-p22Λ2x1+Resz++x+Resz-+x+x+dxe-p22Λ2x1+Resz++x+Resz--x,  0<σ2-μ2<1x0x-dxe-p22Λ2x1+Resz+-x+Resz-+x+x-x+dxe-p22Λ2x1+Resz++x+Resz-+x+x+dxe-p22Λ2x1+Resz++x+Resz--x,σ2-μ2>1subscriptfspθ∫x0∞⁢dxe-⁢p2⁢2Λ2x+1⁢Res⁢z++x⁢Res⁢z--x<-σ2μ20∫x0x-⁢dxe-⁢p2⁢2Λ2x+1⁢Res⁢z++x⁢Res⁢z--x+∫x-x+⁢dxe-⁢p2⁢2Λ2x+1⁢Res⁢z++x⁢Res⁢z-+x+∫x+∞⁢dxe-⁢p2⁢2Λ2x+1⁢Res⁢z++x⁢Res⁢z--x  0<-σ2μ2<1∫x0x-⁢dxe-⁢p2⁢2Λ2x+1⁢Res⁢z+-x⁢Res⁢z-+x+∫x-x+⁢dxe-⁢p2⁢2Λ2x+1⁢Res⁢z++x⁢Res⁢z-+x+∫x+∞⁢dxe-⁢p2⁢2Λ2x+1⁢Res⁢z++x⁢Res⁢z--x>-σ2μ21f_{s}(p;\theta)=\left\{\begin{array}[]{lcr}\int _{{x_{0}}}^{\infty}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{--}}(x))\right)&,&\;\;\sigma^{2}-\mu^{2}<0\cr\int _{{x_{0}}}^{{x_{-}}}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{--}}(x))\right)\cr+\int _{{x_{-}}}^{{x_{+}}}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{-+}}(x))\right)\cr+\int _{{x_{+}}}^{\infty}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{--}}(x))\right)&,&\;\; 0<\sigma^{2}-\mu^{2}<1\cr\int _{{x_{0}}}^{{x_{-}}}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{+-}}(x))+Res(z_{{-+}}(x))\right)\cr+\int _{{x_{-}}}^{{x_{+}}}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{-+}}(x))\right)\cr+\int _{{x_{+}}}^{\infty}\, dx\; e^{{-\frac{p^{2}}{2\Lambda^{2}}\, x}}\;\left(1+Res(z_{{++}}(x))+Res(z_{{--}}(x))\right)&,&\;\;\sigma^{2}-\mu^{2}>1\cr&\end{array}\right.
End of MathML
.

Hit id67507

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 46
  • Formulasearchengine score: -9989271
  • Reference to collection: _PREFIX_/28/f011153.xhtml#id67507
found all required tokens in TeX $\eqalign{\int _{{-\infty}}^{{+\infty}}dx\ {F(x;\Lambda)\over x^{2}+\Lambda^{2}}&=\int _{{-\infty}}^{{+\infty}}dx\ F(x;\Lambda)\left(-{d\over dx}{x\over x^{2}+\Lambda^{2}}\right)\cr&+{1\over\Lambda}\int _{{-\infty}}^{{+\infty}}dx\ F(x;0){2\Lambda^{3}\over(x^{2}+\Lambda^{2})^{2}}\cr&+\int _{{-\infty}}^{{+\infty}}dx\ [F(x;\Lambda)-F(x;0)]{2\Lambda^{2}\over(x^{2}+\Lambda^{2})^{2}}\ .\cr}$ at pos:221070(56%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9998779296875 * TOKEN_SCORE[2] + 1.96875 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.999999999998181 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[(] + 1.9375 * TOKEN_SCORE[_] + 1.99609375 * TOKEN_SCORE[)] + 1.9999847412109375 * TOKEN_SCORE[^] + 1.9990234375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9998779296875*0.00999347474837536+1.96875*3.34781974734961+1.9375*0.279351653691737+1.999999999998181*5.92879328325965E-4+1.99609375*0.00418257496311516+1.9375*0.00257082788077282+1.99609375*0.00417601612706465+1.9999847412109375*0.00338742677192689+1.9990234375*0.053601160227971 = -9989271.097426726' final score ~ -9989271 reviewer: xxx gave 0
Rendered MathML:
-+dxFx;Λx2+Λ2=-+dxFx;Λ-ddxxx2+Λ2+1Λ-+dxFx;02Λ3x2+Λ22+-+dxFx;Λ-Fx;02Λ2x2+Λ22.∫-∞+∞⁢dx⁢FxΛ+x2Λ2=∫-∞+∞⁢dxFxΛ-⁢d⁢dxx+x2Λ2+⁢1Λ∫-∞+∞⁢dxFx0⁢2Λ3+x2Λ22+∫-∞+∞⁢dx-⁢FxΛ⁢Fx0⁢2Λ2+x2Λ22\eqalign{\int _{{-\infty}}^{{+\infty}}dx\ {F(x;\Lambda)\over x^{2}+\Lambda^{2}}&=\int _{{-\infty}}^{{+\infty}}dx\ F(x;\Lambda)\left(-{d\over dx}{x\over x^{2}+\Lambda^{2}}\right)\cr&+{1\over\Lambda}\int _{{-\infty}}^{{+\infty}}dx\ F(x;0){2\Lambda^{3}\over(x^{2}+\Lambda^{2})^{2}}\cr&+\int _{{-\infty}}^{{+\infty}}dx\ [F(x;\Lambda)-F(x;0)]{2\Lambda^{2}\over(x^{2}+\Lambda^{2})^{2}}\ .\cr}
End of MathML
.

Hit id67148

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 47
  • Formulasearchengine score: -9989278
  • Reference to collection: _PREFIX_/184/f073345.xhtml#id67148
found all required tokens in TeX $\displaystyle=-\frac{i}{2\pi}\int _{\Sigma}dx^{i}\wedge dx^{j}\int _{{D^{\prime}}}dx^{{i^{\prime}}}\wedge dx^{{j^{\prime}}}\wedge dx^{{k^{\prime}}}\epsilon _{{iji^{\prime}j^{\prime}k^{\prime}}}\delta^{{(5)}}({\bf x}-{\bf x}^{\prime})$ at pos:209954(71%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.96875 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.9999995231628418 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.99993896484375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.96875*3.34781974734961+1.75*0.279351653691737+1.9999995231628418*5.92879328325965E-4+1.75*0.00418257496311516+1.875*0.00257082788077282+1.75*0.00417601612706465+1.99993896484375*0.00338742677192689+1.75*0.053601160227971 = -9989278.391399408' final score ~ -9989278 reviewer: xxx gave 0
Rendered MathML:
=-i2πΣdxidxjDdxidxjdxkϵijijkδ5x-xi2πsubscriptΣdsuperscriptxidsuperscriptxjsubscriptsuperscriptDdsuperscriptxsuperscriptidsuperscriptxsuperscriptjdsuperscriptxsuperscriptksubscriptϵijsuperscriptisuperscriptjsuperscriptksuperscriptδ5xsuperscriptx\displaystyle=-\frac{i}{2\pi}\int _{\Sigma}dx^{i}\wedge dx^{j}\int _{{D^{\prime}}}dx^{{i^{\prime}}}\wedge dx^{{j^{\prime}}}\wedge dx^{{k^{\prime}}}\epsilon _{{iji^{\prime}j^{\prime}k^{\prime}}}\delta^{{(5)}}({\bf x}-{\bf x}^{\prime})
End of MathML
.

Hit id127315

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 48
  • Formulasearchengine score: -9989279
  • Reference to collection: _PREFIX_/9/f003508.xhtml#id127315
found all required tokens in TeX $\begin{array}[]{rlrl}\left({\scriptsize\begin{array}[]{r}\int{d^{3}x\over 8\pi}\cr\int{dx_{0}\over 2}\cr\int{d^{2}x_{\perp}\over 4\pi}\int{dx_{0}\over 2}\cr\end{array}}\right)\int{d^{4}q\over i\pi^{3}}{q~\Gamma(3+N)\over(q^{2}_{{\rm P}}-m^{2})^{{3+N}}}e^{{xiq}}&=&({\partial\over\partial m^{2}})^{{2+N}}&{\scriptsize\pmatrix{\epsilon(x_{0})\cos x_{0}m\cr 2{\vec{x}\over r}{1+r|m|\over r^{2}}e^{{-r|m|}}\cr-\epsilon(x_{3})e^{{-|x_{3}m|}}\cr}}\cr\left({\scriptsize\begin{array}[]{r}\int{d^{3}x\over 8\pi}\cr\int{dx_{0}\over 2}\cr\int{d^{2}x_{\perp}\over 4\pi}\int{dx_{0}\over 2}\cr\end{array}}\right)\int{d^{4}q\over\pi^{3}}{\Gamma(2+N)\over(q^{2}_{{\rm P}}-m^{2})^{{2+N}}}e^{{xiq}}&=&-({\partial\over\partial m^{2}})^{{1+N}}&{\scriptsize\pmatrix{{\sin|x_{0}m|\over|m|}\cr 2{e^{{-r|m|}}\over r}\cr{e^{{-|x_{3}m|}}\over|m|}\cr}}\cr\end{array}$ at pos:1153009(86%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9999961853027344 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9990234375 * TOKEN_SCORE[int] + 2.0 * TOKEN_SCORE[\] + 1.9990234375 * TOKEN_SCORE[(] + 1.99993896484375 * TOKEN_SCORE[_] + 1.9990234375 * TOKEN_SCORE[)] + 1.9999999701976776 * TOKEN_SCORE[^] + 1.99951171875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9999961853027344*0.00999347474837536+1.9375*3.34781974734961+1.9990234375*0.279351653691737+2.0*5.92879328325965E-4+1.9990234375*0.00418257496311516+1.99993896484375*0.00257082788077282+1.9990234375*0.00417601612706465+1.9999999701976776*0.00338742677192689+1.99951171875*0.053601160227971 = -9989279.819454664' final score ~ -9989279 reviewer: xxx gave 0
Rendered MathML:
d3x8πdx02d2x4πdx02d4qiπ3qΓ3+NqP2-m23+Nexiq=m22+Nϵx0cosx0m2xr1+rmr2e-rm-ϵx3e-x3md3x8πdx02d2x4πdx02d4qπ3Γ2+NqP2-m22+Nexiq=-m21+Nsinx0mm2e-rmre-x3mm⁢∫⁢d3x⁢8π∫⁢dx02∫⁢⁢d2x⟂⁢4π∫⁢dx02∫⁢⁢d4q⁢iπ3⁢qΓ+3N-q2Pm2+3Ne⁢xiq=∂∂m2+2N⁢ϵx0cos⁢x0m⁢2→xr+1⁢rmr2e-⁢rm-⁢ϵx3e-⁢x3m⁢∫⁢d3x⁢8π∫⁢dx02∫⁢⁢d2x⟂⁢4π∫⁢dx02∫⁢⁢d4qπ3⁢Γ+2N-q2Pm2+2Ne⁢xiq=-∂∂m2+1Nsin⁢x0mm⁢2e-⁢rmre-⁢x3mm\begin{array}[]{rlrl}\left({\scriptsize\begin{array}[]{r}\int{d^{3}x\over 8\pi}\cr\int{dx_{0}\over 2}\cr\int{d^{2}x_{\perp}\over 4\pi}\int{dx_{0}\over 2}\cr\end{array}}\right)\int{d^{4}q\over i\pi^{3}}{q~\Gamma(3+N)\over(q^{2}_{{\rm P}}-m^{2})^{{3+N}}}e^{{xiq}}&=&({\partial\over\partial m^{2}})^{{2+N}}&{\scriptsize\pmatrix{\epsilon(x_{0})\cos x_{0}m\cr 2{\vec{x}\over r}{1+r|m|\over r^{2}}e^{{-r|m|}}\cr-\epsilon(x_{3})e^{{-|x_{3}m|}}\cr}}\cr\left({\scriptsize\begin{array}[]{r}\int{d^{3}x\over 8\pi}\cr\int{dx_{0}\over 2}\cr\int{d^{2}x_{\perp}\over 4\pi}\int{dx_{0}\over 2}\cr\end{array}}\right)\int{d^{4}q\over\pi^{3}}{\Gamma(2+N)\over(q^{2}_{{\rm P}}-m^{2})^{{2+N}}}e^{{xiq}}&=&-({\partial\over\partial m^{2}})^{{1+N}}&{\scriptsize\pmatrix{{\sin|x_{0}m|\over|m|}\cr 2{e^{{-r|m|}}\over r}\cr{e^{{-|x_{3}m|}}\over|m|}\cr}}\cr\end{array}
End of MathML
.

Hit id109849

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 53
  • Formulasearchengine score: -9989281
  • Reference to collection: _PREFIX_/35/f013691.xhtml#id109849
found all required tokens in TeX $\displaystyle\frac{\partial s^{2}}{\partial\tau}=A_{1}\int\limits _{1}^{{x_{s}(x)}}dx^{\star}\frac{x^{{\star 2}}f(x^{\star})}{s^{{\star 2}}}-2A_{2}s^{2}x\int\limits _{1}^{{x_{s}(x)}}dx^{\star}\frac{x^{\star}f(x^{\star})}{s^{{\star 4}}}+\frac{C_{1}}{x^{{2/3}}}\int\limits _{{x_{s}(x)}}^{{\infty}}dx^{\star}x^{{\star 2}}f(x^{\star})-\frac{2C_{2}s^{2}}{x^{{1/3}}}\int\limits _{{x_{s}(x)}}^{{\infty}}dx^{\star}x^{\star}f(x^{\star}),$ at pos:896838(80%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.99951171875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.9999999998835847 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[(] + 1.999755859375 * TOKEN_SCORE[_] + 1.99609375 * TOKEN_SCORE[)] + 1.9999998807907104 * TOKEN_SCORE[^] + 1.9999980926513672 * TOKEN_SCORE[x] =+100.0+-100000.0+1.99951171875*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.9999999998835847*5.92879328325965E-4+1.99609375*0.00418257496311516+1.999755859375*0.00257082788077282+1.99609375*0.00417601612706465+1.9999998807907104*0.00338742677192689+1.9999980926513672*0.053601160227971 = -9989281.538495105' final score ~ -9989281 reviewer: xxx gave 0
Rendered MathML:
s2τ=A11xsxdxx2fxs2-2A2s2x1xsxdxxfxs4+C1x2/3xsxdxx2fx-2C2s2x1/3xsxdxxfx,superscripts2τsubscriptA1superscriptsubscript1subscriptxsxdsuperscriptxsuperscriptx2fsuperscriptxsuperscripts22subscriptA2superscripts2xsuperscriptsubscript1subscriptxsxdsuperscriptxsuperscriptxfsuperscriptxsuperscripts4subscriptC1superscriptx23superscriptsubscriptsubscriptxsxdsuperscriptxsuperscriptx2fsuperscriptx2subscriptC2superscripts2superscriptx13superscriptsubscriptsubscriptxsxdsuperscriptxsuperscriptxfsuperscriptx\displaystyle\frac{\partial s^{2}}{\partial\tau}=A_{1}\int\limits _{1}^{{x_{s}(x)}}dx^{\star}\frac{x^{{\star 2}}f(x^{\star})}{s^{{\star 2}}}-2A_{2}s^{2}x\int\limits _{1}^{{x_{s}(x)}}dx^{\star}\frac{x^{\star}f(x^{\star})}{s^{{\star 4}}}+\frac{C_{1}}{x^{{2/3}}}\int\limits _{{x_{s}(x)}}^{{\infty}}dx^{\star}x^{{\star 2}}f(x^{\star})-\frac{2C_{2}s^{2}}{x^{{1/3}}}\int\limits _{{x_{s}(x)}}^{{\infty}}dx^{\star}x^{\star}f(x^{\star}),
End of MathML
.

Hit id110844

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 54
  • Formulasearchengine score: -9989281
  • Reference to collection: _PREFIX_/35/f013691.xhtml#id110844
found all required tokens in TeX $\displaystyle\frac{\partial s_{z}^{2}}{\partial\tau}=B_{1}\int\limits _{1}^{{x_{s}(x)}}dx^{\star}\frac{x^{{\star 2}}f(x^{\star})}{s^{{\star 2}}}-2B_{2}s_{z}^{2}x\int\limits _{1}^{{x_{s}(x)}}dx^{\star}\frac{x^{\star}f(x^{\star})}{s^{{\star 4}}}+\frac{D_{1}}{x^{{4/3}}}\int\limits _{{x_{s}(x)}}^{{\infty}}dx^{\star}x^{{\star 2}}s^{{\star 2}}f(x^{\star})-\frac{2D_{2}s_{z}^{2}}{x^{{1/3}}}\int\limits _{{x_{s}(x)}}^{{\infty}}dx^{\star}x^{\star}f(x^{\star}).$ at pos:912863(81%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.99951171875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.9999999999417923 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[(] + 1.999969482421875 * TOKEN_SCORE[_] + 1.99609375 * TOKEN_SCORE[)] + 1.9999999403953552 * TOKEN_SCORE[^] + 1.9999980926513672 * TOKEN_SCORE[x] =+100.0+-100000.0+1.99951171875*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.9999999999417923*5.92879328325965E-4+1.99609375*0.00418257496311516+1.999969482421875*0.00257082788077282+1.99609375*0.00417601612706465+1.9999999403953552*0.00338742677192689+1.9999980926513672*0.053601160227971 = -9989281.538440166' final score ~ -9989281 reviewer: xxx gave 0
Rendered MathML:
sz2τ=B11xsxdxx2fxs2-2B2sz2x1xsxdxxfxs4+D1x4/3xsxdxx2s2fx-2D2sz2x1/3xsxdxxfx.superscriptsubscriptsz2τsubscriptB1superscriptsubscript1subscriptxsxdsuperscriptxsuperscriptx2fsuperscriptxsuperscripts22subscriptB2superscriptsubscriptsz2xsuperscriptsubscript1subscriptxsxdsuperscriptxsuperscriptxfsuperscriptxsuperscripts4subscriptD1superscriptx43superscriptsubscriptsubscriptxsxdsuperscriptxsuperscriptx2superscripts2fsuperscriptx2subscriptD2superscriptsubscriptsz2superscriptx13superscriptsubscriptsubscriptxsxdsuperscriptxsuperscriptxfsuperscriptx\displaystyle\frac{\partial s_{z}^{2}}{\partial\tau}=B_{1}\int\limits _{1}^{{x_{s}(x)}}dx^{\star}\frac{x^{{\star 2}}f(x^{\star})}{s^{{\star 2}}}-2B_{2}s_{z}^{2}x\int\limits _{1}^{{x_{s}(x)}}dx^{\star}\frac{x^{\star}f(x^{\star})}{s^{{\star 4}}}+\frac{D_{1}}{x^{{4/3}}}\int\limits _{{x_{s}(x)}}^{{\infty}}dx^{\star}x^{{\star 2}}s^{{\star 2}}f(x^{\star})-\frac{2D_{2}s_{z}^{2}}{x^{{1/3}}}\int\limits _{{x_{s}(x)}}^{{\infty}}dx^{\star}x^{\star}f(x^{\star}).
End of MathML
.

Hit id55189

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 55
  • Formulasearchengine score: -9989281
  • Reference to collection: _PREFIX_/148/f058990.xhtml#id55189
found all required tokens in TeX $\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\frac{\sum\,\int dx_{a}\, dx_{b}\int\! d^{2}\mbox{\boldmath$k$}_{{\perp}}\, f_{{a/p}}(x_{a})\, f_{{b/p}}(x_{b})\, d\hat{\sigma}(x_{a},x_{b};\mbox{\boldmath$k$}_{{\perp}})\,\Delta^{{\! N}}\! D_{{\Lambda^{\uparrow}\!/c}}(z,\mbox{\boldmath$k$}_{{\perp}})}{\sum\,\int dx_{a}\, dx_{b}\int\! d^{2}\mbox{\boldmath$k$}_{{\perp}}\, f_{{a/p}}(x_{a})\, f_{{b/p}}(x_{b})\, d\hat{\sigma}(x_{a},x_{b};\mbox{\boldmath$k$}_{{\perp}})\,\hat{D}_{{\Lambda/c}}(z,\mbox{\boldmath$k$}_{{\perp}})}\,,$ at pos:26993(8%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 2.0 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[(] + 1.9999999403953552 * TOKEN_SCORE[_] + 1.99609375 * TOKEN_SCORE[)] + 1.9375 * TOKEN_SCORE[^] + 1.99609375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.75*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+2.0*5.92879328325965E-4+1.99609375*0.00418257496311516+1.9999999403953552*0.00257082788077282+1.99609375*0.00417601612706465+1.9375*0.00338742677192689+1.99609375*0.053601160227971 = -9989281.82988037' final score ~ -9989281 reviewer: xxx gave 0
Rendered MathML:
dxadxbd2kfa/pxafb/pxbdσxa,xb;kΔNDΛ/cz,kdxadxbd2kfa/pxafb/pxbdσxa,xb;kDΛ/cz,k,dsubscriptxadsubscriptxbsuperscriptd2subscriptksubscriptfapsubscriptxasubscriptfbpsubscriptxbdσsubscriptxasubscriptxbsubscriptksuperscriptΔNsubscriptDsuperscriptΛczsubscriptkdsubscriptxadsubscriptxbsuperscriptd2subscriptksubscriptfapsubscriptxasubscriptfbpsubscriptxbdσsubscriptxasubscriptxbsubscriptksubscriptDΛczsubscriptk\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\frac{\sum\,\int dx_{a}\, dx_{b}\int\! d^{2}\mbox{\boldmath$k$}_{{\perp}}\, f_{{a/p}}(x_{a})\, f_{{b/p}}(x_{b})\, d\hat{\sigma}(x_{a},x_{b};\mbox{\boldmath$k$}_{{\perp}})\,\Delta^{{\! N}}\! D_{{\Lambda^{\uparrow}\!/c}}(z,\mbox{\boldmath$k$}_{{\perp}})}{\sum\,\int dx_{a}\, dx_{b}\int\! d^{2}\mbox{\boldmath$k$}_{{\perp}}\, f_{{a/p}}(x_{a})\, f_{{b/p}}(x_{b})\, d\hat{\sigma}(x_{a},x_{b};\mbox{\boldmath$k$}_{{\perp}})\,\hat{D}_{{\Lambda/c}}(z,\mbox{\boldmath$k$}_{{\perp}})}\,,
End of MathML
.

Hit id66709

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 56
  • Formulasearchengine score: -9989281
  • Reference to collection: _PREFIX_/72/f028455.xhtml#id66709
found all required tokens in TeX $2^{2}\int _{{-1}}^{{1}}dx_{1}\int _{{-1}}^{{1}}dx_{2}\int _{{-1}}^{{1}}dx_{3}\int _{{-1}}^{{1}}dx_{4}[\frac{1}{4}(1-x_{1})(1-x_{2})(1-x_{3})(1-x_{4})]\frac{1}{(8\pi^{2})^{{4}}}(2\pi)^{8}=+1$ at pos:197095(67%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.984375 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.99609375 * TOKEN_SCORE[\] + 1.984375 * TOKEN_SCORE[(] + 1.999755859375 * TOKEN_SCORE[_] + 1.984375 * TOKEN_SCORE[)] + 1.99609375 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.984375*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.99609375*5.92879328325965E-4+1.984375*0.00418257496311516+1.999755859375*0.00257082788077282+1.984375*0.00417601612706465+1.99609375*0.00338742677192689+1.9375*0.053601160227971 = -9989281.899968965' final score ~ -9989281 reviewer: xxx gave 0
Rendered MathML:
22-11dx1-11dx2-11dx3-11dx4141-x11-x21-x31-x418π242π8=+1superscript22superscriptsubscript11dsubscriptx1superscriptsubscript11dsubscriptx2superscriptsubscript11dsubscriptx3superscriptsubscript11dsubscriptx4141subscriptx11subscriptx21subscriptx31subscriptx41superscript8superscriptπ24superscript2π812^{2}\int _{{-1}}^{{1}}dx_{1}\int _{{-1}}^{{1}}dx_{2}\int _{{-1}}^{{1}}dx_{3}\int _{{-1}}^{{1}}dx_{4}[\frac{1}{4}(1-x_{1})(1-x_{2})(1-x_{3})(1-x_{4})]\frac{1}{(8\pi^{2})^{{4}}}(2\pi)^{8}=+1
End of MathML
.

Hit id70717

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 57
  • Formulasearchengine score: -9989281
  • Reference to collection: _PREFIX_/139/f055352.xhtml#id70717
found all required tokens in TeX $\int e^{{-\alpha(V(x)-\beta\log\sqrt{1+x^{2}})}}dx\leq\int _{{-N}}^{{N}}e^{{-\alpha(V(x)-\beta\log\sqrt{1+x^{2}})}}dx+\int _{{|x|>N}}e^{{-\alpha(2/\alpha\log\sqrt{1+x^{2}})}}dx\leq 2Ne^{{\alpha c}}+\int _{{|x|>N}}\frac{1}{1+x^{2}}dx<\infty$ at pos:255791(26%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.984375 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.9999995231628418 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.875 * TOKEN_SCORE[_] + 1.96875 * TOKEN_SCORE[)] + 1.998046875 * TOKEN_SCORE[^] + 1.99609375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.984375*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.9999995231628418*5.92879328325965E-4+1.96875*0.00418257496311516+1.875*0.00257082788077282+1.96875*0.00417601612706465+1.998046875*0.00338742677192689+1.99609375*0.053601160227971 = -9989281.630139377' final score ~ -9989281 reviewer: xxx gave 0
Rendered MathML:
e-αVx-βlog1+x2dx-NNe-αVx-βlog1+x2dx+x>Ne-α2/αlog1+x2dx2Neαc+x>N11+x2dx<superscripteαVxβ1superscriptx2dxsuperscriptsubscriptNNsuperscripteαVxβ1superscriptx2dxsubscriptxNsuperscripteα2α1superscriptx2dx2NsuperscripteαcsubscriptxN11superscriptx2dx\int e^{{-\alpha(V(x)-\beta\log\sqrt{1+x^{2}})}}dx\leq\int _{{-N}}^{{N}}e^{{-\alpha(V(x)-\beta\log\sqrt{1+x^{2}})}}dx+\int _{{|x|>N}}e^{{-\alpha(2/\alpha\log\sqrt{1+x^{2}})}}dx\leq 2Ne^{{\alpha c}}+\int _{{|x|>N}}\frac{1}{1+x^{2}}dx<\infty
End of MathML
.

Hit id55958

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 58
  • Formulasearchengine score: -9989282
  • Reference to collection: _PREFIX_/166/f066045.xhtml#id55958
found all required tokens in TeX $\mu^{{\prime}}=\frac{\mu}{\hbar qC^{{2}}}=\left(\frac{B}{S}\right)\frac{\int _{{0}}^{{B/k_{{B}}T}}dx\; x\sqrt{x}e^{{-x}}}{\int _{{0}}^{{B/k_{{B}}T}}dx\;\sqrt{x}e^{{-x}}}=\left(\frac{B}{S}\right)\left(\frac{B}{k_{{B}}T}\right)\frac{\int _{{0}}^{{1}}dx\; x\sqrt{x}e^{{-xB/k_{{B}}T}}}{\int _{{0}}^{{1}}dx\;\sqrt{x}e^{{-xB/k_{{B}}T}}}.$ at pos:36485(19%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.9999999962747097 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.998046875 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[)] + 1.9990234375 * TOKEN_SCORE[^] + 1.99609375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.9999999962747097*5.92879328325965E-4+1.875*0.00418257496311516+1.998046875*0.00257082788077282+1.875*0.00417601612706465+1.9990234375*0.00338742677192689+1.99609375*0.053601160227971 = -9989282.160596037' final score ~ -9989282 reviewer: xxx gave 0
Rendered MathML:
μ=μqC2=BS0B/kBTdxxxe-x0B/kBTdxxe-x=BSBkBT01dxxxe-xB/kBT01dxxe-xB/kBT.superscriptμμqsuperscriptC2BSsuperscriptsubscript0BsubscriptkBTdxxxsuperscriptexsuperscriptsubscript0BsubscriptkBTdxxsuperscriptexBSBsubscriptkBTsuperscriptsubscript01dxxxsuperscriptexBsubscriptkBTsuperscriptsubscript01dxxsuperscriptexBsubscriptkBT\mu^{{\prime}}=\frac{\mu}{\hbar qC^{{2}}}=\left(\frac{B}{S}\right)\frac{\int _{{0}}^{{B/k_{{B}}T}}dx\; x\sqrt{x}e^{{-x}}}{\int _{{0}}^{{B/k_{{B}}T}}dx\;\sqrt{x}e^{{-x}}}=\left(\frac{B}{S}\right)\left(\frac{B}{k_{{B}}T}\right)\frac{\int _{{0}}^{{1}}dx\; x\sqrt{x}e^{{-xB/k_{{B}}T}}}{\int _{{0}}^{{1}}dx\;\sqrt{x}e^{{-xB/k_{{B}}T}}}.
End of MathML
.

Hit id59303

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 59
  • Formulasearchengine score: -9989282
  • Reference to collection: _PREFIX_/9/f003429.xhtml#id59303
found all required tokens in TeX $Q(\alpha _{2},\alpha _{1})=\frac{\int _{0}^{1}x^{{-\alpha _{2}}}dx}{\int _{0}^{1}x^{{-\alpha _{1}}}dx}=\frac{\int _{0}^{1}\overbrace{x^{{-\alpha _{1}}}}^{{measure}}\overbrace{x^{{\alpha _{1}-\alpha _{2}}}}^{{operator}}dx}{\int _{0}^{1}\underbrace{x^{{-\alpha _{1}}}}_{{measure}}dx}$ at pos:87716(46%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.9999923706054688 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.9998779296875 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.99951171875 * TOKEN_SCORE[^] + 1.96875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.875*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.9999923706054688*5.92879328325965E-4+1.5*0.00418257496311516+1.9998779296875*0.00257082788077282+1.5*0.00417601612706465+1.99951171875*0.00338742677192689+1.96875*0.053601160227971 = -9989282.245217888' final score ~ -9989282 reviewer: xxx gave 0
Rendered MathML:
Qα2,α1=01x-α2dx01x-α1dx=01x-α1measurexα1-α2operatordx01x-α1measuredxQsubscriptα2subscriptα1superscriptsubscript01superscriptxsubscriptα2dxsuperscriptsubscript01superscriptxsubscriptα1dxsuperscriptsubscript01superscriptsuperscriptxsubscriptα1measuresuperscriptsuperscriptxsubscriptα1subscriptα2operatordxsuperscriptsubscript01subscriptsuperscriptxsubscriptα1measuredxQ(\alpha _{2},\alpha _{1})=\frac{\int _{0}^{1}x^{{-\alpha _{2}}}dx}{\int _{0}^{1}x^{{-\alpha _{1}}}dx}=\frac{\int _{0}^{1}\overbrace{x^{{-\alpha _{1}}}}^{{measure}}\overbrace{x^{{\alpha _{1}-\alpha _{2}}}}^{{operator}}dx}{\int _{0}^{1}\underbrace{x^{{-\alpha _{1}}}}_{{measure}}dx}
End of MathML
.

Hit id100555

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 60
  • Formulasearchengine score: -9989283
  • Reference to collection: _PREFIX_/51/f020031.xhtml#id100555
found all required tokens in TeX $e^{{\int dx_{1}2\frac{\sigma _{{xx}}}{\beta}cos\beta A_{0}}}=\sum _{{n_{\pm}=0}}^{\infty}\frac{(\frac{\sigma _{{xx}}}{\beta})^{{n_{+}+n_{-}}}}{n_{+}!n_{-}!}\prod _{{i=1}}^{{n_{+}}}\int dx_{i}^{+}\prod _{{j=1}}^{{n_{-}}}\int dx_{j}^{-}e^{{\int dx_{1}i\beta A_{0}(x_{1})\rho _{n}(x_{1})}}$ at pos:714890(74%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.9375 * TOKEN_SCORE[int] + 1.9999980926513672 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.9999995231628418 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[)] + 1.99609375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.9375*3.34781974734961+1.9375*0.279351653691737+1.9999980926513672*5.92879328325965E-4+1.875*0.00418257496311516+1.9999995231628418*0.00257082788077282+1.875*0.00417601612706465+1.99609375*0.00338742677192689+1.75*0.053601160227971 = -9989283.48017762' final score ~ -9989283 reviewer: xxx gave 0
Rendered MathML:
edx12σxxβcosβA0=n±=0σxxβn++n-n+!n-!i=1n+dxi+j=1n-dxj-edx1iβA0x1ρnx1superscriptedsubscriptx12subscriptσxxβcosβsubscriptA0superscriptsubscriptsubscriptn±0superscriptsubscriptσxxβsubscriptnsubscriptnsubscriptnsubscriptnsuperscriptsubscripti1subscriptndsuperscriptsubscriptxisuperscriptsubscriptj1subscriptndsuperscriptsubscriptxjsuperscriptedsubscriptx1iβsubscriptA0subscriptx1subscriptρnsubscriptx1e^{{\int dx_{1}2\frac{\sigma _{{xx}}}{\beta}cos\beta A_{0}}}=\sum _{{n_{\pm}=0}}^{\infty}\frac{(\frac{\sigma _{{xx}}}{\beta})^{{n_{+}+n_{-}}}}{n_{+}!n_{-}!}\prod _{{i=1}}^{{n_{+}}}\int dx_{i}^{+}\prod _{{j=1}}^{{n_{-}}}\int dx_{j}^{-}e^{{\int dx_{1}i\beta A_{0}(x_{1})\rho _{n}(x_{1})}}
End of MathML
.

Hit id106955

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 61
  • Formulasearchengine score: -9989284
  • Reference to collection: _PREFIX_/1/f000159.xhtml#id106955
found all required tokens in TeX $\displaystyle\int _{0}^{1}dx_{2}\phi _{v}(x_{2})=1\;,\;\int _{0}^{1}dx_{2}\phi _{p}(x_{2})=1\;,\;\int _{0}^{1}dx_{2}\frac{d}{dx_{2}}\phi _{{\sigma}}(x_{2})=0\;.$ at pos:823062(81%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9921875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.875 * TOKEN_SCORE[int] + 1.99993896484375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.9998779296875 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9921875*0.00999347474837536+1.9375*3.34781974734961+1.875*0.279351653691737+1.99993896484375*5.92879328325965E-4+1.875*0.00418257496311516+1.9998779296875*0.00257082788077282+1.875*0.00417601612706465+1.875*0.00338742677192689+1.875*0.053601160227971 = -9989284.105299003' final score ~ -9989284 reviewer: xxx gave 0
Rendered MathML:
01dx2ϕvx2=1,01dx2ϕpx2=1,01dx2ddx2ϕσx2=0 .superscriptsubscript01dsubscriptx2subscriptϕvsubscriptx21superscriptsubscript01dsubscriptx2subscriptϕpsubscriptx21superscriptsubscript01dsubscriptx2ddsubscriptx2subscriptϕσsubscriptx20 .\displaystyle\int _{0}^{1}dx_{2}\phi _{v}(x_{2})=1\;,\;\int _{0}^{1}dx_{2}\phi _{p}(x_{2})=1\;,\;\int _{0}^{1}dx_{2}\frac{d}{dx_{2}}\phi _{{\sigma}}(x_{2})=0\;.
End of MathML
.

Hit id66025

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 62
  • Formulasearchengine score: -9989286
  • Reference to collection: _PREFIX_/220/f087609.xhtml#id66025
found all required tokens in TeX $\displaystyle\frac{a_{1}a_{2}{\cal T}}{\sqrt{2}}\int\! d^{6}x\int\! dx_{9}\; C^{{(6)}}_{{0123459}}\int\! dx_{6}dx_{7}dx_{8}\; e^{{-T^{2}/a}}\; q\;\frac{s^{2}}{r^{4}}$ at pos:189532(45%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.96875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.875 * TOKEN_SCORE[int] + 1.999969482421875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.9921875 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[x] =+100.0+-100000.0+1.96875*0.00999347474837536+1.9375*3.34781974734961+1.875*0.279351653691737+1.999969482421875*5.92879328325965E-4+1.5*0.00418257496311516+1.9921875*0.00257082788077282+1.5*0.00417601612706465+1.984375*0.00338742677192689+1.5*0.053601160227971 = -9989286.41713717' final score ~ -9989286 reviewer: xxx gave 0
Rendered MathML:
a1a2T2d6xdx9C01234596dx6dx7dx8e-T2/aqs2r4subscripta1subscripta2T2superscriptd6xdsubscriptx9subscriptsuperscriptC60123459dsubscriptx6dsubscriptx7dsubscriptx8superscriptesuperscriptT2aqsuperscripts2superscriptr4\displaystyle\frac{a_{1}a_{2}{\cal T}}{\sqrt{2}}\int\! d^{6}x\int\! dx_{9}\; C^{{(6)}}_{{0123459}}\int\! dx_{6}dx_{7}dx_{8}\; e^{{-T^{2}/a}}\; q\;\frac{s^{2}}{r^{4}}
End of MathML
.

Hit id56068

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 64
  • Formulasearchengine score: -9989287
  • Reference to collection: _PREFIX_/238/f095034.xhtml#id56068
found all required tokens in TeX $A=\frac{\int dx_{1}dx_{2}d\Delta\hat{\sigma}\Delta G(x_{1},Q^{2})\Delta G(x_{2},Q^{2})}{\int dx_{1}dx_{2}d\hat{\sigma}G(x_{1},Q^{2})G(x_{2},Q^{2})}\;,$ at pos:42173(26%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.99609375 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.99951171875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.99609375 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[)] + 1.9375 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.99609375*0.00999347474837536+1.9375*3.34781974734961+1.75*0.279351653691737+1.99951171875*5.92879328325965E-4+1.9375*0.00418257496311516+1.99609375*0.00257082788077282+1.9375*0.00417601612706465+1.9375*0.00338742677192689+1.9375*0.053601160227971 = -9989287.18586929' final score ~ -9989287 reviewer: xxx gave 0
Rendered MathML:
A=dx1dx2dΔσΔGx1,Q2ΔGx2,Q2dx1dx2dσGx1,Q2Gx2,Q2,Adsubscriptx1dsubscriptx2dΔσΔGsubscriptx1superscriptQ2ΔGsubscriptx2superscriptQ2dsubscriptx1dsubscriptx2dσGsubscriptx1superscriptQ2Gsubscriptx2superscriptQ2A=\frac{\int dx_{1}dx_{2}d\Delta\hat{\sigma}\Delta G(x_{1},Q^{2})\Delta G(x_{2},Q^{2})}{\int dx_{1}dx_{2}d\hat{\sigma}G(x_{1},Q^{2})G(x_{2},Q^{2})}\;,
End of MathML
.

Hit id64058

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 65
  • Formulasearchengine score: -9989288
  • Reference to collection: _PREFIX_/186/f074338.xhtml#id64058
found all required tokens in TeX $d^{2}\sigma(\uparrow{\mathrm{a}nd}\downarrow)/dx_{Q}dp_{T}=\sum _{{i,j}}\int _{0}^{1}dx_{1}\int _{0}^{1}dx_{2}f_{i}^{{p,\pi}}(x_{1})f_{j}^{p}(x_{2})d^{2}\sigma(\uparrow{\mathrm{a}nd}\downarrow)/dx_{Q}dp_{T}.$ at pos:162416(90%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9375 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.999755859375 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.9998779296875 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9375*0.00999347474837536+1.9375*3.34781974734961+1.75*0.279351653691737+1.999755859375*5.92879328325965E-4+1.9375*0.00418257496311516+1.9998779296875*0.00257082788077282+1.9375*0.00417601612706465+1.984375*0.00338742677192689+1.75*0.053601160227971 = -9989288.232580673' final score ~ -9989288 reviewer: xxx gave 0
Rendered MathML:
d2σ(and)/dxQdpT=i,j01dx101dx2fip,π(x1)fjp(x2)d2σ(and)/dxQdpT.superscriptd2d^{2}\sigma(\uparrow{\mathrm{a}nd}\downarrow)/dx_{Q}dp_{T}=\sum _{{i,j}}\int _{0}^{1}dx_{1}\int _{0}^{1}dx_{2}f_{i}^{{p,\pi}}(x_{1})f_{j}^{p}(x_{2})d^{2}\sigma(\uparrow{\mathrm{a}nd}\downarrow)/dx_{Q}dp_{T}.
End of MathML
.

Hit id74004

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 66
  • Formulasearchengine score: -9989293
  • Reference to collection: _PREFIX_/212/f084747.xhtml#id74004
found all required tokens in TeX $\displaystyle\frac{g_{{{\rm in}}}}{(2\pi)^{{2}}\alpha^{{1}}\alpha^{{0}}L^{{3}}}\sum _{{k,p,q}}\sum _{{\ell=\pm 1}}\int _{{0}}^{{L}}dx_{{1}}\, dx_{{2}}\, dx_{{3}}\, dx_{{4}}\, e^{{ik(x_{{2}}-x_{{1}})}}e^{{-ik_{{F}}^{{\ell}}(x_{{2}}-x_{{1}})}}e^{{iq(x_{{4}}-x_{{2}})}}e^{{ip(x_{{3}}-x_{{4}})}}$ at pos:320861(85%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.984375 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9999847412109375 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.9999923706054688 * TOKEN_SCORE[_] + 1.96875 * TOKEN_SCORE[)] + 1.9990234375 * TOKEN_SCORE[^] + 1.99609375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.984375*0.00999347474837536+1.9375*3.34781974734961+1.5*0.279351653691737+1.9999847412109375*5.92879328325965E-4+1.96875*0.00418257496311516+1.9999923706054688*0.00257082788077282+1.96875*0.00417601612706465+1.9990234375*0.00338742677192689+1.99609375*0.053601160227971 = -9989293.819310911' final score ~ -9989293 reviewer: xxx gave 0
Rendered MathML:
gin2π2α1α0L3k,p,q=±10Ldx1dx2dx3dx4eikx2-x1e-ikFx2-x1eiqx4-x2eipx3-x4subscriptginsuperscript2π2superscriptα1superscriptα0superscriptL3subscriptkpqsubscript±1superscriptsubscript0Ldsubscriptx1dsubscriptx2dsubscriptx3dsubscriptx4superscripteiksubscriptx2subscriptx1superscripteisuperscriptsubscriptkFsubscriptx2subscriptx1superscripteiqsubscriptx4subscriptx2superscripteipsubscriptx3subscriptx4\displaystyle\frac{g_{{{\rm in}}}}{(2\pi)^{{2}}\alpha^{{1}}\alpha^{{0}}L^{{3}}}\sum _{{k,p,q}}\sum _{{\ell=\pm 1}}\int _{{0}}^{{L}}dx_{{1}}\, dx_{{2}}\, dx_{{3}}\, dx_{{4}}\, e^{{ik(x_{{2}}-x_{{1}})}}e^{{-ik_{{F}}^{{\ell}}(x_{{2}}-x_{{1}})}}e^{{iq(x_{{4}}-x_{{2}})}}e^{{ip(x_{{3}}-x_{{4}})}}
End of MathML
.

Hit id119168

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 68
  • Formulasearchengine score: -9989294
  • Reference to collection: _PREFIX_/219/f087436.xhtml#id119168
found all required tokens in TeX $\frac{V_{H}}{I}=\frac{2\pi hn_{s}\chi}{e^{2}n_{0}\eta _{0}^{2}}\left[\left.\lambda{\rm Im}\left(\eta _{y}\frac{\eta _{x}^{*}}{dx}\right)\right|_{{x=0}}+\int^{\infty}_{0}e^{{-x/\lambda}}{\rm Im}\left(\eta _{x}\frac{\eta _{y}^{*}}{dx}+\eta _{y}\frac{\eta _{x}^{*}}{dx}\right)dx\right].$ at pos:1034072(85%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.875 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9999999962747097 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.999755859375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.9921875 * TOKEN_SCORE[^] + 1.96875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.875*0.00999347474837536+1.9375*3.34781974734961+1.5*0.279351653691737+1.9999999962747097*5.92879328325965E-4+1.75*0.00418257496311516+1.999755859375*0.00257082788077282+1.75*0.00417601612706465+1.9921875*0.00338742677192689+1.96875*0.053601160227971 = -9989294.260399915' final score ~ -9989294 reviewer: xxx gave 0
Rendered MathML:
VHI=2πhnsχe2n0η02λImηyηx*dxx=0+0e-x/λImηxηy*dx+ηyηx*dxdx.subscriptVHI2πhsubscriptnsχsuperscripte2subscriptn0superscriptsubscriptη02λImsubscriptηysuperscriptsubscriptηxdxx0subscriptsuperscript0superscriptexλImsubscriptηxsuperscriptsubscriptηydxsubscriptηysuperscriptsubscriptηxdxdx\frac{V_{H}}{I}=\frac{2\pi hn_{s}\chi}{e^{2}n_{0}\eta _{0}^{2}}\left[\left.\lambda{\rm Im}\left(\eta _{y}\frac{\eta _{x}^{*}}{dx}\right)\right|_{{x=0}}+\int^{\infty}_{0}e^{{-x/\lambda}}{\rm Im}\left(\eta _{x}\frac{\eta _{y}^{*}}{dx}+\eta _{y}\frac{\eta _{x}^{*}}{dx}\right)dx\right].
End of MathML
.

Hit id123332

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 69
  • Formulasearchengine score: -9989294
  • Reference to collection: _PREFIX_/219/f087436.xhtml#id123332
found all required tokens in TeX $\displaystyle-E\frac{n_{s}\mu _{B}}{4en_{0}\eta _{0}^{2}}\left[\left.\lambda{\rm Im}\left(\eta _{y}\frac{\eta _{x}^{*}}{dx}\right)\right|_{{x=0}}+\int^{\infty}_{0}e^{{-x/\lambda}}{\rm Im}\left(\eta _{x}\frac{\eta _{y}^{*}}{dx}+\eta _{y}\frac{\eta _{x}^{*}}{dx}\right)dx\right].$ at pos:1100169(90%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9999999925494194 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.999755859375 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.96875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.9375*3.34781974734961+1.5*0.279351653691737+1.9999999925494194*5.92879328325965E-4+1.75*0.00418257496311516+1.999755859375*0.00257082788077282+1.75*0.00417601612706465+1.984375*0.00338742677192689+1.96875*0.053601160227971 = -9989294.637801647' final score ~ -9989294 reviewer: xxx gave 0
Rendered MathML:
-EnsμB4en0η02λImηyηx*dxx=0+0e-x/λImηxηy*dx+ηyηx*dxdx.EsubscriptnssubscriptμB4esubscriptn0superscriptsubscriptη02λImsubscriptηysuperscriptsubscriptηxdxx0subscriptsuperscript0superscriptexλImsubscriptηxsuperscriptsubscriptηydxsubscriptηysuperscriptsubscriptηxdxdx\displaystyle-E\frac{n_{s}\mu _{B}}{4en_{0}\eta _{0}^{2}}\left[\left.\lambda{\rm Im}\left(\eta _{y}\frac{\eta _{x}^{*}}{dx}\right)\right|_{{x=0}}+\int^{\infty}_{0}e^{{-x/\lambda}}{\rm Im}\left(\eta _{x}\frac{\eta _{y}^{*}}{dx}+\eta _{y}\frac{\eta _{x}^{*}}{dx}\right)dx\right].
End of MathML
.

Hit id56962

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 70
  • Formulasearchengine score: -9989294
  • Reference to collection: _PREFIX_/191/f076287.xhtml#id56962
found all required tokens in TeX $\displaystyle\int _{{(S^{{2}})^{{4}}}}dx_{{1}}dx_{{2}}dx_{{3}}dx_{{4}}K_{{\ell _{{12}}}}(x_{{1}},x_{{2}})K_{{\ell _{{13}}}}(x_{{1}},x_{{3}})K_{{\ell _{{14}}}}(x_{{1}},x_{{4}})$ at pos:52609(7%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9375 * TOKEN_SCORE[2] + 1.9375 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.96875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.9999923706054688 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[)] + 1.75 * TOKEN_SCORE[^] + 1.984375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9375*0.00999347474837536+1.9375*3.34781974734961+1.5*0.279351653691737+1.96875*5.92879328325965E-4+1.9375*0.00418257496311516+1.9999923706054688*0.00257082788077282+1.9375*0.00417601612706465+1.75*0.00338742677192689+1.984375*0.053601160227971 = -9989294.04129649' final score ~ -9989294 reviewer: xxx gave 0
Rendered MathML:
S24dx1dx2dx3dx4K12x1,x2K13x1,x3K14x1,x4subscriptsuperscriptsuperscriptS24dsubscriptx1dsubscriptx2dsubscriptx3dsubscriptx4subscriptKsubscript12subscriptx1subscriptx2subscriptKsubscript13subscriptx1subscriptx3subscriptKsubscript14subscriptx1subscriptx4\displaystyle\int _{{(S^{{2}})^{{4}}}}dx_{{1}}dx_{{2}}dx_{{3}}dx_{{4}}K_{{\ell _{{12}}}}(x_{{1}},x_{{2}})K_{{\ell _{{13}}}}(x_{{1}},x_{{3}})K_{{\ell _{{14}}}}(x_{{1}},x_{{4}})
End of MathML
.

Hit id70316

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 71
  • Formulasearchengine score: -9989301
  • Reference to collection: _PREFIX_/6/f002151.xhtml#id70316
found all required tokens in TeX $\displaystyle\left[\int\int dydQ^{2}f_{{\gamma/e}}(y,Q^{2})\int\int dx_{{L}}dtf_{{\pi/p}}(x_{{L}},t)\sum _{{i,j}}\int dx_{\gamma}f_{{i/\gamma}}(x_{\gamma},\mu^{2})\int dx_{{\pi}}f_{{j/\pi}}(x_{{\pi}},\mu^{2})\right.$ at pos:258377(57%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9375 * TOKEN_SCORE[2] + 1.875 * TOKEN_SCORE[dx] + 1.984375 * TOKEN_SCORE[int] + 1.9999990463256836 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.99951171875 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[)] + 1.9375 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9375*0.00999347474837536+1.875*3.34781974734961+1.984375*0.279351653691737+1.9999990463256836*5.92879328325965E-4+1.9375*0.00418257496311516+1.99951171875*0.00257082788077282+1.9375*0.00417601612706465+1.9375*0.00338742677192689+1.875*0.053601160227971 = -9989301.9550935' final score ~ -9989301 reviewer: xxx gave 0
Rendered MathML:
[dydQ2fγ/e(y,Q2)dxLdtfπ/p(xL,t)i,jdxγfi/γ(xγ,μ2)dxπfj/π(xπ,μ2)\displaystyle\left[\int\int dydQ^{2}f_{{\gamma/e}}(y,Q^{2})\int\int dx_{{L}}dtf_{{\pi/p}}(x_{{L}},t)\sum _{{i,j}}\int dx_{\gamma}f_{{i/\gamma}}(x_{\gamma},\mu^{2})\int dx_{{\pi}}f_{{j/\pi}}(x_{{\pi}},\mu^{2})\right.
End of MathML
.

Hit id62615

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 72
  • Formulasearchengine score: -9989304
  • Reference to collection: _PREFIX_/28/f011153.xhtml#id62615
found all required tokens in TeX $\eqalignno{I_{\omega}(\Lambda;L)&=(L\Lambda)\Lambda^{{2\omega-4}}\pi^{\omega}\sqrt{\pi}\ \Gamma\left({3\over 2}-\omega\right)-\Lambda^{{2\omega-4}}\pi^{\omega}\Gamma(2-\omega)\cr&+\Lambda^{{2\omega-4}}{2\pi^{\omega}\over 2\omega-3}(\Lambda L)^{{2-\omega}}\ K_{{2-\omega}}(2\Lambda L)\cr&-\Lambda^{{2\omega-4}}{\pi^{\omega}\sqrt{\pi}\over 2\Gamma\left(\omega-{1\over 2}\right)}\int _{0}^{\infty}{dx\over\sqrt{x}}\ {x^{{\omega-2}}\over(1+x)^{{3/2}}}\exp\{-2\Lambda L\sqrt{1+x}\}\ ,&(15a)\cr\hat{I}_{\omega}(\Lambda;T)&=\Lambda^{{2\omega-4}}{\pi^{\omega}\over 2\omega-3}\left\{ 2(\Lambda T)^{{2-\omega}}K_{{2-\omega}}(2\Lambda T)-\Gamma(2-\omega)\right\}\ ,&(15b)\cr J_{\omega}(\Lambda;L,T)&={\pi^{\omega}\over\sqrt{\pi T\Lambda}}\left({T\over\Lambda}\right)^{{2-\omega}}\sum _{{n=1}}^{\infty}(-)^{{n+1}}{(2\Lambda L)^{{2n}}\over(2n)!}\cr&\times\int _{0}^{\infty}dx\ x^{{n-3/2}}\left(\sqrt{1+x}\right)^{{\omega-3/2}}K_{{\omega-3/2}}(2\Lambda T\sqrt{1+x})\ ,&(15c)\cr\hat{J}_{\omega}(\Lambda;L,T)&={\pi^{\omega}\over\sqrt{\pi L\Lambda}}\left({L\over\Lambda}\right)^{{2-\omega}}\sum _{{n=1}}^{\infty}(-)^{{n+1}}{(2\Lambda T)^{{2n}}\over(2n)!}\cr&\times\int _{0}^{\infty}dx\ x^{{n-1/2}}\left(\sqrt{1+x}\right)^{{\omega-7/2}}K_{{\omega-3/2}}(2\Lambda L\sqrt{1+x})\ ,&(15d)\cr}$ at pos:144365(37%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.999999999998181 * TOKEN_SCORE[2] + 1.875 * TOKEN_SCORE[dx] + 1.875 * TOKEN_SCORE[int] + 2.0 * TOKEN_SCORE[\] + 1.9999999990686774 * TOKEN_SCORE[(] + 1.9998779296875 * TOKEN_SCORE[_] + 1.9999999990686774 * TOKEN_SCORE[)] + 1.9999999995343387 * TOKEN_SCORE[^] + 1.9990234375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.999999999998181*0.00999347474837536+1.875*3.34781974734961+1.875*0.279351653691737+2.0*5.92879328325965E-4+1.9999999990686774*0.00418257496311516+1.9998779296875*0.00257082788077282+1.9999999990686774*0.00417601612706465+1.9999999995343387*0.00338742677192689+1.9990234375*0.053601160227971 = -9989304.209756168' final score ~ -9989304 reviewer: xxx gave 0
Rendered MathML:
IωΛ;L=LΛΛ2ω-4πωπΓ32-ω-Λ2ω-4πωΓ2-ω+Λ2ω-42πω2ω-3ΛL2-ωK2-ω2ΛL-Λ2ω-4πωπ2Γω-120dxxxω-21+x3/2exp-2ΛL1+x,15aIωΛ;T=Λ2ω-4πω2ω-32ΛT2-ωK2-ω2ΛT-Γ2-ω,15bJωΛ;L,T=πωπTΛTΛ2-ωn=1-n+12ΛL2n2n!×0dxxn-3/2(1+x)ω-3/2Kω-3/2(2ΛT1+x),15cJωΛ;L,T=πωπLΛLΛ2-ωn=1-n+12ΛT2n2n!×0dxxn-1/2(1+x)ω-7/2Kω-3/2(2ΛL1+x),15d⁢IωΛL=-⁢LΛΛ-⁢2ω4πωπΓ-32ω⁢Λ-⁢2ω4πωΓ-2ω+⁢Λ-⁢2ω4⁢2πω-⁢2ω3⁢ΛL-2ωK-2ω⁢2ΛL-⁢Λ-⁢2ω4⁢πωπ⁢2Γ-ω12∫0∞⁢⁢dxxx-ω2+1x/32exp-⁢2ΛL+1x⁢15a⁢⌃IωΛT=⁢Λ-⁢2ω4πω-⁢2ω3-⁢2⁢ΛT-2ωK-2ω⁢2ΛT⁢Γ-2ω⁢15b⁢JωΛLT=⁢πω⁢πTΛTΛ-2ω∑=n1∞⁢-+n1⁢2ΛL⁢2n!⁢2n×∫0∞dxx-n/32(+1x)-ω/32K-ω/32(2ΛT+1x),⁢15c⁢⌃JωΛLT=⁢πω⁢πLΛLΛ-2ω∑=n1∞⁢-+n1⁢2ΛT⁢2n!⁢2n×∫0∞dxx-n/12(+1x)-ω/72K-ω/32(2ΛL+1x),⁢15d\eqalignno{I_{\omega}(\Lambda;L)&=(L\Lambda)\Lambda^{{2\omega-4}}\pi^{\omega}\sqrt{\pi}\ \Gamma\left({3\over 2}-\omega\right)-\Lambda^{{2\omega-4}}\pi^{\omega}\Gamma(2-\omega)\cr&+\Lambda^{{2\omega-4}}{2\pi^{\omega}\over 2\omega-3}(\Lambda L)^{{2-\omega}}\ K_{{2-\omega}}(2\Lambda L)\cr&-\Lambda^{{2\omega-4}}{\pi^{\omega}\sqrt{\pi}\over 2\Gamma\left(\omega-{1\over 2}\right)}\int _{0}^{\infty}{dx\over\sqrt{x}}\ {x^{{\omega-2}}\over(1+x)^{{3/2}}}\exp\{-2\Lambda L\sqrt{1+x}\}\ ,&(15a)\cr\hat{I}_{\omega}(\Lambda;T)&=\Lambda^{{2\omega-4}}{\pi^{\omega}\over 2\omega-3}\left\{ 2(\Lambda T)^{{2-\omega}}K_{{2-\omega}}(2\Lambda T)-\Gamma(2-\omega)\right\}\ ,&(15b)\cr J_{\omega}(\Lambda;L,T)&={\pi^{\omega}\over\sqrt{\pi T\Lambda}}\left({T\over\Lambda}\right)^{{2-\omega}}\sum _{{n=1}}^{\infty}(-)^{{n+1}}{(2\Lambda L)^{{2n}}\over(2n)!}\cr&\times\int _{0}^{\infty}dx\ x^{{n-3/2}}\left(\sqrt{1+x}\right)^{{\omega-3/2}}K_{{\omega-3/2}}(2\Lambda T\sqrt{1+x})\ ,&(15c)\cr\hat{J}_{\omega}(\Lambda;L,T)&={\pi^{\omega}\over\sqrt{\pi L\Lambda}}\left({L\over\Lambda}\right)^{{2-\omega}}\sum _{{n=1}}^{\infty}(-)^{{n+1}}{(2\Lambda T)^{{2n}}\over(2n)!}\cr&\times\int _{0}^{\infty}dx\ x^{{n-1/2}}\left(\sqrt{1+x}\right)^{{\omega-7/2}}K_{{\omega-3/2}}(2\Lambda L\sqrt{1+x})\ ,&(15d)\cr}
End of MathML
.

Hit id64256

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 74
  • Formulasearchengine score: -9989371
  • Reference to collection: _PREFIX_/188/f074906.xhtml#id64256
found all required tokens in TeX ${x^{2}}{\frac{{d^{2}}y}{dx^{2}}}+x{\frac{dy}{dx}}+(x^{{2}}-\nu^{{2}})y=0$ at pos:159594(65%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.96875 * TOKEN_SCORE[2] + 1.75 * TOKEN_SCORE[dx] + 1.0 * TOKEN_SCORE[int] + 1.875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.0 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.96875 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.96875*0.00999347474837536+1.75*3.34781974734961+1.0*0.279351653691737+1.875*5.92879328325965E-4+1.5*0.00418257496311516+1.0*0.00257082788077282+1.5*0.00417601612706465+1.96875*0.00338742677192689+1.875*0.053601160227971 = -9989371.88975999' final score ~ -9989371 reviewer: xxx gave 0
Rendered MathML:
x2d2ydx2+xdydx+x2-ν2y=0superscriptx2superscriptd2ydsuperscriptx2xdydxsuperscriptx2superscriptν2y0{x^{2}}{\frac{{d^{2}}y}{dx^{2}}}+x{\frac{dy}{dx}}+(x^{{2}}-\nu^{{2}})y=0
End of MathML
.

Hit idp11658800

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 75
  • Formulasearchengine score: -9989371
  • Reference to collection: _PREFIX_/17/f006729.xhtml#idp11658800
found all required tokens in TeX $\displaystyle x^{2}\frac{d^{2}g}{dx^{2}}+x\frac{dg}{dx}+\frac{1}{\alpha^{2}}\left(\frac{\mu}{x^{{1/\alpha}}}+\lambda x^{2}-\frac{25}{16}\right)g=0.$ at pos:1538032(91%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.984375 * TOKEN_SCORE[2] + 1.75 * TOKEN_SCORE[dx] + 1.0 * TOKEN_SCORE[int] + 1.999755859375 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.0 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.984375*0.00999347474837536+1.75*3.34781974734961+1.0*0.279351653691737+1.999755859375*5.92879328325965E-4+1.5*0.00418257496311516+1.0*0.00257082788077282+1.5*0.00417601612706465+1.984375*0.00338742677192689+1.9375*0.053601160227971 = -9989371.52644856' final score ~ -9989371 reviewer: xxx gave 0
Rendered MathML:
x2d2gdx2+xdgdx+1α2(μx1/α+λx2-2516)g=0.superscriptx2superscriptd2gdsuperscriptx2xdgdx1superscriptα2μsuperscriptx1αλsuperscriptx22516g0.\displaystyle x^{2}\frac{d^{2}g}{dx^{2}}+x\frac{dg}{dx}+\frac{1}{\alpha^{2}}\left(\frac{\mu}{x^{{1/\alpha}}}+\lambda x^{2}-\frac{25}{16}\right)g=0.
End of MathML
.

Hit id82290

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 76
  • Formulasearchengine score: -9989373
  • Reference to collection: _PREFIX_/2/f000707.xhtml#id82290
found all required tokens in TeX ${d\over dx}(x^{2}{dH\over dx})+{\kappa\over x}H=0$ at pos:439122(39%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.75 * TOKEN_SCORE[dx] + 1.0 * TOKEN_SCORE[int] + 1.9375 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.0 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.5 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.75*3.34781974734961+1.0*0.279351653691737+1.9375*5.92879328325965E-4+1.5*0.00418257496311516+1.0*0.00257082788077282+1.5*0.00417601612706465+1.5*0.00338742677192689+1.75*0.053601160227971 = -9989373.183298754' final score ~ -9989373 reviewer: xxx gave 0
Rendered MathML:
ddxx2dHdx+κxH=0ddxsuperscriptx2dHdxκxH0{d\over dx}(x^{2}{dH\over dx})+{\kappa\over x}H=0
End of MathML
.

Hit idp612096

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 77
  • Formulasearchengine score: -9989374
  • Reference to collection: _PREFIX_/18/f007009.xhtml#idp612096
found all required tokens in TeX $x\dfrac{d^{2}y}{dx^{2}}+n\dfrac{dy}{dx}-y=0.$ at pos:68809(7%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[2] + 1.75 * TOKEN_SCORE[dx] + 1.0 * TOKEN_SCORE[int] + 1.75 * TOKEN_SCORE[\] + 1.0 * TOKEN_SCORE[(] + 1.0 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[)] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[x] =+100.0+-100000.0+1.75*0.00999347474837536+1.75*3.34781974734961+1.0*0.279351653691737+1.75*5.92879328325965E-4+1.0*0.00418257496311516+1.0*0.00257082788077282+1.0*0.00417601612706465+1.75*0.00338742677192689+1.5*0.053601160227971 = -9989374.617851263' final score ~ -9989374 reviewer: xxx gave 0
Rendered MathML:
xd2ydx2+ndydx-y=0.xsuperscriptd2ydsuperscriptx2ndydxy0.x\dfrac{d^{2}y}{dx^{2}}+n\dfrac{dy}{dx}-y=0.
End of MathML
.

Hit idp21651776

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 78
  • Formulasearchengine score: -9989431
  • Reference to collection: _PREFIX_/62/f024753.xhtml#idp21651776
found all required tokens in TeX $\leq\int\limits _{{S^{{n-1}}}}\| x\| _{K}^{{-1}}\left(\int\limits _{{0}}^{{\| x\|^{{-1}}_{L}}}t^{{n-2}}f(tx)dt\right)\ dx+\pi\varepsilon\int _{{S^{{n-1}}}}d\mu _{0}(\xi).$ at pos:260978(69%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.875 * TOKEN_SCORE[int] + 1.9999923706054688 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.984375 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.5*3.34781974734961+1.875*0.279351653691737+1.9999923706054688*5.92879328325965E-4+1.875*0.00418257496311516+1.984375*0.00257082788077282+1.875*0.00417601612706465+1.984375*0.00338742677192689+1.75*0.053601160227971 = -9989431.701226177' final score ~ -9989431 reviewer: xxx gave 0
Rendered MathML:
Sn-1xK-1(0xL-1tn-2f(tx)dt)dx+πεSn-1dμ0(ξ).absentsubscriptsuperscriptSn1superscriptsubscriptnormxK1superscriptsubscript0subscriptsuperscriptnormx1Lsuperscripttn2ftxdtdxπεsubscriptsuperscriptSn1dsubscriptμ0ξ\leq\int\limits _{{S^{{n-1}}}}\| x\| _{K}^{{-1}}\left(\int\limits _{{0}}^{{\| x\|^{{-1}}_{L}}}t^{{n-2}}f(tx)dt\right)\ dx+\pi\varepsilon\int _{{S^{{n-1}}}}d\mu _{0}(\xi).
End of MathML
.

Hit idp48054080

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 80
  • Formulasearchengine score: -9989440
  • Reference to collection: _PREFIX_/60/f023943.xhtml#idp48054080
found all required tokens in TeX $\|\varepsilon^{{-\frac{3n}{4}}}\int _{{\mathbb{R}^{n}}}u^{I}_{{\varepsilon,r_{0},r_{\infty}}}(x)\varepsilon^{{-\frac{1}{2}}}(y_{j}-x_{j})\, e^{{i\eta\cdot(y-x)/\varepsilon-(y-x)^{2}/(2\varepsilon)}}dx\| _{{L^{2}_{{y,\eta}}}}\lesssim\| u_{{\varepsilon,r_{0},r_{\infty}}}^{I}\| _{{L^{2}_{x}}}.$ at pos:3745546(97%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.96875 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9999995231628418 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.9998779296875 * TOKEN_SCORE[_] + 1.96875 * TOKEN_SCORE[)] + 1.998046875 * TOKEN_SCORE[^] + 1.96875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.96875*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.9999995231628418*5.92879328325965E-4+1.96875*0.00418257496311516+1.9998779296875*0.00257082788077282+1.96875*0.00417601612706465+1.998046875*0.00338742677192689+1.96875*0.053601160227971 = -9989440.448964683' final score ~ -9989440 reviewer: xxx gave 0
Rendered MathML:
ε-3n4Rnuε,r0,rI(x)ε-12(yj-xj)eiη(y-x)/ε-(y-x)2/(2ε)dxLy,η2uε,r0,rILx2.less-than-or-similar-tosubscriptnormsuperscriptε3n4subscriptsuperscriptRnsubscriptsuperscriptuIεsubscriptr0subscriptrxsuperscriptε12subscriptyjsubscriptxjsuperscripteiηyxεsuperscriptyx22εdxsubscriptsuperscriptL2yηsubscriptnormsuperscriptsubscriptuεsubscriptr0subscriptrIsubscriptsuperscriptL2x\|\varepsilon^{{-\frac{3n}{4}}}\int _{{\mathbb{R}^{n}}}u^{I}_{{\varepsilon,r_{0},r_{\infty}}}(x)\varepsilon^{{-\frac{1}{2}}}(y_{j}-x_{j})\, e^{{i\eta\cdot(y-x)/\varepsilon-(y-x)^{2}/(2\varepsilon)}}dx\| _{{L^{2}_{{y,\eta}}}}\lesssim\| u_{{\varepsilon,r_{0},r_{\infty}}}^{I}\| _{{L^{2}_{x}}}.
End of MathML
.

Hit id55281

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 81
  • Formulasearchengine score: -9989441
  • Reference to collection: _PREFIX_/72/f028697.xhtml#id55281
found all required tokens in TeX $I_{{\nu}}=a\int _{0}^{{\infty}}x^{{\nu}}e^{{-a(x^{2}-x)}}dx.$ at pos:24646(23%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9375 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.75 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.9375 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.9375*5.92879328325965E-4+1.5*0.00418257496311516+1.75*0.00257082788077282+1.5*0.00417601612706465+1.9375*0.00338742677192689+1.875*0.053601160227971 = -9989441.90018324' final score ~ -9989441 reviewer: xxx gave 0
Rendered MathML:
Iν=a0xνe-ax2-xdx.subscriptIνasuperscriptsubscript0superscriptxνsuperscripteasuperscriptx2xdxI_{{\nu}}=a\int _{0}^{{\infty}}x^{{\nu}}e^{{-a(x^{2}-x)}}dx.
End of MathML
.

Hit id63942

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 82
  • Formulasearchengine score: -9989441
  • Reference to collection: _PREFIX_/187/f074505.xhtml#id63942
found all required tokens in TeX $x^{4}{d\over dx}\Sigma(x)={a\over 2}\int _{0}^{x}{(x-y)^{2}dy\over 1-\Sigma(y)}$ at pos:155203(20%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.984375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.75*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.984375*5.92879328325965E-4+1.875*0.00418257496311516+1.5*0.00257082788077282+1.875*0.00417601612706465+1.875*0.00338742677192689+1.9375*0.053601160227971 = -9989441.084554948' final score ~ -9989441 reviewer: xxx gave 0
Rendered MathML:
x4ddxΣx=a20xx-y2dy1-Σysuperscriptx4ddxΣxa2superscriptsubscript0xsuperscriptxy2dy1Σyx^{4}{d\over dx}\Sigma(x)={a\over 2}\int _{0}^{x}{(x-y)^{2}dy\over 1-\Sigma(y)}
End of MathML
.

Hit idp1058512

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 84
  • Formulasearchengine score: -9989442
  • Reference to collection: _PREFIX_/114/f045257.xhtml#idp1058512
found all required tokens in TeX $\displaystyle\int _{{j\tau}}^{\infty}\frac{dx\, x}{\sqrt{x^{2}-j^{2}\tau^{2}}}$ at pos:125799(19%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.875 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.99609375 * TOKEN_SCORE[\] + 1.0 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[)] + 1.9375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.875*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.99609375*5.92879328325965E-4+1.0*0.00418257496311516+1.5*0.00257082788077282+1.0*0.00417601612706465+1.9375*0.00338742677192689+1.75*0.053601160227971 = -9989442.674168788' final score ~ -9989442 reviewer: xxx gave 0
Rendered MathML:
jτdxxx2-j2τ2superscriptsubscriptjτdxxsuperscriptx2superscriptj2superscriptτ2\displaystyle\int _{{j\tau}}^{\infty}\frac{dx\, x}{\sqrt{x^{2}-j^{2}\tau^{2}}}
End of MathML
.

Hit idp28826144

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 85
  • Formulasearchengine score: -9989442
  • Reference to collection: _PREFIX_/18/f007182.xhtml#idp28826144
found all required tokens in TeX $\int _{0}^{t}x^{2}{\rm e}^{{-x}}\, dx/2$ at pos:1244093(66%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.875 * TOKEN_SCORE[\] + 1.0 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.75*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.875*5.92879328325965E-4+1.0*0.00418257496311516+1.5*0.00257082788077282+1.0*0.00417601612706465+1.875*0.00338742677192689+1.75*0.053601160227971 = -9989442.827438038' final score ~ -9989442 reviewer: xxx gave 0
Rendered MathML:
0tx2e-xdx/2superscriptsubscript0tsuperscriptx2superscriptexdx2\int _{0}^{t}x^{2}{\rm e}^{{-x}}\, dx/2
End of MathML
.

Hit idp312304

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 86
  • Formulasearchengine score: -9989442
  • Reference to collection: _PREFIX_/48/f018837.xhtml#idp312304
found all required tokens in TeX $A:=\int _{{-\infty}}^{\infty}xe^{{i(x^{2}+x)}}\, dx$ at pos:30783(21%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9375 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.9375*5.92879328325965E-4+1.5*0.00418257496311516+1.5*0.00257082788077282+1.5*0.00417601612706465+1.875*0.00338742677192689+1.75*0.053601160227971 = -9989442.655639857' final score ~ -9989442 reviewer: xxx gave 0
Rendered MathML:
A:=-xeix2+xdxassignAsuperscriptsubscriptxsuperscripteisuperscriptx2xdxA:=\int _{{-\infty}}^{\infty}xe^{{i(x^{2}+x)}}\, dx
End of MathML
.

Hit idp724864

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 87
  • Formulasearchengine score: -9989442
  • Reference to collection: _PREFIX_/48/f018837.xhtml#idp724864
found all required tokens in TeX $\displaystyle\int _{{-T}}^{T}xe^{{i(x^{2}+x)}}\, dx$ at pos:82748(58%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.875*5.92879328325965E-4+1.5*0.00418257496311516+1.5*0.00257082788077282+1.5*0.00417601612706465+1.875*0.00338742677192689+1.75*0.053601160227971 = -9989442.659345353' final score ~ -9989442 reviewer: xxx gave 0
Rendered MathML:
-TTxeix2+xdxsuperscriptsubscriptTTxsuperscripteisuperscriptx2xdx\displaystyle\int _{{-T}}^{T}xe^{{i(x^{2}+x)}}\, dx
End of MathML
.

Hit idp990752

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 88
  • Formulasearchengine score: -9989442
  • Reference to collection: _PREFIX_/114/f045257.xhtml#idp990752
found all required tokens in TeX $\displaystyle\int _{{j\tau}}^{\infty}\frac{dx\, x}{\sqrt{x^{2}-j^{2}\tau^{2}}}$ at pos:117270(18%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.875 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.99609375 * TOKEN_SCORE[\] + 1.0 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[)] + 1.9375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.875*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.99609375*5.92879328325965E-4+1.0*0.00418257496311516+1.5*0.00257082788077282+1.0*0.00417601612706465+1.9375*0.00338742677192689+1.75*0.053601160227971 = -9989442.674168788' final score ~ -9989442 reviewer: xxx gave 0
Rendered MathML:
jτdxxx2-j2τ2superscriptsubscriptjτdxxsuperscriptx2superscriptj2superscriptτ2\displaystyle\int _{{j\tau}}^{\infty}\frac{dx\, x}{\sqrt{x^{2}-j^{2}\tau^{2}}}
End of MathML
.

Hit idp23222608

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 89
  • Formulasearchengine score: -9989443
  • Reference to collection: _PREFIX_/207/f082606.xhtml#idp23222608
found all required tokens in TeX $\displaystyle\int _{{\log^{2}(n)}}^{{M}}x^{{-\beta}}dx/C_{1}$ at pos:486586(58%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.5 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9375 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.75 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.5*3.34781974734961+1.5*0.279351653691737+1.9375*5.92879328325965E-4+1.5*0.00418257496311516+1.75*0.00257082788077282+1.5*0.00417601612706465+1.875*0.00338742677192689+1.5*0.053601160227971 = -9989443.931398164' final score ~ -9989443 reviewer: xxx gave 0
Rendered MathML:
log2(n)Mx-βdx/C1superscriptsubscriptsuperscript2nMsuperscriptxβdxsubscriptC1\displaystyle\int _{{\log^{2}(n)}}^{{M}}x^{{-\beta}}dx/C_{1}
End of MathML
.

Hit idp21547600

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 91
  • Formulasearchengine score: -9989597
  • Reference to collection: _PREFIX_/62/f024753.xhtml#idp21547600
found all required tokens in TeX $\leq\int\limits _{{S^{{n-1}}}}\left(|x|_{2}^{{-n+1}}\int\limits _{0}^{{\frac{|x|_{2}}{\| x\| _{L}}}}t^{{n-2}}f\left(\frac{tx}{|x|_{2}}\right)dt\right)^{\wedge}(\xi)\, d\mu _{0}(\xi)+\pi\varepsilon\int _{{S^{{n-1}}}}d\mu _{0}(\xi),$ at pos:247330(66%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9375 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.875 * TOKEN_SCORE[int] + 1.9999998807907104 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[(] + 1.998046875 * TOKEN_SCORE[_] + 1.96875 * TOKEN_SCORE[)] + 1.984375 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9375*0.00999347474837536+1.0*3.34781974734961+1.875*0.279351653691737+1.9999998807907104*5.92879328325965E-4+1.96875*0.00418257496311516+1.998046875*0.00257082788077282+1.96875*0.00417601612706465+1.984375*0.00338742677192689+1.9375*0.053601160227971 = -9989597.568100229' final score ~ -9989597 reviewer: xxx gave 0
Rendered MathML:
Sn-1(|x|2-n+10|x|2xLtn-2f(tx|x|2)dt)(ξ)dμ0(ξ)+πεSn-1dμ0(ξ),absentsubscriptsuperscriptSn1superscriptsuperscriptsubscriptx2n1superscriptsubscript0subscriptx2subscriptnormxLsuperscripttn2ftxsubscriptx2dtξdsubscriptμ0ξπεsubscriptsuperscriptSn1dsubscriptμ0ξ\leq\int\limits _{{S^{{n-1}}}}\left(|x|_{2}^{{-n+1}}\int\limits _{0}^{{\frac{|x|_{2}}{\| x\| _{L}}}}t^{{n-2}}f\left(\frac{tx}{|x|_{2}}\right)dt\right)^{\wedge}(\xi)\, d\mu _{0}(\xi)+\pi\varepsilon\int _{{S^{{n-1}}}}d\mu _{0}(\xi),
End of MathML
.

Hit idp21497776

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 92
  • Formulasearchengine score: -9989601
  • Reference to collection: _PREFIX_/62/f024753.xhtml#idp21497776
found all required tokens in TeX $\int\limits _{{S^{{n-1}}}}\left(|x|_{2}^{{-n+1}}\int\limits _{0}^{{\frac{|x|_{2}}{\| x\| _{K}}}}t^{{n-2}}f\left(\frac{tx}{|x|_{2}}\right)dt\right)^{\wedge}(\xi)\, d\mu _{0}(\xi)$ at pos:240852(64%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.9375 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.9999923706054688 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[(] + 1.9921875 * TOKEN_SCORE[_] + 1.9375 * TOKEN_SCORE[)] + 1.96875 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.9375*0.00999347474837536+1.0*3.34781974734961+1.75*0.279351653691737+1.9999923706054688*5.92879328325965E-4+1.9375*0.00418257496311516+1.9921875*0.00257082788077282+1.9375*0.00417601612706465+1.96875*0.00338742677192689+1.9375*0.053601160227971 = -9989601.092916144' final score ~ -9989601 reviewer: xxx gave 0
Rendered MathML:
Sn-1(|x|2-n+10|x|2xKtn-2f(tx|x|2)dt)(ξ)dμ0(ξ)subscriptsuperscriptSn1superscriptsuperscriptsubscriptx2n1superscriptsubscript0subscriptx2subscriptnormxKsuperscripttn2ftxsubscriptx2dtξdsubscriptμ0ξ\int\limits _{{S^{{n-1}}}}\left(|x|_{2}^{{-n+1}}\int\limits _{0}^{{\frac{|x|_{2}}{\| x\| _{K}}}}t^{{n-2}}f\left(\frac{tx}{|x|_{2}}\right)dt\right)^{\wedge}(\xi)\, d\mu _{0}(\xi)
End of MathML
.

Hit idp21791328

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 93
  • Formulasearchengine score: -9989601
  • Reference to collection: _PREFIX_/62/f024753.xhtml#idp21791328
found all required tokens in TeX $\displaystyle\int\limits _{0}^{{\| x\| _{L}^{{-1}}}}t^{{n-1}}f(tx)dt-\| x\| _{K}^{{-1}}\int\limits _{{0}}^{{\| x\| _{L}^{{-1}}}}t^{{n-2}}f(tx)dt,\,\,\,\,\forall x\in S^{{n-1}}.$ at pos:279356(74%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.75 * TOKEN_SCORE[int] + 1.9999923706054688 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.96875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.99609375 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.0*3.34781974734961+1.75*0.279351653691737+1.9999923706054688*5.92879328325965E-4+1.75*0.00418257496311516+1.96875*0.00257082788077282+1.75*0.00417601612706465+1.99609375*0.00338742677192689+1.9375*0.053601160227971 = -9989601.68361713' final score ~ -9989601 reviewer: xxx gave 0
Rendered MathML:
0xL-1tn-1f(tx)dt-xK-10xL-1tn-2f(tx)dt,xSn-1.superscriptsubscript0superscriptsubscriptnormxL1superscripttn1ftxdtsuperscriptsubscriptnormxK1superscriptsubscript0superscriptsubscriptnormxL1superscripttn2ftxdtfor-allxsuperscriptSn1\displaystyle\int\limits _{0}^{{\| x\| _{L}^{{-1}}}}t^{{n-1}}f(tx)dt-\| x\| _{K}^{{-1}}\int\limits _{{0}}^{{\| x\| _{L}^{{-1}}}}t^{{n-2}}f(tx)dt,\,\,\,\,\forall x\in S^{{n-1}}.
End of MathML
.

Hit idp1025872

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 95
  • Formulasearchengine score: -9989608
  • Reference to collection: _PREFIX_/132/f052456.xhtml#idp1025872
found all required tokens in TeX $\displaystyle R_{2}=\frac{1}{\beta L_{x}}\int _{0}^{\beta}dt\sum _{x}\frac{d\langle y(x,t)\rangle}{dF}=\frac{1}{\beta L_{x}}\frac{d^{2}\ln Z(F)}{dF^{2}}$ at pos:126426(34%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.875 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.9998779296875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.96875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.875 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[x] =+100.0+-100000.0+1.875*0.00999347474837536+1.0*3.34781974734961+1.5*0.279351653691737+1.9998779296875*5.92879328325965E-4+1.75*0.00418257496311516+1.96875*0.00257082788077282+1.75*0.00417601612706465+1.875*0.00338742677192689+1.9375*0.053601160227971 = -9989608.333679574' final score ~ -9989608 reviewer: xxx gave 0
Rendered MathML:
R2=1βLx0βdtxdy(x,t)dF=1βLxd2lnZ(F)dF2subscriptR21βsubscriptLxsuperscriptsubscript0βdtsubscriptxdyxtdF1βsubscriptLxsuperscriptd2ZFdsuperscriptF2\displaystyle R_{2}=\frac{1}{\beta L_{x}}\int _{0}^{\beta}dt\sum _{x}\frac{d\langle y(x,t)\rangle}{dF}=\frac{1}{\beta L_{x}}\frac{d^{2}\ln Z(F)}{dF^{2}}
End of MathML
.

Hit idp21747792

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 97
  • Formulasearchengine score: -9989609
  • Reference to collection: _PREFIX_/62/f024753.xhtml#idp21747792
found all required tokens in TeX $\displaystyle t^{{n-1}}f(tx)\ dt-\| x\| _{K}^{{-1}}\int\limits _{{0}}^{{\| x\| _{K}^{{-1}}}}t^{{n-2}}f(tx)\ dt$ at pos:273589(73%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.998046875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[(] + 1.875 * TOKEN_SCORE[_] + 1.75 * TOKEN_SCORE[)] + 1.96875 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.0*3.34781974734961+1.5*0.279351653691737+1.998046875*5.92879328325965E-4+1.75*0.00418257496311516+1.875*0.00257082788077282+1.75*0.00417601612706465+1.96875*0.00338742677192689+1.75*0.053601160227971 = -9989609.705909576' final score ~ -9989609 reviewer: xxx gave 0
Rendered MathML:
tn-1f(tx)dt-xK-10xK-1tn-2f(tx)dtsuperscripttn1ftxdtsuperscriptsubscriptnormxK1superscriptsubscript0superscriptsubscriptnormxK1superscripttn2ftxdt\displaystyle t^{{n-1}}f(tx)\ dt-\| x\| _{K}^{{-1}}\int\limits _{{0}}^{{\| x\| _{K}^{{-1}}}}t^{{n-2}}f(tx)\ dt
End of MathML
.

Hit idp465264

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 98
  • Formulasearchengine score: -9989611
  • Reference to collection: _PREFIX_/204/f081499.xhtml#idp465264
found all required tokens in TeX $H_{{c}}=\int d^{2}x\,{\bf b}\cdot{\bf u}$ at pos:56322(13%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.5 * TOKEN_SCORE[int] + 1.96875 * TOKEN_SCORE[\] + 1.0 * TOKEN_SCORE[(] + 1.5 * TOKEN_SCORE[_] + 1.0 * TOKEN_SCORE[)] + 1.5 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.0*3.34781974734961+1.5*0.279351653691737+1.96875*5.92879328325965E-4+1.0*0.00418257496311516+1.5*0.00257082788077282+1.0*0.00417601612706465+1.5*0.00338742677192689+1.5*0.053601160227971 = -9989611.92976154' final score ~ -9989611 reviewer: xxx gave 0
Rendered MathML:
Hc=d2xbusubscriptHcsuperscriptd2xbuH_{{c}}=\int d^{2}x\,{\bf b}\cdot{\bf u}
End of MathML
.

Hit id65607

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 99
  • Formulasearchengine score: -9989623
  • Reference to collection: _PREFIX_/140/f055848.xhtml#id65607
found all required tokens in TeX $D\frac{{\rm d}^{2}h}{{\rm d}x^{2}}-\Gamma\frac{{\rm d}h}{{\rm d}x}+d(x)=0.$ at pos:187024(70%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.75 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.0 * TOKEN_SCORE[int] + 1.9921875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[(] + 1.0 * TOKEN_SCORE[_] + 1.5 * TOKEN_SCORE[)] + 1.75 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[x] =+100.0+-100000.0+1.75*0.00999347474837536+1.0*3.34781974734961+1.0*0.279351653691737+1.9921875*5.92879328325965E-4+1.5*0.00418257496311516+1.0*0.00257082788077282+1.5*0.00417601612706465+1.75*0.00338742677192689+1.875*0.053601160227971 = -9989623.262000456' final score ~ -9989623 reviewer: xxx gave 0
Rendered MathML:
Dd2hdx2-Γdhdx+dx=0.Dsuperscriptd2hdsuperscriptx2Γdhdxdx0.D\frac{{\rm d}^{2}h}{{\rm d}x^{2}}-\Gamma\frac{{\rm d}h}{{\rm d}x}+d(x)=0.
End of MathML
.

Hit idp21011680

  • Reviwer: xxx
  • Reviwer score: 0
  • Formulasearchengine rank: 100
  • Formulasearchengine score: -9989627
  • Reference to collection: _PREFIX_/62/f024432.xhtml#idp21011680
found all required tokens in TeX $d(T_{1}({\mathcal{F}}),T_{2}({\mathcal{G}}))$ at pos:244725(37%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_FOUND + 1.5 * TOKEN_SCORE[2] + 1.0 * TOKEN_SCORE[dx] + 1.0 * TOKEN_SCORE[int] + 1.75 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[(] + 1.75 * TOKEN_SCORE[_] + 1.875 * TOKEN_SCORE[)] + 1.0 * TOKEN_SCORE[^] + 1.0 * TOKEN_SCORE[x] =+100.0+-100000.0+1.5*0.00999347474837536+1.0*3.34781974734961+1.0*0.279351653691737+1.75*5.92879328325965E-4+1.875*0.00418257496311516+1.75*0.00257082788077282+1.875*0.00417601612706465+1.0*0.00338742677192689+1.0*0.053601160227971 = -9989627.964095395' final score ~ -9989627 reviewer: xxx gave 0
Rendered MathML:
d(T1(F),T2(G))dsubscriptT1FsubscriptT2Gd(T_{1}({\mathcal{F}}),T_{2}({\mathcal{G}}))
End of MathML
.

Tags: