Lie group: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Slawekb
m Undid revision 592973547 by 195.176.110.101 (talk)
en>Cuzkatzimhut
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
[[Image:Least common multiple.png|thumb|LCMs of numbers 0 through 10. Line labels = first number. X axis = second number. Y axis = LCM.]]
The author is called Irwin. Her spouse and her reside in Puerto Rico but she will have to transfer one working day or an additional. What I love performing is doing ceramics but I haven't produced a dime with it. Hiring is his profession.<br><br>My web-site at home std test ([http://eduk.Seedlabs.co/es/forum/t%C3%ADtulo-modulo-d/topic/5913/curing-your-yeast-infection-how-do-it-easily Visit Home Page])
 
In [[arithmetic]] and [[number theory]], the '''least common multiple''' (also called the '''lowest common multiple''' or  '''smallest common multiple''') of two [[integer]]s ''a'' and ''b'', usually denoted by '''LCM(''a'', ''b'')''', is the smallest positive integer that is [[divisible]] by both ''a'' and ''b''.<ref>Hardy & Wright, § 5.1, p. 48</ref>  Since division of integers by zero is undefined, this definition has meaning only if ''a'' and ''b'' are both different from zero.<ref>{{harvtxt|Long|1972|p=39}}</ref>  However, some authors define lcm(''a'',0) for all ''a'', which is the result of taking the lcm to be the [[least upper bound]] in the [[lattice (order theory)|lattice]] of divisibility.
 
The LCM is familiar from grade-school arithmetic as the "least common denominator" ([[lowest common denominator|LCD]]) that must be determined before [[Fraction (mathematics)|fractions]] can be added, subtracted or compared.
 
The LCM of more than two integers is also well-defined: it is the smallest integer that is divisible by each of them.
 
== Overview ==
 
A [[Multiple_(mathematics)|multiple]] of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and 2 as well.
 
=== Notation ===
 
In this article we will denote the least common multiple of two integers ''a'' and ''b'' as lcm( ''a'', ''b'' ).  Some older textbooks use [ ''a'', ''b'' ].<ref>{{harvtxt|Long|1972|p=39}}</ref><ref>{{harvtxt|Pettofrezzo|Byrkit|1970|p=56}}</ref>
 
=== Example ===
 
What is the LCM of 4 and 6?
 
Multiples of 4 are:
 
: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, ...
 
and the multiples of 6 are:
 
: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, ...
 
'''Common multiples''' of 4 and 6 are simply the numbers that are in both lists:
 
: 12, 24, 36, 48, 60, 72, ....
 
So, from this list of the first few common multiples of the numbers 4 and 6, their '''least common multiple''' is 12.
 
=== Applications ===
 
When adding, subtracting, or comparing [[vulgar fraction]]s, it is useful to find the least common multiple of the denominators, often called the [[lowest common denominator]], because each of the fractions can be expressed as a fraction with this denominator. For instance,
 
:<math>{2\over21}+{1\over6}={4\over42}+{7\over42}={11\over42}</math>
 
where the denominator 42 was used because it is the least common multiple of 21 and 6.
 
== Computing the least common multiple ==
=== Reduction by the greatest common divisor ===
Many school age children are taught the term greatest common factor (GCF) instead of the greatest common divisor(GCD); therefore, for those familiar with the concept of GCF, substitute GCF when GCD is used below.
 
The following formula reduces the problem of computing the least common multiple to the problem of computing the [[greatest common divisor]] (GCD):
 
:<math>\operatorname{lcm}(a,b)=\frac{|a\cdot b|}{\operatorname{gcd}(a,b)}.</math>
 
This formula is also valid when exactly one of ''a'' and ''b'' is 0, since gcd(''a'', 0) = |''a''|. (However, if both ''a'' and ''b'' are 0, this formula would cause [[division by zero]]; lcm(0, 0) = 0 is a special case.
 
There are fast [[algorithm]]s for computing the GCD that do not require the numbers to be factored, such as the [[Euclidean algorithm]]. To return to the example above,
 
:<math>\operatorname{lcm}(21,6)
={21\cdot6\over\operatorname{gcd}(21,6)}
={21\cdot6\over\operatorname{gcd}(3,6)}
={21\cdot 6\over 3}= \frac{126}{3} = 42.</math>
 
Because gcd(''a'', ''b'') is a divisor of both ''a'' and ''b'', it's more efficient to compute the LCM by dividing ''before'' multiplying:
 
:<math>\operatorname{lcm}(a,b)=\left({|a|\over\operatorname{gcd}(a,b)}\right)\cdot |b|=\left({|b|\over\operatorname{gcd}(a,b)}\right)\cdot |a|.</math>
 
This reduces the size of one input for both the division and the multiplication, and reduces the required storage needed for intermediate results (overflow in the ''a''&times;''b'' computation). Because gcd(''a'', ''b'') is a divisor of both ''a'' and ''b'', the division is guaranteed to yield an integer, so the intermediate result can be stored in an integer. Done this way, the previous example becomes:
 
:<math>\operatorname{lcm}(21,6)={21\over\operatorname{gcd}(21,6)}\cdot6={21\over\operatorname{gcd}(3,6)}\cdot6={21\over3}\cdot6=7\cdot6=42.</math>
 
=== Finding least common multiples by prime factorization ===
 
The [[fundamental theorem of arithmetic|unique factorization theorem]] says that every positive integer greater than 1 can be written in only one way as a product of [[prime number]]s. The prime numbers can be considered as the atomic elements which, when combined together, make up a [[composite number]].
 
For example:
 
:<math>90 = 2^1 \cdot 3^2 \cdot 5^1 = 2 \cdot 3 \cdot 3 \cdot 5. \,\!</math>
 
Here we have the composite number 90 made up of one atom of the prime number 2, two atoms of the prime number 3 and one atom of the prime number 5.
 
This knowledge can be used to find the LCM of a set of numbers.
 
Example: Find the value of lcm(8,9,21).
 
First, factor out each number and express it as a product of prime number [[Power (mathematics)|powers]].
:<math>8\; \, \; \,= 2^3 \,\!</math>
:<math>9\; \, \; \,= 3^2 \,\!</math>
:<math>21\; \,= 3^1 \cdot 7^1 \,\!</math>
 
The lcm will be the product of multiplying the highest power of each prime number together. The highest power of the three prime numbers 2, 3, and 7 is 2<sup>3</sup>, 3<sup>2</sup>, and 7<sup>1</sup>, respectively. Thus,
 
:<math>\operatorname{lcm}(8,9,21) = 2^3 \cdot 3^2 \cdot 7^1 = 8 \cdot 9 \cdot 7 = 504. \,\!</math>
 
This method is not as efficient as reducing to the greatest common divisor, since there is no known general efficient algorithm for [[integer factorization]], but is useful for illustrating concepts.
 
This method can be illustrated using a [[Venn diagram]] as follows.  Find the [[prime factorization]] of each of the two numbers.  Put the prime factors into a Venn diagram with one circle for each of the two numbers, and ''all'' factors they share in common in the intersection.  To find the LCM, just multiply all of the prime numbers in the diagram.
 
Here is an example:
 
: 48 = 2 &times; 2 &times; 2 &times; 2 &times; 3,
: 180 = 2 &times; 2 &times; 3 &times; 3 &times; 5,
 
and what they share in common is two "2"s and a "3":
 
:[[Image:least common multiple.svg|400px]]
 
: Least common multiple = 2 &times; 2 &times; 2 &times; 2 &times; 3 &times; 3 &times; 5 = 720
: Greatest common divisor = 2 &times; 2 &times; 3 = 12
 
This also works for the [[greatest common divisor]] (GCD), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are in the intersection.  Thus the GCD of 48 and 180 is 2&nbsp;&times;&nbsp;2&nbsp;&times;&nbsp;3&nbsp;=&nbsp;12.
 
===A simple algorithm===
 
This method works as easily for finding the LCM of several integers.
 
Let there be a finite sequence of positive integers ''X'' = (''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub>), ''n'' > 1. The algorithm proceeds in steps as follows: on each step ''m'' it examines and updates the sequence ''X''<sup>(''m'')</sup> = (''x''<sub>1</sub><sup>(''m'')</sup>, ''x''<sub>2</sub><sup>(''m'')</sup>, ..., ''x''<sub>''n''</sub><sup>(''m'')</sup>), ''X''<sup>(1)</sup> = ''X'', where ''X''<sup>(''m'')</sup> is the ''m''th iteration of ''X'', i.e. ''X'' at step ''m'' of the algorithm, etc. The purpose of the examination is to pick the least (perhaps, one of many) element of the sequence ''X''<sup>(''m'')</sup>. Assuming ''x''<sub>''k''<sub>0</sub></sub><sup>(''m'')</sup> is the selected element, the sequence ''X''<sup>(''m''+1)</sup> is defined as
 
: ''x''<sub>''k''</sub><sup>(''m''+1)</sup> = ''x''<sub>''k''</sub><sup>(''m'')</sup>, ''k'' ≠ ''k''<sub>0</sub>
: ''x''<sub>''k''<sub>0</sub></sub><sup>(''m''+1)</sup> = ''x''<sub>''k''<sub>0</sub></sub><sup>(''m'')</sup> + ''x''<sub>''k''<sub>0</sub></sub>.
 
In other words, the least element is increased by the corresponding ''x'' whereas the rest of the elements pass from ''X''<sup>(''m'')</sup> to ''X''<sup>(''m''+1)</sup> unchanged.
 
The algorithm stops when all elements in sequence ''X''<sup>(''m'')</sup> are equal. Their common value ''L'' is exactly LCM(''X''). (For a proof and an interactive simulation see reference below, ''Algorithm for Computing the LCM''.)
 
===A method using a table===
 
This method works for any number of factors.  One begins by listing all of the numbers vertically in a table (in this example 4,&nbsp;7,&nbsp;12,&nbsp;21,&nbsp;and&nbsp;42):
 
: &nbsp;4
: &nbsp;7
: 12
: 21
: 42
 
The process begins by dividing all of the factors by 2.  If any of them divides evenly, write 2 at the top of the table and the result of division by 2 of each factor in the space to the right of each factor and below the 2.  If a number does not divide evenly, just rewrite the number again.  If 2 does not divide evenly into any of the numbers, try 3.
 
{| class="wikitable"
|-
! ''x''
! 2
|-
| 4
| 2
|-
| 7
| 7
|-
| 12
| 6
|-
| 21
| 21
|-
| 42
| 21
|}
 
Now, check if 2 divides again:
 
{| class="wikitable"
|-
! ''x''
! 2
! 2
|-
| 4
| 2
| 1
|-
| 7
| 7
| 7
|-
| 12
| 6
| 3
|-
| 21
| 21
| 21
|-
| 42
| 21
| 21
|}
 
Once 2 no longer divides, divide by 3.  If 3 no longer divides, try 5 and 7.  Keep going until all of the numbers have been reduced to 1.
 
{| class="wikitable"
|-
! ''x''
! 2
! 2
! 3
! 7
|-
| 4
| 2
| 1
| 1
| 1
|-
| 7
| 7
| 7
| 7
| 1
|-
| 12
| 6
| 3
| 1
| 1
|-
| 21
| 21
| 21
| 7
| 1
|-
| 42
| 21
| 21
| 7
| 1
|}
 
Now, multiply the numbers on the top and you have the LCM.  In this case, it is 2&nbsp;&times;&nbsp;2&nbsp;&times;&nbsp;3&nbsp;&times;&nbsp;7&nbsp;=&nbsp;84. You will get to the LCM the quickest if you use prime numbers and start from the lowest prime, 2.
 
==Formulas==
===Fundamental theorem of arithmetic===
 
According to the [[fundamental theorem of arithmetic]] a positive integer is the product of [[prime number]]s, and, except for their order, this representation is unique:
 
:<math>n=2^{n_2} 3^{n_3} 5^{n_5} 7^{n_7} \cdots = \prod_p p^{n_p},\;</math>
 
where the exponents ''n''<sub>2</sub>, ''n''<sub>3</sub>, ... are non-negative integers; for example, 84 = 2<sup>2</sup> 3<sup>1</sup> 5<sup>0</sup> 7<sup>1</sup> 11<sup>0</sup> 13<sup>0</sup> ...
 
Given two integers &nbsp; <math>\;a=\prod_p p^{a_p}\;\;</math> &nbsp; and &nbsp; <math>\;b=\prod_p p^{b_p}\;\;</math> &nbsp; their least common multiple and greatest common divisor are given by the formulas
 
:<math>\gcd(a,b) = \prod_p p^{\min(a_p, b_p)}\;</math>
and
:<math>\operatorname{lcm}(a,b) = \prod_p p^{\max(a_p, b_p)}.\;</math>
 
Since
:<math>\min(x,y) + \max(x,y) = x+y,\;\;</math>
this gives
:<math>\gcd(a,b)\,\operatorname{lcm}(a,b) = a\,b.\;</math>
 
In fact, any rational number can be written uniquely as the product of primes if negative exponents are allowed. When this is done, the above formulas remain valid. Using the same examples as above:
:<math>4 = 2^2 3^0, \;\; 6 = 2^1 3^1, \;\;  \gcd(4, 6) = 2^1 3^0, \;\; \operatorname{lcm}(4,6) = 2^2  3^1.\;</math>
 
:<math>\tfrac{1}{3}=2^0 3^{-1} 5^0,\;\;\tfrac{2}{5}=2^1 3^0 5^{-1}, \;\; \gcd(\tfrac13, \tfrac25)= 2^0 3^{-1} 5^{-1}, \;\;\operatorname{lcm}(\tfrac13, \tfrac25) = 2^1 3^0 5^0, \;\;</math>
 
:<math>\tfrac{1}{6}=2^{-1} 3^{-1} ,\;\;\tfrac{3}{4}=2^{-2} 3^1, \;\; \gcd(\tfrac16, \tfrac34)= 2^{-2} 3^{-1}, \;\;\operatorname{lcm}(\tfrac16, \tfrac34) = 2^{-1} 3^1. \;\;</math>
 
===Lattice-theoretic===
 
The positive integers may be [[partially ordered]] by divisibility: if ''a'' divides ''b'' (i.e. if ''b'' is an integer multiple of ''a'') write ''a'' ≤  ''b'' (or equivalently, ''b'' ≥  ''a''). (Forget the usual magnitude-based definition of ≤  in this section - it isn't used.)
 
Under this ordering, the positive integers become a [[lattice (order)|lattice]] with [[meet (mathematics)|meet]] given by the gcd and [[join (mathematics)|join]] given by the lcm. The proof is straightforward, if a bit tedious; it amounts to checking that lcm and gcd satisfy the axioms for meet and join. Putting the lcm and gcd into this more general context establishes a [[duality (order theory)|duality]] between them:
 
:'''If a formula involving integer variables, gcd, lcm, ≤ and ≥  is true, then the formula obtained by switching  gcd with lcm and switching  ≥  with ≤ is also true. ''' (Remember ≤  is defined as divides).
 
The following pairs of dual formulas are special cases of general lattice-theoretic identities.
 
{| style="margin:0;" cellpadding="0" border="0" cellspacing="0"
|
;[[commutative operation|Commutative laws]]
:<math>\operatorname{lcm}(a, b) = \operatorname{lcm}(b, a),\;</math>
:<math>\gcd(a, b) =\gcd( b, a).\;</math>
| &nbsp;&nbsp;&nbsp;&nbsp;
|
;[[associativity|Associative laws]]
:<math>\operatorname{lcm}(a,\operatorname{lcm}(b, c)) = \operatorname{lcm}(\operatorname{lcm}(a , b),c),\;</math>
:<math>\gcd(a, \gcd(b, c)) = \gcd(\gcd(a,b), c).\;</math>
| &nbsp;&nbsp;&nbsp;&nbsp;
|
;[[Absorption law]]s:
:<math>\operatorname{lcm}(a, \gcd(a,b)) = a,\;</math>
:<math>\gcd(a, \operatorname{lcm}(a, b)) = a.\;</math>
|}
 
{| style="margin:0;" cellpadding="0" border="0" cellspacing="0"
|
;[[Idempotent|Idempotent laws]]
:<math>\operatorname{lcm}(a, a) = a,\;</math>
:<math>\gcd(a, a) = a.\;</math>.
| &nbsp;&nbsp;&nbsp;&nbsp;
|
;[[Lattice (order)#Connection between the two definitions|Define divides in terms of lcm and gcd]]
:<math>a \ge b \iff a = \operatorname{lcm}(a,b),\;</math>
:<math>a \le b \iff a = \gcd(a,b).\;</math>
|}
 
It can also be shown<ref>The next three formulas are from Landau, Ex. III.3, p. 254</ref> that this lattice is [[distributive lattice|distributive]], i.e. that lcm distributes over gcd and, dually, that gcd distributes over lcm:
 
:<math>\operatorname{lcm}(a,\gcd(b,c)) = \gcd(\operatorname{lcm}(a,b),\operatorname{lcm}(a,c)),\;</math>
:<math>\gcd(a,\operatorname{lcm}(b,c)) = \operatorname{lcm}(\gcd(a,b),\gcd(a,c)).\;</math>
 
This identity is self-dual:
:<math>\gcd(\operatorname{lcm}(a,b),\operatorname{lcm}(b,c),\operatorname{lcm}(a,c))=\operatorname{lcm}(\gcd(a,b),\gcd(b,c),\gcd(a,c)).\;</math>
 
===Other===
 
Let ''D'' be the product of &omega;(''D'') distinct prime numbers (i.e. ''D'' is [[squarefree]]).
 
Then<ref>Crandall & Pomerance, ex. 2.4, p. 101.</ref>
 
:<math>|\{(x,y)\;:\; \operatorname{lcm}(x,y)=D\}|= 3^{\omega(D)},\;</math>
 
where the absolute bars || denote the cardinality of a set.
 
== The LCM in commutative rings ==
The least common multiple can be defined generally over [[commutative ring]]s as follows: Let ''a'' and ''b'' be elements of a commutative ring ''R''. A common multiple of ''a'' and ''b'' is an element ''m'' of ''R'' such that both ''a'' and ''b'' divide ''m'' (i.e. there exist elements ''x'' and ''y'' of ''R'' such that ''ax'' = ''m'' and ''by'' = ''m''). A least common multiple of ''a'' and ''b'' is a common multiple that is minimal in the sense that for any other common multiple ''n'' of ''a'' and ''b'', ''m'' divides&nbsp;''n''.
 
In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are [[Unit (ring theory)|associates]]. In a [[unique factorization domain]], any two elements have a least common multiple. In a [[principal ideal domain]], the least common multiple of ''a'' and ''b'' can be characterised as a generator of the intersection of the ideals generated by ''a'' and ''b'' (the intersection of a collection of ideals is always an ideal). In principal ideal domains, one can even talk about the least common multiple of arbitrary collections of elements: it is a generator of the intersection of the ideals generated by the elements of the collection.
 
== See also ==
*[[Anomalous cancellation]]
*[[Chebyshev function]]
*[[Greatest common divisor]]
 
==Notes==
{{Reflist}}
 
==References==
*{{citation
  | last1 = Crandall  | first1 = Richard
  | last2 = Pomerance  | first2 = Carl
  | title = Prime Numbers: A Computational Perspective
  | publisher = [[Springer Science+Business Media|Springer]]
  | location = New York
  | year = 2001
  | isbn = 0-387-94777-9
  | url = http://books.google.com/books?id=8KZ4RQufxhYC&printsec=frontcover}}
*{{citation
  | last1 = Hardy  | first1 = G. H.
  | last2 = Wright | first2 = E. M.
  | title = An Introduction to the Theory of Numbers (Fifth edition)
  | publisher = [[Oxford University Press]]
  | location = Oxford
  | year = 1979
  | isbn = 978-0-19-853171-5
  | url = http://books.google.com/books?id=FlUj0Rk_rF4C&printsec=frontcover}}
*{{citation
  | last1 = Landau | first1 = Edmund
  | title = Elementary Number Theory
  | publisher = Chelsea
  | location = New York
  | year = 1966}}
* {{citation | first1 = Calvin T. | last1 = Long | year = 1972 | title = Elementary Introduction to Number Theory | edition = 2nd | publisher = [[D. C. Heath and Company]] | location = Lexington | lccn = 77-171950 }}
* {{citation | first1 = Anthony J. | last1 = Pettofrezzo | first2 = Donald R. | last2 = Byrkit | year = 1970 | title = Elements of Number Theory | publisher = [[Prentice Hall]] | location = Englewood Cliffs | lccn = 77-81766 }}
 
==External links==
* [http://www.ixl.com/math/grade-5/least-common-denominator LCD Practice (Fifth grade)]
* [http://www.utilitymill.com/utility/GCF_and_LCM_Calculator Online LCM calculator]
* [http://www.calculla.com/eng/lcm Online LCM and GCD calculator &ndash; displays also fractions of given numbers]
* [http://www.cut-the-knot.org/Curriculum/Arithmetic/LCM.shtml Algorithm for Computing the LCM]
* [http://mathworld.wolfram.com/LeastCommonMultiple.html Least Common Multiple from Wolfram MathWorld]
* [http://www.edugain.com/blog/2011/06/26/lcm-of-fractions LCM of Fractions]
* [http://do-skoly.cz/en/courses/math/m-2/least-common-multiple/calculator.aspx Advanced Least Common Multiple (LCM) calculator for 2 - 5 numbers.]
 
{{DEFAULTSORT:Least Common Multiple}}
[[Category:Elementary arithmetic]]
[[Category:Arithmetic]]

Latest revision as of 14:18, 6 December 2014

The author is called Irwin. Her spouse and her reside in Puerto Rico but she will have to transfer one working day or an additional. What I love performing is doing ceramics but I haven't produced a dime with it. Hiring is his profession.

My web-site at home std test (Visit Home Page)