Proton decay: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Hqb
Undid revision 561825808 by 203.59.216.208 (talk) huh?
en>Materialscientist
m Reverted 1 edit by Nidj123 identified as test/vandalism using STiki
 
Line 1: Line 1:
[[Image:Pythagorean.svg|thumb|The Pythagorean theorem: {{nowrap|''a''<sup>2</sup> + ''b''<sup>2</sup> {{=}} ''c''<sup>2</sup>}}]]
== 「報告書......私は ==
[[File:Pythagorean theorem.gif|thumb|Animation demonstrating the simplest case of the Pythagorean Triple: 3<sup>2</sup>&nbsp;+&nbsp;4<sup>2</sup>&nbsp;=&nbsp;5<sup>2</sup>.]]
A '''Pythagorean triple''' consists of three positive [[integer]]s ''a'', ''b'', and ''c'', such that {{nowrap|''a''<sup>2</sup> + ''b''<sup>2</sup> {{=}} ''c''<sup>2</sup>}}. Such a triple is commonly written {{nowrap|(''a'', ''b'', ''c'')}}, and a well-known example is {{nowrap|(3, 4, 5)}}. If {{nowrap|(''a'', ''b'', ''c'')}} is a Pythagorean triple, then so is (''ka'', ''kb'', ''kc'') for any positive integer ''k''. A '''primitive Pythagorean triple''' is one in which ''a'', ''b'' and ''c'' are [[coprime]]. A right triangle whose sides form a Pythagorean triple is called a '''Pythagorean triangle'''.


The name is derived from the [[Pythagorean theorem]], stating that every [[right triangle]] has side lengths satisfying the formula {{nowrap|''a''<sup>2</sup> + ''b''<sup>2</sup> {{=}} ''c''<sup>2</sup>}}; thus, Pythagorean triples describe the three integer side lengths of a right triangle. However, right triangles with non-integer sides do not form Pythagorean triples. For instance, the [[triangle]] with sides {{nowrap|''a'' {{=}} ''b'' {{=}} 1}} and ''c''&nbsp;=&nbsp;√2 is right, but (1, 1, √2) is not a Pythagorean triple because √2 is not an integer. Moreover, 1 and √2 do not have an integer common multiple because √2 is [[Irrational number#History|irrational]].
ほとんど未定躊躇し、彼は突然そう暗くない場合がございます [http://www.dmwai.com/webalizer/kate-spade-5.html ケイトスペード バッグ 激安]<br><br>'あなたは賢い男だ、そうでなければ、彼らはそう長く生きられないだろう......あなたは私たちが実際にあなたが何をしているか知っている、私たちが必要なものを知っている、とは関係ありませんが小さすぎるいくつかの小さなミス、誰かが私たちの兄弟を突くことができ、私たちは、あなたが感じるようになる彼?「MA鵬タオは、炉を降りないで、次の馬鞍山を振り返った。<br>「いいえ、でも本当に私はしませんでした。」<br>馬鞍山鉄鋼炉の道、マサチューセッツ鵬は少しびくびく参照した。<br><br>「どのように好意とにかく、彼は火の中にパンのように [http://www.dmwai.com/webalizer/kate-spade-13.html kate spade ハンドバッグ]?、あなたが瓦礫の下に心だ?とにかく、これはまた、あなたはまだ準備ができて、ダウンしてバックアップしていると、彼は一緒に落ちた?とにかく、彼は遅かれ早かれそれを説明する必要があります、あなたは警察の追跡を聞かせする準備が整いました可能でない場合には、私たちは彼の証拠を移動することはできませんが、今、動きはすぐに覆さ [http://www.dmwai.com/webalizer/kate-spade-6.html ケイトスペード 財布 セール]?あなたのために開催しています。「MA鵬は、単語のタッチが、脅威が非常に強いです、彼は知っており、これらの人々が言うことができない、と述べので、唯一の感覚 [http://www.dmwai.com/webalizer/kate-spade-11.html バッグ ケイトスペード]<br><br>は馬鞍山鉄鋼炉の不確実な本物の [http://www.dmwai.com/webalizer/kate-spade-11.html バッグ ケイトスペード] '私は...... ......ポイントの状況を知っているが、と思います」。<br>その上<br>「報告書......私は
 
相关的主题文章:
== Examples ==
  <ul>
 
 
<!--Please DO NOT add any triples of the form ka, kb, kc where a, b, and c are integers and k > 1. Please note the definition of a primitive Pythagorean triple, one in which the terms are relatively prime.-->
  <li>[http://gtjt.gaotang.cn/plus/feedback.php?aid=45 http://gtjt.gaotang.cn/plus/feedback.php?aid=45]</li>
 
 
[[Image:Pythagorean triple scatterplot2.png|thumb|A [[scatter plot]] of the legs (''a'',''b'') of the Pythagorean triples with ''c'' less than 6000. Negative values are included to illustrate the parabolic patterns in the plot more clearly.]]
  <li>[http://www.nationalfootwear.com/cgi-bin/shop/commerce.cgi http://www.nationalfootwear.com/cgi-bin/shop/commerce.cgi]</li>
 
 
There are 16 primitive Pythagorean triples with {{nowrap|''c'' ≤ 100}}:
  <li>[http://www.maxpokerclubs.com/forum.php?mod=viewthread&tid=126140 http://www.maxpokerclubs.com/forum.php?mod=viewthread&tid=126140]</li>
{| style="margin:auto;"  cellspacing="0" cellpadding="0"
 
|- style="text-align:right;"
</ul>
|style="padding:0 1em"| ( 3, 4, 5 )
|style="padding:0 1em"| ( 5, 12, 13)
|style="padding:0 1em"| ( 8, 15, 17)
|style="padding:0 1em"| ( 7, 24, 25)
|- style="text-align:right;"
|style="padding:0 1em"| (20, 21, 29)
|style="padding:0 1em"| (12, 35, 37)
|style="padding:0 1em"| ( 9, 40, 41)
|style="padding:0 1em"| (28, 45, 53)
|- style="text-align:right;"
|style="padding:0 1em"| (11, 60, 61)
|style="padding:0 1em"| (16, 63, 65)
|style="padding:0 1em"| (33, 56, 65)
|style="padding:0 1em"| (48, 55, 73)
|- style="text-align:right;"
|style="padding:0 1em"| (13, 84, 85)
|style="padding:0 1em"| (36, 77, 85)
|style="padding:0 1em"| (39, 80, 89)
|style="padding:0 1em"| (65, 72, 97)
|}
Note, for example, that (6, 8, 10) is ''not'' a primitive Pythagorean triple, as it is a multiple of (3, 4, 5).  Each one of these low-c points forms one of the more easily recognizable radiating lines in the scatter plot.
 
Additionally these are all the primitive Pythagorean triples with {{nowrap|100 < ''c'' ≤ 300}}:
{| style="margin:auto;"  cellspacing="0" cellpadding="0"
|- style="text-align:right;"
|style="padding:0 1em"| (20, 99, 101)
|style="padding:0 1em"| (60, 91, 109)
|style="padding:0 1em"| (15, 112, 113)
|style="padding:0 1em"| (44, 117, 125)
|- style="text-align:right;"
|style="padding:0 1em"| (88, 105, 137)
|style="padding:0 1em"| (17, 144, 145)
|style="padding:0 1em"| (24, 143, 145)
|style="padding:0 1em"| (51, 140, 149)
|- style="text-align:right;"
|style="padding:0 1em"| (85, 132, 157)
|style="padding:0 1em"| (119, 120, 169)
|style="padding:0 1em"| (52, 165, 173)
|style="padding:0 1em"| (19, 180, 181)
|- style="text-align:right;"
|style="padding:0 1em"| (57, 176, 185)
|style="padding:0 1em"| (104, 153, 185)
|style="padding:0 1em"| (95, 168, 193)
|style="padding:0 1em"| (28, 195, 197)
|- style="text-align:right;"
|style="padding:0 1em"| (84, 187, 205)
|style="padding:0 1em"| (133, 156, 205)
|style="padding:0 1em"| (21, 220, 221)
|style="padding:0 1em"| (140, 171, 221)
|- style="text-align:right;"
|style="padding:0 1em"| (60, 221, 229)
|style="padding:0 1em"| (105, 208, 233)
|style="padding:0 1em"| (120, 209, 241)
|style="padding:0 1em"| (32, 255, 257)
|- style="text-align:right;"
|style="padding:0 1em"| (23, 264, 265)
|style="padding:0 1em"| (96, 247, 265)
|style="padding:0 1em"| (69, 260, 269)
|style="padding:0 1em"| (115, 252, 277)
|- style="text-align:right;"
|style="padding:0 1em"| (160, 231, 281)
|style="padding:0 1em"| (161, 240, 289)
|style="padding:0 1em"| (68, 285, 293)
|}
 
==Generating a triple==
{{main|Formulas for generating Pythagorean triples}}
 
[[Image:PrimitivePythagoreanTriplesRev08.svg|thumb|300px|alt=Primitive Pythagorean triples shown as triangles on a graph|The primitive Pythagorean triples. The odd leg ''a'' is plotted on the horizontal axis, the even leg ''b'' on the vertical. The curvilinear grid is composed of curves of constant ''m'' - ''n'' and of constant ''m'' + ''n'' in Euclid's formula.]]
 
[[Image:Pythagorean Triples from Grapher.png|300px|thumb|A plot of triples generated by Euclid's formula map out part of the ''z''<sup>2</sup>&nbsp;=&nbsp;''x''<sup>2</sup>&nbsp;+&nbsp;''y''<sup>2</sup> cone. A constant ''m'' or ''n'' traces out part of a [[Conic section|parabola]] on the cone.]]
 
'''Euclid's formula'''<ref>{{citation |date=June 1997 |last=Joyce |first=D. E. |chapterurl= http://babbage.clarku.edu/~djoyce/java/elements/bookX/propX29.html |title=Euclid's Elements |chapter=Book X , Proposition XXIX |publisher=Clark University}}</ref> is a fundamental formula for generating Pythagorean triples given an arbitrary pair of positive integers ''m'' and ''n'' with {{nowrap|''m'' > ''n''}}. The formula states that the integers
 
:<math> a = m^2 - n^2 ,\ \, b = 2mn ,\ \, c = m^2 + n^2 </math>
 
form a Pythagorean triple. The triple generated by [[Euclid]]'s formula is primitive if and only if ''m'' and ''n'' are [[coprime]] and {{nowrap|''m'' &minus; ''n''}} is odd. If both ''m'' and ''n'' are odd, then ''a'', ''b'', and ''c'' will be even, and so the triple will not be primitive; however, dividing ''a'', ''b'', and ''c'' by 2 will yield a primitive triple if ''m'' and ''n'' are coprime.<ref>{{citation |first=Douglas W. |last=Mitchell |title=An Alternative Characterisation of All Primitive Pythagorean Triples |journal=The Mathematical Gazette |volume=85 |issue=503 |pages=273–5 |date=July 2001 |jstor=3622017}}</ref>
 
''Every'' primitive triple arises from a ''unique pair'' of coprime numbers ''m'', ''n'', one of which is even. It follows that there are infinitely many primitive Pythagorean triples. This relationship of ''a'', ''b'' and ''c'' to ''m'' and ''n'' from Euclid's formula is referenced throughout the rest of this article.
 
Despite generating all primitive triples, Euclid's formula does not produce all triples. This can be remedied by inserting an additional parameter ''k'' to the formula. The following will generate all Pythagorean triples uniquely:
 
:<math> a = k\cdot(m^2 - n^2)  ,\ \, b = k\cdot(2mn) ,\ \, c = k\cdot(m^2 + n^2)</math>
 
where ''m'', ''n'', and ''k'' are positive integers with {{nowrap|''m'' > ''n''}}, {{nowrap|''m'' &minus; ''n''}} odd, and with ''m'' and ''n'' coprime.
 
That these formulas generate Pythagorean triples can be verified by expanding {{nowrap|''a''<sup>2</sup> + ''b''<sup>2</sup>}} using [[elementary algebra]] and verifying that the result coincides with ''c''<sup>2</sup>. Since every Pythagorean triple can be divided through by some integer ''k'' to obtain a primitive triple, every triple can be generated uniquely by using the formula with ''m'' and ''n'' to generate its primitive counterpart and then multiplying through by ''k'' as in the last equation.
 
Many formulas for generating triples have been developed since the time of Euclid.
 
===Proof of Euclid's formula===
 
That satisfaction of Euclid's formula by ''a, b, c'' is [[Necessary and sufficient condition|sufficient]] for the triangle to be Pythagorean is apparent from the fact that for positive integers ''m'' and ''n'', ''m'' > ''n'', the ''a, b,'' and ''c'' given by the formula are all positive integers, and from the fact that
 
:<math> a^2+b^2 = (m^2 - n^2)^2 + (2mn)^2 = (m^2 + n^2)^2 = c^2. </math>
 
A simple proof of the ''necessity'' that ''a, b, c'' be expressed by Euclid's formula for any primitive Pythagorean triple is as follows.<ref>{{citation |last1=Beauregard |first1=Raymond A. |last2=Suryanarayan |first2=E. R. |chapter=Parametric representation of primitive Pythagorean triples |editor-first=Roger B. |editor-last=Nelsen |title=Proofs Without Words: More Exercises in Visual Thinking |year=2000 |publisher=[[Mathematical Association of America]] |isbn=978-0-88385-721-2 |volume=II |oclc=807785075 |page=120}}</ref> All such triples can be written as (''a'', ''b'', ''c'') where {{nowrap|1=''a''<sup>2</sup> + ''b''<sup>2</sup> = ''c''<sup>2</sup>}} and ''a'', ''b'', ''c'' are coprime, and where ''b'' and ''c'' have opposite [[parity (mathematics)|parities]] (one is even and one is odd). (If ''c'' had the same parity as both legs, then if all were even the parameters would not be coprime, and if all were odd then {{nowrap|1=''a''<sup>2</sup> + ''b''<sup>2</sup> = ''c''<sup>2</sup>}} would equate an even to an odd.) From <math>a^2+b^2=c^2</math> we obtain <math>c^2-a^2=b^2</math> and hence <math>(c-a)(c+a)=b^2</math>. Then <math>\tfrac{(c+a)}{b}=\tfrac{b}{(c-a)}</math>. Since <math>\tfrac{(c+a)}{b}</math> is rational, we set it equal to <math>\tfrac{m}{n}</math> in lowest terms. We also observe that <math>\tfrac{(c-a)}{b}</math> equals the reciprocal of <math>\tfrac{b}{(c-a)}</math> and hence equals the reciprocal of <math>\tfrac{(c+a)}{b}</math>, and thus equals <math>\tfrac{n}{m}</math>. Then solving
 
:<math>\frac{c}{b}+\frac{a}{b}=\frac{m}{n}, \ \,  \frac{c}{b}-\frac{a}{b}=\frac{n}{m}</math>
 
for <math>\tfrac{c}{b}</math> and <math>\tfrac{a}{b}</math> gives
 
:<math>\frac{c}{b}=\frac{m^2+n^2}{2mn}, \ \,\frac{a}{b}=\frac{m^2-n^2}{2mn}.</math>
 
Since <math>\tfrac{c}{b}</math> and <math>\tfrac{a}{b}</math> are fully reduced by assumption, the numerators can be equated and the denominators can be equated [[if and only if]] the right side of each equation is fully reduced; given the previous specification that <math>\tfrac{m}{n}</math> is fully reduced, implying that ''m'' and ''n'' are coprime, the right sides are fully reduced if and only if ''m'' and ''n'' have opposite parity (one is even and one is odd) so that the numerators are not divisible by 2. (And ''m'' and ''n'' ''must'' have opposite parity: if both were odd then dividing through <math>\tfrac{m^2+n^2}{2mn}</math> by 2 would give the ratio of two odd numbers; equating this ratio to <math>\tfrac{c}{b}</math>, which is a ratio of two numbers with opposite parities, would give different [[p-adic order|2-adic orders]] for numbers supposedly equal.) So, equating numerators and equating denominators, we have Euclid's formula <math> a = m^2 - n^2  ,\ \, b = 2mn ,\ \, c = m^2 + n^2</math> with ''m'' and ''n'' coprime and of opposite parities.
 
A longer but more commonplace proof is given in Maor (2007)<ref>[[Eli Maor|Maor, Eli]], ''The Pythagorean Theorem'', Princeton University Press, 2007: Appendix B.</ref> and Sierpiński (2003).<ref>{{citation |authorlink=Waclaw Sierpinski |first=Wacław |last=Sierpinski |title=Pythagorean Triangles |url=http://books.google.com/books?id=6vOfpjmCd7sC&pg=PR4 |year=2003 |publisher=Dover |isbn=978-0-486-43278-6 |pages=4–7 |ref=harv}}</ref>
 
===Interpretation of parameters in Euclid's formula===
 
Suppose the sides of a Pythagorean triangle are <math>m^2-n^2,</math>  <math>2mn</math>,  and  <math>m^2+n^2</math>, and suppose the angle between the leg <math>m^2-n^2</math> and the hypotenuse  <math>m^2+n^2</math> is denoted as <math>\theta</math>. Then a right triangle with legs <math>m</math> and <math>n</math> has the angle <math>\theta /2</math> between the leg <math>m</math> and the (not necessarily rational) hypotenuse.<ref>{{citation |editor-first=Roger B. |editor-last=Nelsen |title=Proofs Without Words: Exercises in Visual Thinking |url=http://books.google.com/books?id=cyyhZr-SffcC |year=1993 |publisher=Mathematical Association of America |isbn=978-0-88385-700-7 |oclc=29664480 |last=Houston |first=David |chapter=Pythagorean triples via double-angle formulas |page=141}}</ref>
 
==Elementary properties of primitive Pythagorean triples==
{{Section OR|date=October 2012}}
The properties of a primitive Pythagorean triple (''a'', ''b'', ''c'') with ''a''&nbsp;<&nbsp;''b''&nbsp;<&nbsp;''c'' (without specifying which of ''a'' or ''b'' is even and which is odd) include:
 
*{{sfrac|(''c'' − ''a'')(''c'' − ''b'')|2}} is always a perfect square. This is particularly useful in checking if a given triple of numbers is a Pythagorean triple, but it is only a necessary condition, not a sufficient one. The triple {6, 12, 18} passes the test that {{nowrap|(''c'' − ''a'')(''c'' − ''b'')/2}} is a perfect square, but it is not a Pythagorean triple. When a triple of numbers ''a'', ''b'' and ''c'' forms a primitive Pythagorean triple, then {{nowrap|(''c'' minus the even leg)}} and  one-half of {{nowrap|(''c'' minus the odd leg)}} are both perfect squares; however this is not a sufficient condition, as the triple {1, 8, 9} is a counterexample since 1<sup>2</sup> + 8<sup>2</sup> ≠ 9<sup>2</sup>.
*At most one of ''a'', ''b'', ''c'' is a square. (See [[Infinite descent#Non-solvability of r2 + s4 = t4|Infinite descent#Non-solvability of r<sup>2</sup> + s<sup>4</sup> = t<sup>4</sup>]] for a proof.)
*The area (''K'' = ''ab''/2) is an even [[congruent number]].
*The area of a Pythagorean triangle cannot be the square<ref name="Carmichael"/>{{rp|p. 17}} or twice the square<ref name="Carmichael"/>{{rp|p. 21}} of a natural number.
*Exactly one of ''a'', ''b'' is [[odd number|odd]]; ''c'' is odd.<ref name=Sierpinski6>{{harvnb|Sierpinski|2003|p=6}}</ref>
*Exactly one of ''a'', ''b'' is divisible by 3.<ref name=Sierpinski>{{harvnb|Sierpinski|2003|pp=23–25}}</ref>
*Exactly one of ''a'', ''b'' is divisible by 4.<ref name=Sierpinski/>
*Exactly one of ''a'', ''b'', ''c'' is divisible by 5.<ref name=Sierpinski/>
*The largest number that always divides ''abc'' is 60.<ref name=MacHale/>
*All prime factors of ''c'' are [[Pythagorean prime|primes]] of the form {{nowrap|4''n'' + 1}}.
*Every integer greater than 2 that is not [[singly and doubly even|congruent to 2 mod 4]] (in other words, every integer greater than 2 which is ''not'' of the form {{nowrap|4''n'' + 2}}) is part of a primitive Pythagorean triple.
*Every integer greater than 2 is part of a primitive or non-primitive Pythagorean triple.  For example, the integers 6, 10, 14, and 18 are not part of primitive triples, but are part of the non-primitive triples {{nowrap|6, 8, 10}}; {{nowrap|14, 48, 50}} and {{nowrap|18, 80, 82}}.
*There exist infinitely many Pythagorean triples in which the hypotenuse and the longer of the two legs differ by exactly one (such triples are necessarily primitive). More generally, for every odd integer ''j'', there exist infinitely many primitive Pythagorean triples in which the hypotenuse and the even leg differ by ''j''<sup>2</sup>.
*There exist infinitely many primitive Pythagorean triples in which the hypotenuse and the longer of the two legs differ by exactly two. Generalization: For every integer ''k'' > 0, there exist infinitely many primitive Pythagorean triples in which the hypotenuse and the odd leg differ by 2''k''<sup>2</sup>.
*There exist infinitely many Pythagorean triples in which the two legs differ by exactly one.  For example, 20<sup>2</sup> + 21<sup>2</sup> = 29<sup>2</sup>.
*For each natural number ''n'', there exist ''n'' Pythagorean triples with different hypotenuses and the same area.
*For each natural number ''n'', there exist at least ''n'' different Pythagorean triples with the same leg ''a'', where ''a'' is some natural number
*For each natural number ''n'', there exist at least ''n'' different Pythagorean triples with the same hypotenuse.
*In every Pythagorean triple, the radius of the [[incircle]] and the radii of the three excircles are natural numbers. Specifically, for a primitive triple the radius of the incircle is <math> r = n(m-n) </math>, and the radii of the excircles opposite the sides ''m''<sup>2</sup>–''n<sup>2</sup>'', ''2mn'', and the hypotenuse ''m''<sup>2</sup>+''n<sup>2</sup>'' are respectively ''m''(''m''&nbsp;−&nbsp;''n''), ''n''(''m''&nbsp;+&nbsp;''n''), and ''m''(''m''&nbsp;+&nbsp;''n'').
*As for any right triangle, the converse of [[Thales' theorem]] says that the diameter of the [[circumcircle]] equals the hypotenuse; hence for primitive triples the circumdiameter is <math>m^2+n^2</math>, and the circumradius is half of this and thus is rational but non-integer (since ''m'' and ''n'' have opposite parity).
*When the area of a Pythagorean triangle is multiplied by the [[curvature]]s of its incircle and 3 excircles, the result is four positive integers <math>w>x>y>z</math>  .   Integers <math>w,\text{ }x,\text{ }y,-z</math> satisfy [[Descartes' theorem|Descartes’s Circle Equation]].<ref name=Bernhart>{{cite arXiv |last1=Bernhart |first1=Frank R. |last2=Price |first2=H. Lee |title=Heron's formula, Descartes circles, and Pythagorean triangles |year=2005 |eprint=math/0701624}}</ref>
*There are no Pythagorean triples in which the hypotenuse and one leg are the legs of another Pythagorean triple.<ref name="Carmichael">Carmichael, R. D., 1914,
"Diophantine analysis,"  in second half of R. D. Carmichael, ''The Theory of Numbers and Diophantine Analysis'', Dover Publ., 1959.</ref>{{rp|p. 14}}
*The set of all primitive Pythagorean triples forms a rooted [[ternary tree]] in a natural way; see [[Tree of primitive Pythagorean triples]].
*There exist infinitely many Pythagorean triples with square numbers for both the hypotenuse ''c'' and the sum of the legs ''a+b''. The '''smallest''' such triple<ref>{{citation |authorlink=Clifford A. Pickover |last=Pickover |first=Clifford A. |chapter=Pythagorean Theorem and Triangles |chapterurl=http://books.google.com/books?id=JrslMKTgSZwC&pg=PA40 |title=The Math Book |publisher=Sterling |year=2009 |isbn=1402757964 |page=40 |url=http://books.google.com/books?id=JrslMKTgSZwC}}</ref> has ''a'' = 4,565,486,027,761;  ''b'' = 1,061,652,293,520; and ''c'' = 4,687,298,610,289. Here ''a+b'' = 2,372,159<sup>2</sup> and ''c'' = 2,165,017<sup>2</sup>. This is generated by Euclid's formula with parameter values ''m'' = 2,150,905 and ''n'' = 246,792.
*Each primitive Pythagorean triangle has a ratio of area to squared semiperimeter that is unique to itself and is given by<ref>{{citation |last1=Rosenberg |first1=Steven |last2=Spillane |first2=Michael |last3=Wulf |first3=Daniel B. |title=Heron triangles and moduli spaces |journal=Mathematics Teacher |volume=101 |pages=656–663 |date=May 2008 |url=http://www.nctm.org/publications/article.aspx?id=19484}}</ref>
 
:<math>\frac{K}{s^2} = \frac{n(m-n)}{m(m+n)} = 1-\frac{c}{s}.</math>
*The nature of the angles (rational vs irrational) within the Pythagorean triangles is related to [[Niven's theorem]].
 
*There exist [[Integer triangle#Pythagorean triangles with integer altitude from the hypotenuse|Pythagorean triangles with integer altitude from the hypotenuse]]. Such Pythagorean triangles are known as decomposable since they can be split along this altitude into two separate and smaller Pythagorean triangles.<ref name=Yiu>{{citation |first=Paul |last=Yiu |title=Heron triangles which cannot be decomposed into two integer right triangles |url=http://math.fau.edu/yiu/Southern080216.pdf |year=2008 |publisher=41st Meeting of Florida Section of Mathematical Association of America |page=17 }}</ref>
 
*No primitive Pythagorean triangle has an integer altitude from the hypotenuse and is therefore in-decomposable.<ref name=Yiu/>
 
==Geometry of Euclid's formula==
[[Image:Pythagorean triple and rational point on unit triangle 1.svg|thumb|right|3,4,5 maps to x,y point (4/5,3/5) on the unit circle]]
[[Image:Stereographic projection of rational points.png|thumb|right|The [[rational point]]s on a circle correspond, under [[stereographic projection]], to the rational points of the line.]]
Euclid's formulae for a Pythagorean triple
 
:<math>a = 2mn,\quad b=m^2-n^2,\quad c=m^2+n^2</math>
 
can be understood in terms of the geometry of [[rational number]] points on the [[unit circle]] {{harv|Trautman|1998}}. To motivate this, consider a right triangle with legs ''a'' and ''b'', and hypotenuse ''c'', where ''a'', ''b'', and ''c'' are positive integers. By the Pythagorean theorem, {{nowrap|''a''<sup>2</sup> + ''b''<sup>2</sup> {{=}} ''c''<sup>2</sup>}} or, dividing both sides by ''c''<sup>2</sup>,
 
:<math>\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2=1.</math>
 
Geometrically, the point in the [[Cartesian plane]] with coordinates
 
:<math>x=\frac{a}{c},\quad y=\frac{b}{c}</math>
 
is on the unit circle {{nowrap|''x''<sup>2</sup> + ''y''<sup>2</sup> {{=}} 1}}. In this equation, the coordinates ''x'' and ''y'' are given by rational numbers. Conversely, any point on the unit circle whose coordinates ''x'', ''y'' are rational numbers gives rise to a primitive Pythagorean triple. Indeed, write ''x'' and ''y'' as fractions in [[lowest terms]]:
 
:<math>x=\frac{a}{c},\quad y=\frac{b}{c}</math>
 
where the [[greatest common divisor]] of ''a'', ''b'', and ''c'' is 1. Then, since ''x'' and ''y'' are on the unit circle,
 
:<math>\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2=1\implies a^2+b^2=c^2,</math>
 
as claimed.
 
[[Image:Stereoprojzero.svg|thumb|right|Stereographic projection of the unit circle onto the ''x''-axis. Given a point ''P'' on the unit circle, draw a line from ''P'' to the point {{nowrap|''N'' {{=}} (0, 1)}} (the ''north pole''). The point ''P''&prime; where the line intersects the ''x''-axis is the stereographic projection of ''P''. Inversely, starting with a point ''P''&prime; on the ''x''-axis, and drawing a line from ''P''&prime; to ''N'', the inverse stereographic projection is the point ''P'' where the line intersects the unit circle.]]
There is therefore a correspondence between [[Group of rational points on the unit circle|points on the unit circle with rational coordinates]] and primitive Pythagorean triples. At this point, Euclid's formulae can be derived either by methods of [[trigonometry]] or equivalently by using the [[stereographic projection]].
 
For the stereographic approach, suppose that ''P''&prime; is a point on the ''x''-axis with rational coordinates
 
:<math>P' = \left(\frac{m}{n},0\right).</math>
 
Then, it can be shown by basic algebra that the point ''P'' has coordinates
 
:<math>
P = \left(
\frac{2\left(\frac{m}{n}\right)}{\left(\frac{m}{n}\right)^2+1},
\frac{\left(\frac{m}{n}\right)^2-1}{\left(\frac{m}{n}\right)^2+1}
\right) =
\left(
\frac{2mn}{m^2+n^2},
\frac{m^2-n^2}{m^2+n^2}
\right).</math>
 
This establishes that each [[rational point]] of the ''x''-axis goes over to a rational point of the unit circle. The converse, that every rational point of the unit circle comes from such a point of the ''x''-axis, follows by applying the inverse stereographic projection. Suppose that ''P''(''x'', ''y'') is a point of the unit circle with ''x'' and ''y'' rational numbers. Then the point ''P''&prime; obtained by stereographic projection onto the ''x''-axis has coordinates
 
:<math>\left(\frac{x}{1-y},0\right)</math>
 
which is rational.
 
In terms of [[algebraic geometry]], the [[algebraic variety]] of rational points on the unit circle is [[birational]] to the [[affine line]] over the rational numbers. The unit circle is thus called a [[rational curve]], and it is this fact which enables an explicit parameterization of the (rational number) points on it by means of rational functions.
 
==Spinors and the modular group==
Pythagorean triples can likewise be encoded into a [[matrix (mathematics)|matrix]] of the form
:<math>X = \begin{bmatrix}
c+b & a\\
a & c-b
\end{bmatrix}.
</math>
A matrix of this form is [[symmetric matrix|symmetric]]. Furthermore, the [[determinant]] of ''X'' is
:<math>\det X = c^2 - a^2 - b^2\,</math>
which is zero precisely when (''a'',''b'',''c'') is a Pythagorean triple. If ''X'' corresponds to a Pythagorean triple, then as a matrix it must have [[rank of a matrix|rank]] 1.
 
Since ''X'' is symmetric, it follows from a result in [[linear algebra]] that there is a [[column vector]] {{nowrap|ξ {{=}} [''m'' ''n'']<sup>T</sup>}} such that the [[outer product]]
 
{{NumBlk|:|<math>X = 2\begin{bmatrix}m\\n\end{bmatrix}[m\ n] = 2\xi\xi^T\,</math>|{{EquationRef|1}}}}
 
holds, where the ''T'' denotes the [[matrix transpose]]. The vector ξ is called a [[spinor]] (for the [[Lorentz group]] SO(1, 2)). In abstract terms, the Euclid formula means that each primitive Pythagorean triple can be written as the outer product with itself of a spinor with integer entries, as in ({{EquationNote|1}}).
 
The [[modular group]] Γ is the set of 2&times;2 matrices with integer entries
 
:<math>A = \begin{bmatrix}\alpha&\beta\\ \gamma&\delta\end{bmatrix}</math>
 
with determinant equal to one: {{nowrap|αδ &minus; βγ {{=}} 1}}. This set forms a [[group (mathematics)|group]], since the inverse of a matrix in Γ is again in Γ, as is the product of two matrices in Γ. The modular group [[group action|acts]] on the collection of all integer spinors. Furthermore, the group is transitive on the collection of integer spinors with relatively prime entries. For if [''m''&nbsp;''n'']<sup>T</sup> has relatively prime entries, then
 
:<math>\begin{bmatrix}m&-v\\n&u\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}m\\n\end{bmatrix}</math>
 
where ''u'' and ''v'' are selected (by the [[Euclidean algorithm]]) so that {{nowrap|''mu'' + ''nv'' {{=}} 1}}.
 
By acting on the spinor ξ in ({{EquationNote|1}}), the action of Γ goes over to an action on Pythagorean triples, provided one allows for triples with possibly negative components. Thus if ''A'' is a matrix in Γ, then
 
{{NumBlk|:|<math>2(A\xi)(A\xi)^T = A X A^T\,</math>|{{EquationRef|2}}}}
 
gives rise to an action on the matrix ''X'' in ({{EquationNote|1}}). This does not give a well-defined action on primitive triples, since it may take a primitive triple to an imprimitive one. It is convenient at this point (per {{harvnb|Trautman|1998}}) to call a triple (''a'',''b'',''c'') '''standard''' if {{nowrap|''c'' > 0}} and either (''a'',''b'',''c'') are relatively prime or (''a''/2,''b''/2,''c''/2) are relatively prime with ''a''/2 odd. If the spinor [''m''&nbsp;''n'']<sup>T</sup> has relatively prime entries, then the associated triple (''a'',''b'',''c'') determined by ({{EquationNote|1}}) is a standard triple. It follows that the action of the modular group is transitive on the set of standard triples.
 
Alternatively, restrict attention to those values of ''m'' and ''n'' for which ''m'' is odd and ''n'' is even. Let the [[subgroup]] Γ(2) of Γ be the [[Kernel (algebra)|kernel]] of the [[group homomorphism]]
 
:<math>\Gamma=\mathrm{SL}(2,\mathbf{Z})\to \mathrm{SL}(2,\mathbf{Z}_2)</math>
 
where SL(2,'''Z'''<sub>2</sub>) is the [[special linear group]] over the [[finite field]] '''Z'''<sub>2</sub> of [[modular arithmetic|integers modulo 2]]. Then Γ(2) is the group of unimodular transformations which preserve the parity of each entry. Thus if the first entry of ξ is odd and the second entry is even, then the same is true of ''A''ξ for all {{nowrap|''A'' ∈ Γ(2)}}. In fact, under the action ({{EquationNote|2}}), the group Γ(2) acts transitively on the collection of primitive Pythagorean triples {{harv|Alperin|2005}}.
 
The group Γ(2) is the [[free group]] whose generators are the matrices
:<math>U=\begin{bmatrix}1&2\\0&1\end{bmatrix},\qquad L=\begin{bmatrix}1&0\\2&1\end{bmatrix}.</math>
Consequently, every primitive Pythagorean triple can be obtained in a unique way as a product of copies of the matrices ''U'' and&nbsp;''L''.
 
==Parent/child relationships==
{{Main|Tree of Pythagorean triples}}
 
By a result of {{harvtxt|Berggren|1934}}, all primitive Pythagorean triples can be generated from the (3, 4, 5) triangle by using the three linear transformations T1, T2, T3 below, where ''a'', ''b'', ''c'' are sides of a triple:
{| cellpadding=5 style="text-align:right"
|-
| ||new side ''a''||new side ''b''||new side ''c''
|-
|T1:|| ''a'' − 2''b'' + 2''c''|| 2''a'' − ''b'' + 2''c''||2''a'' − 2''b'' + 3''c''
|-
|T2:|| ''a'' + 2''b'' + 2''c''|| 2''a'' + ''b'' + 2''c''||2''a'' + 2''b'' + 3''c''
|-
|T3:|| −''a'' + 2''b'' + 2''c''|| −2''a'' + ''b'' + 2''c''|| −2''a'' + 2''b'' + 3''c''
|}
 
If one begins with 3, 4, 5 then all other primitive triples will eventually be produced. In other words, every primitive triple will be a “parent” to 3 additional primitive triples.
Starting from the initial node with ''a'' = 3, ''b'' = 4, and ''c'' = 5, the next generation of triples is
{| cellpadding=5 style="text-align:right"
|-
|new side a||new side b||new side c
|-
|3 − (2×4) + (2×5) = 5 ||(2×3) − 4 + (2×5) = 12 ||(2×3) − (2×4) + (3×5) = 13
|-
| 3 + (2×4) + (2×5) = 21 ||(2×3) + 4 + (2×5) = 20 ||(2×3) + (2×4) + (3×5) = 29
|-
| −3 + (2×4) + (2×5) = 15 || −(2×3) + 4 + (2×5) = 8 || −(2×3) + (2×4) + (3×5) = 17
|}
 
The linear transformations T1, T2, and T3 have a geometric interpretation in the language of quadratic forms. They are closely related to (but are not equal to) reflections generating the [[orthogonal group]] of ''x''<sup>2</sup> + ''y''<sup>2</sup> − ''z''<sup>2</sup> over the integers. A different set of three linear transformations is discussed in [http://en.wikipedia.org/wiki/Formulas_for_generating_Pythagorean_triples#Pythagorean_triples_by_use_of_matrices_and_linear_transformations Pythagorean triples by use of matrices and_linear transformations]. For further discussion of parent-child relationships in triples, see: [http://mathworld.wolfram.com/PythagoreanTriple.html Pythagorean triple (Wolfram)] and
{{harv|Alperin|2005}}.
 
==Relation to Gaussian integers==
 
Alternatively, Euclid's formulae can be analyzed and proven using the [[Gaussian integers]].<ref>{{citation |first=John |last=Stillwell |title=Elements of Number Theory |url=http://books.google.com/books?id=LiAlZO2ntKAC&pg=PA110 |year=2002 |publisher=Springer |isbn=978-0-387-95587-2 |pages=110–2 |chapter=6.6 Pythagorean Triples}}</ref> Gaussian integers are [[complex number]]s of the form {{nowrap|α {{=}} ''u'' + ''vi''}}, where ''u'' and ''v'' are ordinary [[integer]]s and ''i'' is the [[imaginary unit|square root of negative one]]. The [[Unit (ring theory)|units]] of Gaussian integers are ±1 and ±i. The ordinary integers are called the [[rational integer]]s and denoted as '''Z'''. The Gaussian integers are denoted as '''Z'''[''i''].. The right-hand side of the [[Pythagorean theorem]] may be factored in Gaussian integers:
 
:<math>c^2 = a^2+b^2 = (a+bi)\overline{(a+bi)} = (a+bi)(a-bi).</math>
 
A primitive Pythagorean triple is one in which ''a'' and ''b'' are [[coprime]], i.e., they share no prime factors in the integers. For such a triple, either ''a'' or ''b'' is even, and the other is odd; from this, it follows that ''c'' is also odd.
 
The two factors {{nowrap|''z'' :{{=}} ''a'' + ''bi''}} and {{nowrap|''z*'' :{{=}} ''a'' &minus; ''bi''}} of a primitive Pythagorean triple each equal the square of a Gaussian integer. This can be proved using the property that every Gaussian integer can be factored uniquely into Gaussian primes [[up to]] [[unit (ring theory)|units]].<ref name="Gauss_1832">{{Citation | author = [[Carl Friedrich Gauss|Gauss CF]] | year = 1832 | title = Theoria residuorum biquadraticorum | journal = Comm. Soc. Reg. Sci. Gött. Rec. | volume = 4 | postscript = .}} See also ''Werke'', '''2''':67–148.</ref> (This unique factorization follows from the fact that, roughly speaking, a version of the [[Euclidean algorithm]] can be defined on them.) The proof has three steps. First, if ''a'' and ''b'' share no prime factors in the integers, then they also share no prime factors in the Gaussian integers. (Assume ''a'' = ''gu'' and ''b'' = ''gv'' with Gaussian integers ''g'', ''u'' and ''v'' and ''g'' not a unit. Then ''u'' and ''v'' lie on the same line through the origin. All Gaussian integers on such a line are integer multiples of some Gaussian integer ''h''. But then the integer ''gh'' ≠ ±1 divides both ''a'' and ''b''.) Second, it follows that ''z'' and ''z*'' likewise share no prime factors in the Gaussian integers. For if they did, then their common divisor δ would also divide ''z''&nbsp;+&nbsp;''z*'' =&nbsp;2''a'' and ''z''&nbsp;&minus;&nbsp;''z*'' = 2''ib''. Since ''a'' and ''b'' are coprime, that implies that δ divides&nbsp;2 =&nbsp;(1&nbsp;+&nbsp;i)(1&nbsp;−&nbsp;i) =&nbsp;i(1&nbsp;−&nbsp;i)<sup>2</sup>. From the formula ''c''<sup>2</sup> =&nbsp;''zz*'', that in turn would imply that ''c'' is even, contrary to the hypothesis of a primitive Pythagorean triple. Third, since ''c''<sup>2</sup> is a square, every Gaussian prime in its factorization is doubled, i.e., appears an even number of times. Since ''z'' and ''z*'' share no prime factors, this doubling is also true for them. Hence, ''z'' and ''z*'' are squares.
 
Thus, the first factor can be written
 
:<math>a+bi = \varepsilon\left(m + ni \right)^2, \quad \varepsilon\in\{\pm 1, \pm i\}.</math>
 
The real and imaginary parts of this equation give the two formulas
 
:<math>\varepsilon = +1,\quad a = m^2 - n^2,\quad b = 2mn;</math>
:<math>\varepsilon = -1,\quad a = -\left( m^2 - n^2 \right),\quad b = -2mn;</math>
:<math>\varepsilon = +i,\quad a = -2mn,\quad b = m^2 - n^2;</math>
:<math>\varepsilon = -i,\quad a = 2mn,\quad b = -\left( m^2 - n^2 \right).</math>
 
For any primitive Pythagorean triple, there must be integers ''m'' and ''n'' such that these two equations are satisfied. Hence, every Pythagorean triple can be generated from some choice of these integers.
 
===As perfect square Gaussian integers===
If we consider the square of a Gaussian integer we get the following direct interpretation of Euclid's formulae as representing a perfect square Gaussian integers.
 
:<math>(m+ni)^2 = (m^2-n^2)+2mni.</math>
 
Using the facts that the Gaussian integers are a Euclidean domain and that for a Gaussian integer p <math>|p|^2</math> is always a square it is possible to show that a Pythagorean triples correspond to the square of a prime Gaussian integer if the hypotenuse is prime.
 
If the Gaussian integer is not prime then it is the product of two Gaussian integers p and q with <math>|p|^2</math> and <math>|q|^2</math> integers. Since magnitudes multiply in the Gaussian integers, the product must be <math>|p||q|</math>, which when squared to find a Pythagorean triple must be composite. The contrapositive completes the proof.
 
==Distribution of triples==
[[Image:Pythagorean triple scatterplot.svg|thumb|300px|A [[scatter plot]] of the legs (''a'',''b'') of the first Pythagorean triples with ''a'' and ''b'' less than 4500.]]
 
There are a number of results on the distribution of Pythagorean triples. In the scatter plot, a number of obvious patterns are already apparent. Whenever the legs (''a'',''b'') of a primitive triple appear in the plot, all integer multiples of (''a'',''b'') must also appear in the plot, and this property produces the appearance of lines radiating from the origin in the diagram.
 
Within the scatter, there are sets of [[Parabola|parabolic]] patterns with a high density of points and all their foci at the origin, opening up in all four directions. Different parabolas intersect at the axes and appear to reflect off the axis with an incidence angle of 45 degrees, with a third parabola entering in a perpendicular fashion. Within this quadrant, each arc centered around the origin shows that section of the parabola that lies between its tip and its intersection with its [[semi-latus rectum]].
 
These patterns can be explained as follows. If <math>a^2/4n</math> is an integer, then (''a'', <math>|n-a^2/4n|</math>, <math>n+a^2/4n</math>) is a Pythagorean triple. (In fact every Pythagorean triple (''a'', ''b'', ''c'') can be written in this way with integer ''n'', possibly after exchanging ''a'' and ''b'', since <math>n=(b+c)/2</math> and ''a'' and ''b'' cannot both be odd.) The Pythagorean triples thus lie on curves given by <math>b = |n-a^2/4n|</math>, that is, parabolas reflected at the ''a''-axis, and the corresponding curves with ''a'' and ''b'' interchanged. If ''a'' is varied for a given ''n'' (i.e. on a given parabola), integer values of ''b'' occur relatively frequently if ''n'' is a square or a small multiple of a square. If several such values happen to lie close together, the corresponding parabolas approximately coincide, and the triples cluster in a narrow parabolic strip. For instance, 38<sup>2</sup> = 1444, 2&nbsp;×&nbsp;27<sup>2</sup> = 1458,
3&nbsp;×&nbsp;22<sup>2</sup> = 1452, 5&nbsp;×&nbsp;17<sup>2</sup> = 1445 and 10&nbsp;×&nbsp;12<sup>2</sup> = 1440; the corresponding parabolic strip around ''n'' ≈ 1450 is clearly visible in the scatter plot.
 
The angular properties described above follow immediately from the functional form of the parabolas. The parabolas are reflected at the ''a''-axis at ''a'' = 2''n'', and the derivative of ''b'' with respect to ''a'' at this point is –1; hence the incidence angle is 45°. Since the clusters, like all triples, are repeated at integer multiples, the value 2''n'' also corresponds to a cluster. The corresponding parabola intersects the ''b''-axis at right angles at ''b'' = 2''n'', and hence its reflection upon interchange of ''a'' and ''b'' intersects the ''a''-axis at right angles at ''a'' = 2''n'', precisely where the parabola for ''n'' is reflected at the ''a''-axis. (The same is of course true for ''a'' and ''b'' interchanged.)
 
Albert Fässler and others provide insights into the significance of these parabolas in the context of conformal mappings.<ref>[http://conservancy.umn.edu/handle/4878 1988 Preprint] See Figure 2 on page 3., later published as {{citation |first=Albert |last=Fässler |title=Multiple Pythagorean number triples |journal=American Mathematical Monthly |volume=98 |issue=6 |pages=505–517 |date=June/July 1991 |jstor=2324870}}</ref><ref>{{citation |first1=Manuel |last1=Benito |first2=Juan L. |last2=Varona |title=Pythagorean triangles with legs less than ''n'' |journal=Journal of Computational and Applied Mathematics |volume=143 |pages=117–126 |date=June 2002 |doi=10.1016/S0377-0427(01)00496-4 |url=http://www.sciencedirect.com/science/article/pii/S0377042701004964}} as [http://www.unirioja.es/cu/jvarona/downloads/Benito-Varona-JCAM-Publicado.pdf PDF]</ref>
 
==Special cases==
 
===The Platonic sequence===
The case ''n'' = 1 of the more general construction of Pythagorean triples has been known for a long time. [[Proclus]], in his commentary to the [[Pythagorean theorem|47th Proposition]] of the first book of [[Euclid's Elements]], describes it as follows:
 
<blockquote>Certain methods for the discovery of triangles of this kind are handed down, one which they refer to Plato, and another to [[Pythagoras]]. (The latter) starts from odd numbers. For it makes the odd number the smaller of the sides about the right angle; then it takes the square of it, subtracts unity and makes half the difference the greater of the sides about the right angle; lastly it adds unity to this and so forms the remaining side, the hypotenuse.<br />
...For the method of Plato argues from even numbers. It takes the given even number and makes it one of the sides about the right angle; then, bisecting this number and squaring the half, it adds unity to the square to form the hypotenuse, and subtracts unity from the square to form the other side about the right angle. ... Thus it has formed the same triangle that which was obtained by the other method.</blockquote>
 
In equation form, this becomes:
 
''a'' is odd (Pythagoras, c. 540 BC):
 
:<math>\text{side }a : \text{side }b = {a^2 - 1 \over 2} : \text{side }c = {a^2 + 1 \over 2}.</math>
 
''a'' is even (Plato, c. 380 BC):
 
:<math>\text{side }a : \text{side }b = \left({a \over 2}\right)^2 - 1 : \text{side }c = \left({a \over 2}\right)^2 + 1</math>
 
It can be shown that all Pythagorean triples are derivatives of the basic Platonic sequence (''x'',&nbsp;''y'',&nbsp;''z'')&nbsp;=&nbsp;''p'', {{nowrap|(''p''<sup>2</sup> − 1)/2}} and {{nowrap|(''p''<sup>2</sup> + 1)/2}} by allowing ''p'' to take non-integer rational values. If ''p'' is replaced with the rational fraction ''m''/''n'' in the sequence, the 'standard' triple generator 2''mn'', {{nowrap|''m''<sup>2</sup> − ''n''<sup>2</sup>}} and {{nowrap|''m''<sup>2</sup> + ''n''<sup>2</sup>}} results. It follows that every triple has a corresponding rational ''p'' value which can be used to generate a similar (i.e. equiangular) triangle with rational sides in the same proportion as the original. For example, the Platonic equivalent of (6,&nbsp;8,&nbsp;10) is (3/2;&nbsp;2,&nbsp;5/2). The Platonic sequence itself can be derived by following the steps for 'splitting the square' described in [[Diophantus II.VIII]].
 
===The Jacobi-Madden equation===
{{Main|Jacobi-Madden equation}}
The equation,
 
:<math>a^4+b^4+c^4+d^4 = (a+b+c+d)^4</math>
 
is equivalent to the special Pythagorean triple,
 
:<math>(a^2+ab+b^2)^2+(c^2+cd+d^2)^2 = ((a+b)^2+(a+b)(c+d)+(c+d)^2)^2</math>
 
There is an infinite number of solutions to this equation as solving for the variables involves an [[elliptic curve]]. Small ones are,
 
:<math>a, b, c, d = -2634, 955, 1770, 5400</math>
 
:<math>a, b, c, d = -31764, 7590, 27385, 48150</math>
 
===Equal sums of two fourth powers===
 
Given two sets of Pythagorean triples,
 
:<math>(a^2-b^2)^2+(2a b)^2 = (a^2+b^2)^2</math>
 
:<math>(c^2-d^2)^2+(2c d)^2 = (c^2+d^2)^2</math>
 
the problem of finding equal products of a [[Cathetus|non-hypotenuse side]] and the hypotenuse,
 
:<math>(a^2 -b^2)(a^2+b^2) = (c^2 -d^2)(c^2+d^2)</math>
 
is easily seen to be equivalent to the equation,
 
:<math>a^4 -b^4 = c^4 -d^4</math>
 
and was first solved by Euler as <math>a, b, c, d = 133,59,158,134</math>. Since he showed this is a rational point in an [[elliptic curve]], then there is an infinite number of solutions. In fact, he also found a 7th degree polynomial parameterization.
 
===Descartes' Circle Theorem===
 
For the case of [[Descartes' theorem|Descartes' circle theorem]] where all variables are squares,
 
:<math>2(a^4+b^4+c^4+d^4) = (a^2+b^2+c^2+d^2)^2</math>
 
Euler showed this is equivalent to three simultaneous Pythagorean triples,
 
:<math>(2ab)^2+(2cd)^2 = (a^2+b^2-c^2-d^2)^2</math>
 
:<math>(2ac)^2+(2bd)^2 = (a^2-b^2+c^2-d^2)^2</math>
 
:<math>(2ad)^2+(2bc)^2 = (a^2-b^2-c^2+d^2)^2</math>
 
There is also an infinite number of solutions, and for the special case when <math>a+b=c</math>, then the equation simplifies to,
 
:<math>4(a^2+a b+b^2) = d^2</math>
 
with small solutions as <math>a, b, c, d = 3, 5, 8, 14</math> and can be solved as [[quadratic forms|binary quadratic forms]].
 
===Almost-isosceles Pythagorean triples===
 
These are [[Special right triangles#Almost-isosceles Pythagorean triples|right-angled triangles]] with integral sides for which the lengths of the [[Cathetus|non-hypotenuse edges]] differ by one, such as,
 
:<math>3^2+4^2 = 5^2</math>
 
:<math>20^2+21^2 = 29^2</math>
 
and an infinite number of others. They can be completely parameterized as,
 
:<math>(\tfrac{x-1}{2})^2+(\tfrac{x+1}{2})^2 = y^2</math>
 
where {''x, y''} are the solutions to the [[Pell equation]] <math>x^2-2y^2 = -1</math>. Incidentally, when it is the longer non-hypotenuse leg and hypotenuse that differ by one such as,
 
:<math>5^2+12^2 = 13^2</math>
 
:<math>7^2+24^2 = 25^2</math>
 
then the complete solution is,
 
:<math>(2m+1)^2+(2m^2+2m)^2 = (2m^2+2m+1)^2</math>
 
which also shows that all [[odd numbers]] (greater than 1) appear in a primitive Pythagorean triple.
 
==Generalizations==
There are several ways to generalize the concept of Pythagorean triples.
 
===Pythagorean quadruple===
{{main|Pythagorean quadruple}}
A set of four positive integers ''a'', ''b'', ''c'' and ''d'' such that {{nowrap|''a''<sup>2</sup> + ''b''<sup>2</sup>+ ''c''<sup>2</sup> {{=}} ''d''<sup>2</sup>}} is called a [[Pythagorean quadruple]]. The simplest example is (1, 2, 2, 3), since 1<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> = 3<sup>2</sup>. The next simplest (primitive) example is (2, 3, 6, 7), since 2<sup>2</sup> + 3<sup>2</sup> + 6<sup>2</sup> = 7<sup>2</sup>.
 
All quadruples are given by the formula
:<math>(m^2+n^2-p^2-q^2)^2+(2mq+2np)^2+(2nq-2mp)^2=(m^2+n^2+p^2+q^2)^2.</math>
 
===Pythagorean ''n''-tuple===
 
Using the simple [[algebraic identity]],
 
:<math>(x_1^2-x_0)^2 + (2x_1)^{2}x_0 = (x_1^2+x_0)^2 </math>
 
for arbitrary ''x''<sub>0</sub>, ''x''<sub>1</sub>, it is easy to prove that the square of the sum of ''n'' squares is itself the sum of ''n'' squares by letting ''x''<sub>0</sub>&nbsp;=&nbsp;''x''<sub>2</sub><sup>2</sup>&nbsp;+&nbsp;''x''<sub>3</sub><sup>2</sup>&nbsp;+&nbsp;...&nbsp;+&nbsp;''x''<sub>''n''</sub><sup>2</sup> and then distributing terms.<ref>{{cite web|url= http://sites.google.com/site/tpiezas/005b|title= A Collection of Algebraic Identities: Sums of n Squares}}</ref> One can see how Pythagorean triples and quadruples are just the particular cases ''x''<sub>0</sub>&nbsp;=&nbsp;''x''<sub>2</sub><sup>2</sup> and ''x''<sub>0</sub>&nbsp;=&nbsp;''x''<sub>2</sub><sup>2</sup>&nbsp;+&nbsp;''x''<sub>3</sub><sup>2</sup>, respectively, and so on for other ''n'', with quintuples given by
 
:<math>(a^2-b^2-c^2-d^2)^2 + (2ab)^2 + (2ac)^2 + (2ad)^2 = (a^2+b^2+c^2+d^2)^2.</math>
 
Since the sum ''F''(''k'',''m'') of ''k'' consecutive squares beginning with ''m''<sup>2</sup> is given by the formula,<ref>{{cite web|url= http://www.math.niu.edu/~rusin/known-math/97/cube.sum|title= Sum of consecutive cubes equal a cube}}</ref>
 
:<math>F(k,m)=km(k-1+m)+\frac{k(k-1)(2k-1)}{6}</math>
 
one may find values (''k'', ''m'') so that ''F''(''k'',''m'') is a square, such as one by Hirschhorn where the number of terms is itself a square,<ref>{{citation |last=Hirschhorn |first=Michael |title=When is the sum of consecutive squares a square? |journal=The Mathematical Gazette |volume=95 |pages=511−2 |date=November 2011 |oclc=819659848 |issn=0025-5572}}</ref>
 
:<math>m=\tfrac{v^4-24v^2-25}{48},\; k=v^2,\; F(m,k)=\tfrac{v^5+47v}{48}</math>
and ''v'' ≥ 5 is any integer not divisible by 2 or 3. For the smallest case ''v'' = 5, hence ''k'' = 25, this yields the well-known cannonball-stacking problem of [[Édouard Lucas|Lucas]],
 
:<math>0^2+1^2+2^2+\dots+24^2 = 70^2</math>
 
a fact which is connected to the [[Leech_lattice#Using_the_Lorentzian_lattice_II25.2C1|Leech lattice]].
 
In addition, if in a Pythagorean ''n''-tuple (''n'' ≥ 4) all [[addend]]s are consecutive except one, one can use the equation,<ref>{{citation |last=Goehl |first=John F. Jr. |title=Reader reflections |journal=Mathematics Teacher |volume=98 |issue=9 |page=580 |date=May 2005 |url=http://www.nctm.org/publications/article.aspx?id=18884}}</ref>
 
:<math>F(k,m) + p^{2} = (p+1)^{2}</math>
 
Since the 2nd power of ''p'' cancels out, this is only linear and easily solved for as <math>p=\tfrac{F(k,m)-1}{2}</math> though ''k'', ''m'' should be chosen so that ''p'' is an integer,  with a small example being ''k'' = 5, ''m'' = 1 yielding,
 
:<math>1^2+2^2+3^2+4^2+5^2+27^2=28^2</math>
 
===Fermat's Last Theorem===
{{main|Fermat's Last Theorem}}
 
A generalization of the concept of Pythagorean triples is the search for triples of positive integers ''a'', ''b'', and ''c'', such that {{nowrap|''a''<sup>''n''</sup> + ''b''<sup>''n''</sup> {{=}} ''c''<sup>''n''</sup>}}, for some ''n'' strictly greater than 2. [[Pierre de Fermat]] in 1637 claimed that no such triple exists, a claim that came to be known as [[Fermat's Last Theorem]] because it took longer than any other conjecture by Fermat to be proven or disproven. The first proof was given by [[Andrew Wiles]] in 1994.
 
===''n'' &minus; 1 or ''n'' ''n''<sup>th</sup> powers summing to an ''n''<sup>th</sup> power===
{{main|Euler's sum of powers conjecture}}
Another generalization is searching for sequences of ''n''&nbsp;+&nbsp;1 positive integers for which the ''n''<sup>th</sup> power of the last is the sum of the ''n''<sup>th</sup> powers of the previous terms. The smallest sequences for known values of ''n'' are:
 
* ''n'' = 3: {3, 4, 5; 6}.
* ''n'' = 4: {30, 120, 272, 315; 353}
* ''n'' = 5: {19, 43, 46, 47, 67; 72}
* ''n'' = 7: {127, 258, 266, 413, 430, 439, 525; 568}
* ''n'' = 8: {90, 223, 478, 524, 748, 1088, 1190, 1324; 1409}
 
A slightly different generalization allows the sum of (''k''&nbsp;+&nbsp;1) ''n''th powers to equal the sum of (''n''&nbsp;&minus;&nbsp;''k'') ''n''th powers. For example:
* (''n'' = 3): 1<sup>3</sup> + 12<sup>3</sup> = 9<sup>3</sup> + 10<sup>3</sup>, made famous by Hardy's recollection of a conversation with [[Ramanujan]] about the number 1729 being the smallest number that can be expressed as a sum of two cubes in two distinct ways.
 
There can also exist ''n''&nbsp;&minus;&nbsp;1 positive integers whose ''n''<sup>th</sup> powers sum to an ''n''<sup>th</sup> power (though, by [[Fermat's last theorem]], not for ''n''&nbsp;=&nbsp;3); these are counterexamples to [[Euler's sum of powers conjecture]].  The smallest known counterexamples are<ref>{{citation |first=Scott |last1=Kim |title=Bogglers |journal=[[Discover (magazine)|Discover]] |page=82 |date=May 2002 |url=http://discovermagazine.com/2002/may/bogglers |quote=The equation w<sup>4</sup> + x<sup>4</sup> + y<sup>4</sup> = z<sup>4</sup> is harder. In 1988, after 200 years of mathematicians' attempts to prove it impossible, [[Noam Elkies]] of Harvard found the counterexample, 2,682,440<sup>4</sup> + 15,365,639<sup>4</sup> + 18,796,760<sup>4</sup> = 20,615,673<sup>4</sup>.}}</ref><ref>{{citation |authorlink=Noam Elkies |last=Elkies |first=Noam |title=On A<sup>4</sup> + B<sup>4</sup> + C<sup>4</sup> = D<sup>4</sup> |journal=Mathematics of Computation |volume=51 |pages=825–835 |year=1988 |mr=930224 |url=http://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0930224-9/}}</ref><ref name=MacHale>{{citation |last1=MacHale |first1=Des |last2=van den Bosch |first2=Christian |title=Generalising a result about Pythagorean triples |journal=[[Mathematical Gazette]] |volume=96 |pages=91–96 |date=March 2012 }}</ref>
 
* ''n'' = 4: (95800, 217519, 414560; 422481)
* ''n'' = 5: (27, 84, 110, 133; 144)
 
===Heronian triangle triples===
{{main|Heronian triangle}}
 
A '''Heronian triangle''' is commonly defined as one with integer sides whose area is also an integer, and we shall consider Heronian triangles with ''distinct'' integer sides. The lengths of the sides of such a triangle form a '''Heronian triple''' (''a, b, c'') provided ''a'' < ''b'' < ''c''.
Clearly, any Pythagorean triple is a Heronian triple, since in a Pythagorean triple at least one of the legs ''a'', ''b'' must be even, so that the area ''ab''/2 is an integer. Not every Heronian triple is a Pythagorean triple, however, as the example (4, 13, 15) with area 24 shows.
 
If (''a'', ''b'', ''c'') is a Heronian triple, so is (''ma'', ''mb'', ''mc'') where ''m'' is any positive integer greater than one.
The Heronian triple (''a'', ''b'', ''c'') is '''primitive''' provided ''a'', ''b'', ''c'' are pairwise relatively prime (as with a Pythagorean triple). Here are a few of the simplest primitive Heronian triples that are not Pythagorean triples:
 
: (4, 13, 15) with area 24
: (3, 25, 26) with area 36
: (7, 15, 20) with area 42
: (6, 25, 29) with area 60
: (11, 13, 20) with area 66
: (13, 14, 15) with area 84
: (13, 20, 21) with area 126
 
By [[Heron's formula]], the extra condition for a triple of positive integers (''a'', ''b'', ''c'') with ''a'' < ''b'' < ''c'' to be Heronian is that
 
:: (''a''<sup>2</sup> + ''b''<sup>2</sup> + ''c''<sup>2</sup>)<sup>2</sup> − 2(''a''<sup>4</sup> + ''b''<sup>4</sup> + ''c''<sup>4</sup>)
or equivalently
:: 2(''a''<sup>2</sup>''b''<sup>2</sup> + ''a''<sup>2</sup>''c''<sup>2</sup> + ''b''<sup>2</sup>''c''<sup>2</sup>) − (''a''<sup>4</sup> + ''b''<sup>4</sup> + ''c''<sup>4</sup>)
 
be a nonzero perfect square divisible by 16.
 
==See also==
{{Div col|cols=3}}
* [[Diophantus II.VIII]]
* [[Heronian triangle]]
* [[Hilbert's theorem 90]]
* [[Integer triangle]]
* [[Modular arithmetic]]
* [[Nonhypotenuse number]]
* [[Plimpton 322]]
* [[Pythagorean prime]]
* [[Tangent half-angle formula]]
* [[Trigonometric identity]]
{{Div col end}}
 
==Notes==
{{Reflist|2}}
 
==References==
{{reflist|2}}
 
*{{citation|last=Alperin|first=Roger C.|title=The modular tree of Pythagoras|journal=American Mathematical Monthly|volume= 112|year=2005|pages=807–816|url=http://www.math.sjsu.edu/~alperin/pt.pdf |jstor=30037602|issue=9|publisher=Mathematical Association of America|mr=2179860 |format=PDF}}
*{{citation|last=Berggren|first=B.|title=Pytagoreiska trianglar| journal=Tidskrift för elementär matematik, fysik och kemi|volume=17|year=1934|pages=129–139|language=Swedish}}
*{{citation|first=F.J.M.|last=Barning|title=Over pythagorese en bijna-pythagorese driehoeken en een generatieproces met behulp van unimodulaire matrices|journal=Math. Centrum Amsterdam Afd. Zuivere Wisk.|volume=ZW-011|year=1963|page=37|url=http://oai.cwi.nl/oai/asset/7151/7151A.pdf|language=Dutch |format=PDF}}
*{{citation|last=Eckert|first=Ernest|title=Primitive Pythagorean triples|journal=The College Mathematics Journal|volume=23|year=1992|pages=413–7 |issue=5|jstor=2686417|publisher=Mathematical Association of America}}
*{{citation|first=Noam|last=Elkies|authorlink=Noam Elkies|title=Pythagorean triples and Hilbert's theorem 90|url=http://www.math.harvard.edu/~elkies/Misc/hilbert.pdf |format=PDF}}
*{{citation|first=Thomas|last=Heath|authorlink=T. L. Heath|title=The Thirteen Books of Euclid's Elements Vol. 1 (Books I and II)|publisher=Dover Publications|edition=2nd|year=1956|isbn=0-486-60088-2}}
*{{citation | last = Martin|first=Artemas |authorlink=Artemas Martin|title = Rational right angled triangles nearly isosceles | journal = [[Annals of Mathematics|The Analyst]] | volume = 3 | issue = 2 | pages = 47–50 | year = 1875 | doi = 10.2307/2635906 | jstor = 2635906 | publisher = Annals of Mathematics}}
*{{citation|first=Darryl|last=McCullough|title=Height and excess of Pythagorean triples|journal=Mathematics Magazine|volume=78|year=2005|url=http://www.math.ou.edu/~dmccullough/teaching/pythagoras2.pdf|issue=1 |format=PDF}}
*{{citation|first=Dan|last=Romik|title=The dynamics of Pythagorean triples|arxiv=math/0406512|pages=6512|year=2004|bibcode=2004math......6512R|arxiv=math.DS/0406512}}
*{{citation|title=On Generating Pythagorean Triples|first1=M. G.|last1=Teigen|first2=D. W.|last2=Hadwin|journal=The American Mathematical Monthly|volume=78|year=1971|pages=378–9|issue=4|jstor=2316903|publisher=Mathematical Association of America}}
*{{citation|first=Andrzej|last=Trautman|authorlink=Andrzej Trautman|chapter=Pythagorean spinors and Penrose twistors|url=http://www.fuw.edu.pl/~amt/oxford.ps|title=Geometric universe|editors=S.A. Hugget, L.J. Mason, K.P. Tod, S.T. Tsou, N.M.J. Woodhouse|year=1998 |format=Postscript}}
 
==External links==
* {{MathWorld |urlname=PythagoreanTriple |title=Pythagorean Triple}}
* [http://www.cut-the-knot.org/pythagoras/pythTriple.shtml Pythagorean Triples] at [[cut-the-knot]] Interactive Applet showing unit circle relationships to Pythagorean Triples
* [http://www.cut-the-knot.org/pythagoras/PT_matrix.shtml The Trinary Tree(s) underlying Primitive Pythagorean Triples] at [[cut-the-knot]]
* [http://www.math.rutgers.edu/~erowland/pythagoreantriples.html Theoretical properties of the Pythagorean Triples and connections to geometry]
* [http://www.math.siu.edu/kocik/pracki/44Cliffpdf.pdf Clifford Algebras and Euclid's Parameterization of Pythagorean triples]
* [http://www.friesian.com/pythag.htm Pythagorean Triplets]
* [http://www.mcs.surrey.ac.uk/Personal/R.Knott/Pythag/pythag.html Discussion of Properties of Pythagorean triples, Interactive Calculators, Puzzles and Problems]
* [http://people.wcsu.edu/sandifere/Academics/2007Spring/Mat342/PythagTrip02.pdf Generating Pythagorean Triples Using Arithmetic Progressions]
* [http://blah.math.tu-graz.ac.at/~frisch/wwwpdf/pytha.pdf Parameterization of Pythagorean Triples by a single triple of polynomials]
* [http://learn.sdstate.edu/vestald/publications/Curious%20Consequences.pdf Curious Consequences of a Miscopied Quadratic]
* [http://mathcentral.uregina.ca/mp/previous2005/feb06sol.php Solutions to Quadratic Compatible Pairs in relation to Pythagorean Triples]
* [http://www.numbertheory.org/php/negative_pell.html The negative Pell equation and Pythagorean triples]
* [http://www.rowan.edu/colleges/las/departments/math/facultystaff/osler/InCircle.pdf The Remarkable Incircle of a Triangle]
* [http://www.hbmeyer.de/pythagen.htm Interactive Calculator for Pythagorean Triples]
* {{citation|first=H. Lee|last=Price|title=The Pythagorean Tree: A New Species|volume=0809|pages=4324 |year=2008|bibcode=2008arXiv0809.4324P|arxiv=0809.4324}}
* [http://www.math.brown.edu/~jhs/frintch2ch3.pdf Pythagorean Triples and the Unit Circle], chap. 2-3, in "[http://www.math.brown.edu/~jhs/frint.html A Friendly Introduction to Number Theory]" by Joseph H. Silverman, 3rd ed., 2006, Pearson Prentice Hall, Upper Saddle River, NJ, ISBN 0-13-186137-9
 
{{DEFAULTSORT:Pythagorean Triple}}
[[Category:Arithmetic problems of plane geometry]]
[[Category:Triangle geometry]]
[[Category:Diophantine equations]]
 
[[no:Pythagoras’ læresetning#Pytagoreiske tripler]]

Latest revision as of 13:23, 24 December 2014

「報告書......私は

ほとんど未定躊躇し、彼は突然そう暗くない場合がございます ケイトスペード バッグ 激安

は 'あなたは賢い男だ、そうでなければ、彼らはそう長く生きられないだろう......あなたは私たちが実際にあなたが何をしているか知っている、私たちが必要なものを知っている、とは関係ありませんが小さすぎるいくつかの小さなミス、誰かが私たちの兄弟を突くことができ、私たちは、あなたが感じるようになる彼?「MA鵬タオは、炉を降りないで、次の馬鞍山を振り返った。
「いいえ、でも本当に私はしませんでした。」
馬鞍山鉄鋼炉の道、マサチューセッツ鵬は少しびくびく参照した。

「どのように好意とにかく、彼は火の中にパンのように kate spade ハンドバッグ?、あなたが瓦礫の下に心だ?とにかく、これはまた、あなたはまだ準備ができて、ダウンしてバックアップしていると、彼は一緒に落ちた?とにかく、彼は遅かれ早かれそれを説明する必要があります、あなたは警察の追跡を聞かせする準備が整いました可能でない場合には、私たちは彼の証拠を移動することはできませんが、今、動きはすぐに覆さ ケイトスペード 財布 セール?あなたのために開催しています。「MA鵬は、単語のタッチが、脅威が非常に強いです、彼は知っており、これらの人々が言うことができない、と述べので、唯一の感覚 バッグ ケイトスペード

は馬鞍山鉄鋼炉の不確実な本物の バッグ ケイトスペード '私は...... ......ポイントの状況を知っているが、と思います」。
その上
「報告書......私は 相关的主题文章: