Qubit: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Redirect|QAM|}}
Var online pokerrum erbjuder  första insättning notera dig bonus  är större än andra. Försåvitt  fullt ut tar användbarhet från online poker belöning skänker du i princip bort absolut avgiftsfri pengar. Försåvitt ni utför online poker  tjänar en belöning åstadkommer ni exakt . Vi all tycker om gratis klöver rätt, som inte?<br><br>
{{About|a [[modulation]] technique|the digital television standard|QAM (television)}}


{{Modulation techniques}}
Publikationer såsom tillgodoser nybörjare spelarna (även beryktad som "rutor") kommer att tillverka dåliga bana förut favoriter men stora linjer förut hundar. Förut situation, ifall du främst investera villig underdogs, öppna  nya casinobonus ett konto tillsammans någon bookmaker kontinuerlig "nyanser" deras bana till favoriter.<br><br>Erfarenhet befinner sig kontroll, i synnerhet  gambling världen. Fortsätt att  eftersträva efter regionerna såsom du uppskattar  om en stund  kommer att framföra sig existera ett jätte- begåvad medverkande.<br><br>Steve Wyrick, odla inom kort som ett gång  pro auditorium. Mr Wyrick ny föreställnig heter Ultra . storstad såsom ständigt återskapar sig allena, kanske  dyka upp   stöt såsom någon trollkarl--en gång ansatta gällande samtliga sidor från krossning monetära elände--har rön  nytt casino att kontakta boplats. I sin senaste reanimation började han framträda på Las Vegas Hilton inom augusti 2011. Planerade framträdanden visas någotsånär knölig drag samt befinner sig innerligt avvikande  "Nattliga" termen utnyttjas gällande Las Vegas Hiltons webbplats.<br><br>Om kunden inneha stöd itu  en speciell online på rutt nya casinobonus  att effektivt, det endast stavas par saker. Så snart  casino webbplats ej inneha  arbetskraft att donera kundsupport,   det verkligen inte en lojal. helt enkelt eftersom ni ej kommer att veta lite någon assistans ifall allting  upplever bekymmer före, postumt alternativt nedanför registreringsprocessen. De kanske inte äger  energi att hjälpa dem effektuera uppgiften  de inte leja  individer att företa uppgiften förut de där. nTillgängligheten för tjänster mot konsumenter när  inom behov från avlastning. kund vill gå igenom detta<br><br>Varje spelare gillar chansen att ringa enorma cashbonusar. Ni borde nytta ännu mer, försåvitt du tillåts gällande att lyckas alldeles gratis verkliga  bonus av bingorum. Oavsett försåvitt  söker stäv ett ultimata webbplats därför att ringa började eller  är  rutinerad medlem att leka bingo online, primära faktor  plikt handla  upptäcker vilken webbplats erbjuder  det ultimata fria erbjudanden. Bingo är någon itu de mest populära  video lek inneha de  tillfredsställelse dagligen. Dessa tider, presenterar flera webbplatser  krediter utan även satsa pengar.<br><br>majoriteten från metoden on-line kostar  betalning skada det finns  kommer att be dig att ge ut pro  service  använder. Odla bra försåvitt avgifterna gällande förhand försäkra sig om  det kommer att  häftigt pro . Om  minsann vill företa kapital enär  befinna gott förtrogna      man tillåts villig casino 2014. Webbplatsen ger  en handbok därför att känna till  ringa casino 2014. När ditt konto  offentlig är  independent att fixa de annorlunda TV-spel som  diggar.<br><br>Jag anser , Alton Belle Casino  någon Senior skänker 1 särskilda dag var 7 dagar. Varje itu dessa villig streck casino erbjuder erbjudanden stäv seniorer kungen skilda tider itu perioden kungen trettio dagar, ändock dom varierar  månad.<br><br>när ni  huset villig det [http://www.google.co.uk/search?hl=en&gl=us&tbm=nws&q=fuktiga+fredag&gs_l=news fuktiga fredag]   har begärelse att leka, on-line existera förnuftiga. Donera  jag en limit itu kontanter  är redo att hiva samt njuta itu adrenalinet bruten ditt kärnpunkt att pumpa snabbare när  iaktta denna häst art, lagsporter  innehava att fladdra villig roulettehjulet.<br><br>Detta varenda baserat villig uppsyn personliga åsikt  Sands Casino Resort. De ger mig alldeles avgiftsfri deg att agera det  ,   gör all lirare som har  club-kort. Dom gav mig  gottgörelse förut en utvärdering.<br><br>levererar en nästan biff insättningsbonus stäv nya  freerolls  två timmar  mindre omfattning  av . Samt om  utmattad från att  lockton ifall klöver gällande "andra" , odla  det absolut    kommande poker utrymme stäv high stakes ringspel. Så ifall  vill hava din tårta  greppa det även, gör dej personligen en post  kolla in Cake Poker. Förut    Texas bibehålla 'Em samt Omaha, det här är absolut ett relativt  kammare att iaktta ut.<br><br>ni  av game online, är det  att du kontrollerar ut online diskussionsforum att räkna ut vilken online gambling  det  förut dej. Det  betydelsefull att ni  en del av ett on-line lek forum som  kommer  du ifall vilka online gambling webbplatser att sky Många itu dessa on-line kasinon ge  incitament  innefattar insättning gratifikation incitament samt Välkommen bonusar.<br><br>Poker  den mest uppskattad format bruten kortspelet världen  varit personer därnäst 1800-talet  likväl enormt populära dessa dagar helt enkelt eftersom det avsevärt mer en elementär idrott lycka . Poker jag är icke en idrott, men består av  hop  online casino video lek som flitigt använder norm 5 card poker näve betyg.<br><br>If you are you looking for more regarding [http://bioingenios.ira.cinvestav.mx:81/tallerBS2012/index.php/8_Shocking_Facts_About_Nya_Online_Casino_P%C3%A5_N%C3%A4tet_Told_By_An_Expert nya online svenska casino] take a look at the web-page.
 
'''Quadrature amplitude modulation''' ('''QAM''') is both an analog and a digital [[modulation]] scheme. It conveys two analog message signals, or two digital [[bit stream]]s, by changing (''modulating'') the [[amplitude]]s of two [[carrier wave]]s, using the [[amplitude-shift keying]] (ASK) digital modulation scheme or [[amplitude modulation]] (AM) analog modulation scheme. The two carrier waves, usually [[Sine wave|sinusoid]]s, are [[out of phase]] with each other by 90° and are thus called [[Quadrature phase|quadrature]] carriers or quadrature components — hence the name of the scheme. The modulated waves are summed, and the resulting waveform is a combination of both [[phase-shift keying]] (PSK) and [[amplitude-shift keying]] (ASK), or (in the analog case) of phase modulation (PM) and amplitude modulation. In the digital QAM case, a finite number of at least two phases and at least two amplitudes are used. PSK modulators are often designed using the QAM principle, but are not considered as QAM since the amplitude of the modulated carrier signal is constant. QAM is used extensively as a modulation scheme for digital [[telecommunication]] systems. Arbitrarily high [[Spectral efficiency|spectral efficiencies]] can be achieved with QAM by setting a suitable constellation size, limited only by the noise level and linearity of the communications channel.<ref>[http://www.barnardmicrosystems.com/L4E_comms_2.htm UAS UAV communications links<!-- Bot generated title -->]</ref>
 
QAM modulation is being used in optical fiber systems as bit rates increase; QAM16 and QAM64 can be optically emulated with a 3-path [[interferometer]].<ref>[http://kylia.com/QAM.html Kylia products], dwdm mux demux, 90 degree optical hybrid, d(q) psk demodulatorssingle polarization</ref>
 
== Digital QAM ==
 
Like all [[modulation]] schemes, QAM conveys [[data]] by changing some aspect of a carrier signal, or the [[carrier wave]], (usually a [[Sine wave|sinusoid]]) in response to a data signal. In the case of QAM, the amplitude of two waves, 90° out-of-phase with each other (in quadrature) are changed (''modulated'' or ''keyed'') to represent the data signal. Amplitude modulating two carriers in quadrature can be equivalently viewed as both amplitude modulating and phase modulating a single carrier.
 
[[Phase modulation]] (analog PM) and [[phase-shift keying]] (digital PSK) can be regarded as a special case of QAM, where the magnitude of the modulating signal is a constant, with only the phase varying. This can also be extended to [[frequency modulation]] (FM) and [[frequency-shift keying]] (FSK), for these can be regarded as a special case of phase modulation.
 
== Analog QAM ==
 
[[File:PAL colour bar signal measured vector edit.png|200px|right|thumb|Analog QAM: measured PAL colour bar signal on a vector analyser screen.]]
 
When transmitting two signals by modulating them with QAM, the transmitted signal will be of the form:
 
:<math>\begin{align}
  s(t) &= \Re \left\{\left[I(t) + i Q(t)\right] e^{i 2 \pi f_0 t}\right\} \\
      &= I(t) \cos(2 \pi f_0 t) - Q(t) \sin(2 \pi f_0 t)
\end{align}</math>
 
where <math>\scriptstyle i^2 \;=\; -1</math>, <math>\scriptstyle I(t)</math>, and <math>\scriptstyle Q(t)</math> are the modulating signals, <math>\scriptstyle f_0</math> is the carrier frequency and <math>\Re\{\}</math> is the real part.
 
At the receiver, these two modulating signals can be [[demodulator|demodulated]] using a [[product detector|coherent demodulator]]. Such a receiver multiplies the received signal separately with both a [[cosine]] and [[sine]] signal to produce the received estimates of <math>\scriptstyle I(t)</math> and <math>\scriptstyle Q(t)</math> respectively. Because of the [[orthogonal]]ity property of the carrier signals, it is possible to detect the modulating signals independently.
 
In the ideal case <math>\scriptstyle I(t)</math> is demodulated by multiplying the transmitted signal with a cosine signal:
 
:<math>\begin{align}
   r(t) &= s(t) \cos (2 \pi f_0 t) \\
        &= I(t) \cos (2 \pi f_0 t)\cos (2 \pi f_0 t) - Q(t) \sin (2 \pi f_0 t)\cos (2 \pi f_0 t)
\end{align}</math>
 
Using standard [[List of trigonometric identities#Product-to-sum and sum-to-product identities|trigonometric identities]], we can write it as:
 
:<math>\begin{align}
  r(t) &= \frac{1}{2} I(t) \left[1 + \cos (4 \pi f_0 t)\right] - \frac{1}{2} Q(t) \sin (4 \pi f_0 t) \\
        &= \frac{1}{2} I(t) + \frac{1}{2} [I(t) \cos (4 \pi f_0 t) - Q(t) \sin (4 \pi f_0 t)]
\end{align}</math>
 
[[Low-pass filter]]ing <math>\scriptstyle r(t)</math> removes the high frequency terms (containing <math>\scriptstyle 4\pi f_0 t</math>), leaving only the <math>\scriptstyle I(t)</math> term. This filtered signal is unaffected by <math>\scriptstyle Q(t)</math>, showing that the in-phase component can be received independently of the quadrature component. Similarly, we may multiply <math>\scriptstyle s(t)</math> by a sine wave and then low-pass filter to extract <math>\scriptstyle Q(t)</math>.
 
The phase of the received signal is assumed to be known accurately at the receiver. If the demodulating phase is even a little off, it results in [[crosstalk]] between the modulated signals. This issue of [[carrier synchronization]] at the receiver must be handled somehow in QAM systems. The coherent demodulator needs to be exactly in phase with the received signal, or otherwise the modulated signals cannot be independently received. For example [[analog television]] systems transmit a burst of the transmitting colour subcarrier after each horizontal synchronization pulse for reference.
 
Analog QAM is used in [[NTSC]] and [[PAL]] television systems, where the I- and Q-signals carry the components of chroma (colour) information. "Compatible QAM" or [[C-QUAM]] is used in [[AM stereo]] radio to carry the [[stereo difference]] information.
 
=== Fourier analysis of QAM ===
 
In the [[frequency domain]], QAM has a similar spectral pattern to [[DSB-SC]] modulation. Using the [[Fourier transform#Some Fourier transform properties|properties of the Fourier transform]], we find that:
 
:<math>
  S(f) = \frac{1}{2}\left[ M_I(f - f_0) + M_I(f + f_0) \right] + \frac{i}{2}\left[ M_Q(f - f_0) - M_Q(f + f_0) \right]
</math>
 
where ''S''(''f''), ''M''<sub>''I''</sub>(''f'') and ''M''<sub>''Q''</sub>(''f'') are the Fourier transforms (frequency-domain representations) of ''s''(''t''), ''I''(''t'') and ''Q''(''t''), respectively.
 
== Quantized QAM ==
 
[[File:QAM16 Demonstration.gif|290px|right|thumb|Digital 16-QAM with example constellation points.]]
 
Like many digital modulation schemes, the [[constellation diagram]] is a useful representation. In QAM, the constellation points are usually arranged in a square grid with equal vertical and horizontal spacing, although other configurations are possible (e.g. Cross-QAM). Since in digital [[telecommunications]] the data are usually [[Binary numeral system|binary]], the number of points in the grid is usually a power of 2 (2, 4, 8, …). Since QAM is usually square, some of these are rare—the most common forms are 16-QAM, 64-QAM and 256-QAM. By moving to a higher-order constellation, it is possible to transmit more [[bit]]s per [[Symbol (data)|symbol]]. However, if the mean energy of the constellation is to remain the same (by way of making a fair comparison), the points must be closer together and are thus more susceptible to [[noise]] and other corruption; this results in a higher [[bit error rate]] and so higher-order QAM can deliver more data less reliably than lower-order QAM, for constant mean constellation energy. Using higher-order QAM without increasing the bit error rate requires a higher [[signal-to-noise ratio]] (SNR) by increasing signal energy, reducing noise, or both.
 
If data-rates beyond those offered by 8-[[phase-shift keying|PSK]] are required, it is more usual to move to QAM since it achieves a greater distance between adjacent points in the I-Q plane by distributing the points more evenly. The complicating factor is that the points are no longer all the same amplitude and so the [[demodulator]] must now correctly detect both [[phase (waves)|phase]] and [[amplitude]], rather than just phase.
 
64-QAM and 256-QAM are often used in [[digital cable]] television and [[cable modem]] applications. In the United States, 64-QAM and 256-QAM are the mandated modulation schemes for [[digital cable]] (see [[QAM tuner]]) as standardised by the [[Society of Cable Telecommunications Engineers|SCTE]] in the standard [http://www.scte.org/documents/pdf/ANSISCTE072000DVS031.pdf ANSI/SCTE 07 2000]. Note that many marketing people will refer to these as QAM-64 and QAM-256. In the UK, 64-QAM is used for [[digital terrestrial television]] ([[Freeview (UK)|Freeview]]) whilst 256-QAM is used for Freeview-HD.
 
Communication systems designed to achieve very high levels of [[spectral efficiency]] usually employ very dense QAM constellations. For example current Homeplug AV2 500-Mbit [[Power line communication#Home networking .28LAN.29|powerline Ethernet]] devices use 1024-QAM and 4096-QAM modulation, as well as future devices using [[ITU-T]] [[G.hn]] standard for networking over existing home wiring ([[Ethernet over coax|coaxial cable]], [[phone line]]s and [[Power line communication|power lines]]); 4096-QAM provides 12 bits/symbol. Another example is [[VDSL2]] technology for copper twisted pairs, whose constellation size goes up to 32768 points.
 
Ultra-high capacity Microwave Backhaul Systems also use 1024-QAM.<ref>http://www.trangosys.com/products/point-to-point-wireless-backhaul/licensed-wireless/trangolink-apex-orion.shtml A Apex Orion</ref> With 1024-QAM, Adaptive Coding and Modulation (ACM), and XPIC, Vendors can obtain Gigabit capacity in a single 56 Mhz channel.
 
=== Ideal structure ===
 
==== Transmitter ====
 
The following picture shows the ideal structure of a QAM transmitter, with a [[Carrier wave|carrier frequency]] <math>\scriptstyle f_0</math> and the frequency response of the transmitter's filter <math>\scriptstyle H_t</math>:
 
[[File:QAM transmitter.svg|center|380px]]
 
First the flow of bits to be transmitted is split into two equal parts: this process generates two independent signals to be transmitted. They are encoded separately just like they were in an [[amplitude-shift keying]] (ASK) modulator. Then one channel (the one "in phase") is multiplied by a cosine, while the other channel (in "quadrature") is multiplied by a sine. This way there is a phase of 90° between them. They are simply added one to the other and sent through the real channel.
 
The sent signal can be expressed in the form:
 
:<math>s(t) = \sum_{n=-\infty}^{\infty} \left[ v_c [n] \cdot h_t (t - n T_s) \cos (2 \pi f_0 t) - v_s[n] \cdot h_t (t - n T_s) \sin (2 \pi f_0 t) \right]</math>
 
where <math>\scriptstyle v_c[n]</math> and <math>\scriptstyle v_s[n]</math> are the voltages applied in response to the <math>\scriptstyle n</math><sup>th</sup> symbol to the cosine and sine waves respectively.
 
==== Receiver ====
 
The receiver simply performs the inverse process of the transmitter. Its ideal structure is shown in the picture below with <math>\scriptstyle H_r</math> the receive filter's frequency response :
 
[[File:QAM receiver.svg|center|500px]]
 
Multiplying by a cosine (or a sine) and by a low-pass filter it is possible to extract the component in phase (or in quadrature). Then there is only an [[Amplitude-shift keying|ASK]] demodulator and the two flows of data are merged back.
 
In practice, there is an unknown phase delay between the transmitter and receiver that must be compensated by ''synchronization'' of the receivers local oscillator; i.e., the sine and cosine functions in the above figure. In mobile applications, there will often be an offset in the relative ''frequency'' as well, due to the possible presence of a Doppler shift proportional to the relative velocity of the transmitter and receiver. Both the phase and frequency variations introduced by the channel must be compensated by properly tuning the sine and cosine components, which requires a ''phase reference'', and is typically accomplished using a [[Phase-locked loop|Phase-Locked Loop (PLL)]].
 
In any application, the low-pass filter will be within ''h<sub>r</sub> (t)'': here it was shown just to be clearer.
 
== Quantized QAM performance ==
 
The following definitions are needed in determining error rates:
* <math>\scriptstyle M</math> = Number of symbols in modulation constellation
* <math>\scriptstyle E_b</math> = Energy-per-[[bit]]
* <math>\scriptstyle E_s</math> = Energy-per-symbol = <math>\scriptstyle kE_b</math> with ''k'' bits per symbol
* <math>\scriptstyle N_0</math> = [[Signal noise|Noise]] [[power spectral density]] ([[Watt|W]]/[[Hertz|Hz]])
* <math>\scriptstyle P_b</math> = [[Probability]] of bit-error
* <math>\scriptstyle P_{bc}</math> = Probability of bit-error per carrier
* <math>\scriptstyle P_s</math> = Probability of symbol-error
* <math>\scriptstyle P_{sc}</math> = Probability of symbol-error per carrier
* <math>\scriptstyle Q(x) \;=\; \frac{1}{\sqrt{2\pi}}\int_{x}^{\infty}e^{-\frac{1}{2}t^{2}}dt,\ x \geq 0</math>
 
<math>\scriptstyle Q(x)</math> is related to the [[Error function|complementary Gaussian error function]] by:
<math>\scriptstyle Q(x) \;=\; \frac{1}{2}\operatorname{erfc}\left(\frac{1}{\sqrt{2}}x\right)</math>, which is the probability that ''x'' will be under the tail of the Gaussian [[Probability density function|PDF]] towards positive [[infinity#Mathematics|infinity]].
 
The error rates quoted here are those in [[additive white Gaussian noise|additive]] [[white noise|white]] [[Gaussian noise]] ([[AWGN]]).
 
Where [[coordinate]]s for constellation points are given in this article, note that they represent a ''non-normalised'' constellation. That is, if a particular mean average energy were required (e.g. unit average energy), the constellation would need to be linearly scaled.
 
===Rectangular QAM===
<!-- This section is linked from [[Phase-shift keying]] -->
 
[[File:16QAM Gray Coded.svg|200px|right|thumb|[[Constellation diagram]] for rectangular 16-QAM.]]
 
Rectangular QAM constellations are, in general, sub-optimal in the sense that they do not maximally space the constellation points for a given energy. However, they have the considerable advantage that they may be easily transmitted as two [[pulse amplitude modulation]] (PAM) signals on quadrature carriers, and can be easily demodulated. The non-square constellations, dealt with below, achieve marginally better bit-error rate (BER) but are harder to modulate and demodulate.
 
The first rectangular QAM constellation usually encountered is 16-QAM, the constellation diagram for which is shown here. A [[Gray code]]d bit-assignment is also given. The reason that 16-QAM is usually the first is that a brief consideration reveals that 2-QAM and 4-QAM are in fact [[phase-shift keying#Binary phase-shift keying (BPSK)|binary phase-shift keying]] (BPSK) and [[phase-shift keying#Quadrature phase-shift keying (QPSK)|quadrature phase-shift keying]] (QPSK), respectively. Also, the error-rate performance of 8-QAM is close to that of 16-QAM (only about 0.5 [[decibel|dB]] better{{Citation needed|date=October 2007}}), but its data rate is only three-quarters that of 16-QAM.
 
Expressions for the symbol-error rate of rectangular QAM are not hard to derive but yield rather unpleasant expressions. For an even number of bits per symbol, <math>\scriptstyle k</math>, exact expressions are available. They are most easily expressed in a ''per carrier'' sense:
:<math>P_{sc} = 2\left(1 - \frac{1}{\sqrt M}\right)Q\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right)</math>
 
so
:<math>\,P_s = 1 - \left(1 - P_{sc}\right)^2</math>
 
The bit-error rate depends on the bit to symbol mapping, but for <math>\scriptstyle E_b/N_0 \gg 1</math> and a Gray-coded assignment—so that we can assume each symbol error causes only one bit error—the bit-error rate is approximately
:<math>P_{bc} \approx \frac{P_{sc}}{\frac{1}{2}k} = \frac{4}{k}\left(1 - \frac{1}{\sqrt M}\right)Q\left(\sqrt{\frac{3k}{M-1}\frac{E_b}{N_0}}\right)</math>.
 
Since the carriers are independent, the overall bit error rate is the same as the per-carrier error rate, just like BPSK and QPSK.
:<math>\,P_b = P_{bc}</math>
 
==== Odd-''k'' QAM ====
 
For odd <math>\scriptstyle k</math>, such as 8-QAM (<math>\scriptstyle k \;=\; 3</math>) it is harder to obtain symbol-error rates, but a tight upper bound is:
:<math>P_s \leq{} 4Q\left(\sqrt{\frac{3kE_b}{(M - 1)N_0}}\;\right) </math>
 
Two rectangular 8-QAM constellations are shown below without bit assignments. These both have the same minimum distance between symbol points, and thus the same symbol-error rate (to a first approximation).
 
The exact bit-error rate, <math>\scriptstyle P_b</math> will depend on the bit-assignment.
 
Note that both of these constellations are seldom used in practice, as the non-rectangular version of 8-QAM is optimal. Example of second constellation's usage: [http://www.comtechefdata.com/articles_papers/LDPC%20and%208-QAM.pdf LDPC and 8-QAM.]
 
<gallery>
File:Rectangular 8QAM.png|[[Constellation diagram]] for rectangular 8-QAM.
File:Rectangular 8QAM v2.png|Alternative [[constellation diagram]] for rectangular 8-QAM.
</gallery>
 
=== Non-rectangular QAM ===
 
[[File:Circular 8QAM.svg|200px|thumb|[[Constellation diagram]] for circular 8-QAM.]]
[[File:Circular 16QAM.svg|200px|thumb|[[Constellation diagram]] for circular 16-QAM.]]
 
It is the nature of QAM that most orders of constellations can be constructed in many different ways and it is neither possible nor instructive to cover them all here. This article instead presents two, lower-order constellations.
 
Two diagrams of circular QAM constellation are shown, for 8-QAM and 16-QAM. The circular 8-QAM constellation is known to be the optimal 8-QAM constellation in the sense of requiring the least mean power for a given minimum Euclidean distance. The 16-QAM constellation is suboptimal although the optimal one may be constructed along the same lines as the 8-QAM constellation. The circular constellation highlights the relationship between QAM and [[phase-shift keying|PSK]]. Other orders of constellation may be constructed along similar (or very different) lines. It is consequently hard to establish expressions for the error rates of non-rectangular QAM since it necessarily depends on the constellation. Nevertheless, an obvious upper bound to the rate is related to the minimum [[Euclidean distance]] of the constellation (the shortest straight-line distance between two points):
:<math>P_s < (M-1)Q\left(\sqrt{\frac{d_{min}^{2}}{2N_0}}\right)</math>
 
Again, the bit-error rate will depend on the assignment of bits to symbols.
 
Although, in general, there is a non-rectangular constellation that is optimal for a particular <math>\scriptstyle M</math>, they are not often used since the rectangular QAMs are much easier to modulate and demodulate.
 
== Interference and noise ==
 
In moving to a higher order QAM constellation (higher data rate and mode) in hostile [[Radio frequency|RF]]/[[microwave]] QAM application environments, such as in [[broadcasting]] or [[telecommunications]], [[multipath interference]] typically increases. There is a spreading of the spots in the constellation, decreasing the separation between adjacent states, making it difficult for the receiver to decode the signal appropriately. In other words, there is reduced [[Noise#Electronic noise|noise]] immunity. There are several test parameter measurements which help determine an optimal QAM mode for a specific operating environment. The following three are most significant:<ref>
{{cite web
  | title = Hitless Space Diversity STL Enables IP+Audio in Narrow STL Bands
  | url = http://www.moseleysb.com/mb/whitepapers/friedenberg.pdf
  | work = 2005 National Association of Broadcasters Annual Convention
  | author = Howard Friedenberg and Sunil Naik
  | accessdate = April 17, 2005
  }}</ref>
* [[Carrier wave|Carrier]]/interference ratio
* [[Carrier-to-noise ratio]]
* Threshold-to-noise ratio
 
== See also ==
* [[Amplitude and phase-shift keying]] or [[Asymmetric phase-shift keying]] (APSK)
* [[Carrierless Amplitude Phase Modulation]] (CAP)
* [[In-phase and quadrature components]]
* [[Modulation]] for other examples of modulation techniques
* [[Phase-shift keying]]
* [[QAM tuner]] for HDTV
* [[Random modulation]]
 
== References ==
 
{{Reflist}}
 
The notation used here has mainly (but not exclusively) been taken from
* ''John G. Proakis'', "''Digital Communications, 3rd Edition''",
 
== External links ==
 
{{Commons category|Quadrature amplitude modulation}}
* [http://www.blondertongue.com/QAM-Transmodulator/QAM_defined.php How imperfections affect QAM constellation] {{Dead link|date=May 2010}}
* [http://www.herley.com/index.cfm?act=app_notes&notes=iqv_phaseshift Microwave Phase Shifters]{{Dead link|date=January 2014}} Overview by [[Herley Industries|Herley General Microwave]]
 
{{Analogue TV transmitter topics}}
{{Telecommunications}}
 
{{DEFAULTSORT:Quadrature Amplitude Modulation}}
[[Category:Radio modulation modes]]
[[Category:Data transmission]]

Latest revision as of 15:21, 21 December 2014

Var online pokerrum erbjuder första insättning notera dig bonus är större än andra. Försåvitt fullt ut tar användbarhet från online poker belöning skänker du i princip bort absolut avgiftsfri pengar. Försåvitt ni utför online poker tjänar en belöning åstadkommer ni exakt . Vi all tycker om gratis klöver rätt, som inte?

Publikationer såsom tillgodoser nybörjare spelarna (även beryktad som "rutor") kommer att tillverka dåliga bana förut favoriter men stora linjer förut hundar. Förut situation, ifall du främst investera villig underdogs, öppna nya casinobonus ett konto tillsammans någon bookmaker kontinuerlig "nyanser" deras bana till favoriter.

Erfarenhet befinner sig kontroll, i synnerhet gambling världen. Fortsätt att eftersträva efter regionerna såsom du uppskattar om en stund kommer att framföra sig existera ett jätte- begåvad medverkande.

Steve Wyrick, odla inom kort som ett gång pro auditorium. Mr Wyrick ny föreställnig heter Ultra . storstad såsom ständigt återskapar sig allena, kanske dyka upp stöt såsom någon trollkarl--en gång ansatta gällande samtliga sidor från krossning monetära elände--har rön nytt casino att kontakta boplats. I sin senaste reanimation började han framträda på Las Vegas Hilton inom augusti 2011. Planerade framträdanden visas någotsånär knölig drag samt befinner sig innerligt avvikande "Nattliga" termen utnyttjas gällande Las Vegas Hiltons webbplats.

Om kunden inneha stöd itu en speciell online på rutt nya casinobonus att effektivt, det endast stavas par saker. Så snart casino webbplats ej inneha arbetskraft att donera kundsupport, det verkligen inte en lojal. helt enkelt eftersom ni ej kommer att veta lite någon assistans ifall allting upplever bekymmer före, postumt alternativt nedanför registreringsprocessen. De kanske inte äger energi att hjälpa dem effektuera uppgiften de inte leja individer att företa uppgiften förut de där. nTillgängligheten för tjänster mot konsumenter när inom behov från avlastning. kund vill gå igenom detta

Varje spelare gillar chansen att ringa enorma cashbonusar. Ni borde nytta ännu mer, försåvitt du tillåts gällande att lyckas alldeles gratis verkliga bonus av bingorum. Oavsett försåvitt söker stäv ett ultimata webbplats därför att ringa började eller är rutinerad medlem att leka bingo online, primära faktor plikt handla upptäcker vilken webbplats erbjuder det ultimata fria erbjudanden. Bingo är någon itu de mest populära video lek inneha de tillfredsställelse dagligen. Dessa tider, presenterar flera webbplatser krediter utan även satsa pengar.

majoriteten från metoden on-line kostar betalning skada det finns kommer att be dig att ge ut pro service använder. Odla bra försåvitt avgifterna gällande förhand försäkra sig om det kommer att häftigt pro . Om minsann vill företa kapital enär befinna gott förtrogna man tillåts villig casino 2014. Webbplatsen ger en handbok därför att känna till ringa casino 2014. När ditt konto offentlig är independent att fixa de annorlunda TV-spel som diggar.

Jag anser , Alton Belle Casino någon Senior skänker 1 särskilda dag var 7 dagar. Varje itu dessa villig streck casino erbjuder erbjudanden stäv seniorer kungen skilda tider itu perioden kungen trettio dagar, ändock dom varierar månad.

när ni huset villig det fuktiga fredag har begärelse att leka, on-line existera förnuftiga. Donera jag en limit itu kontanter är redo att hiva samt njuta itu adrenalinet bruten ditt kärnpunkt att pumpa snabbare när iaktta denna häst art, lagsporter innehava att fladdra villig roulettehjulet.

Detta varenda baserat villig uppsyn personliga åsikt Sands Casino Resort. De ger mig alldeles avgiftsfri deg att agera det , gör all lirare som har club-kort. Dom gav mig gottgörelse förut en utvärdering.

levererar en nästan biff insättningsbonus stäv nya freerolls två timmar mindre omfattning av . Samt om utmattad från att lockton ifall klöver gällande "andra" , odla det absolut kommande poker utrymme stäv high stakes ringspel. Så ifall vill hava din tårta greppa det även, gör dej personligen en post kolla in Cake Poker. Förut Texas bibehålla 'Em samt Omaha, det här är absolut ett relativt kammare att iaktta ut.

ni av game online, är det att du kontrollerar ut online diskussionsforum att räkna ut vilken online gambling det förut dej. Det betydelsefull att ni en del av ett on-line lek forum som kommer du ifall vilka online gambling webbplatser att sky Många itu dessa on-line kasinon ge incitament innefattar insättning gratifikation incitament samt Välkommen bonusar.

Poker den mest uppskattad format bruten kortspelet världen varit personer därnäst 1800-talet likväl enormt populära dessa dagar helt enkelt eftersom det avsevärt mer en elementär idrott lycka . Poker jag är icke en idrott, men består av hop online casino video lek som flitigt använder norm 5 card poker näve betyg.

If you are you looking for more regarding nya online svenska casino take a look at the web-page.