Enharmonic: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Pinethicket
Undid revision 574625144 by 41.86.136.184 (talk) stray comment
Meantone: one name per pitch does not necessarily mean "integer notation," but integer notation is a popular example of a notation having that property
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[mathematics]], '''Stirling numbers''' arise in a variety of [[Analysis (mathematics)|analytic]] and [[combinatorics]] problems.  They are named after [[James Stirling (mathematician)|James Stirling]], who introduced them in the 18th century. Two different sets of numbers bear this name: the [[Stirling numbers of the first kind]] and the [[Stirling numbers of the second kind]].
Name: Erica Bainton<br>My age: 23<br>Country: Australia<br>Home town: Goolgowi <br>ZIP: 2652<br>Street: 23 Grayson Street<br><br>Here is my website :: [http://hemorrhoidtreatmentfix.com/external-hemorrhoid-treatment external hemorrhoids treatment]
 
==Notation==
Several different notations for the Stirling numbers are in use. Stirling numbers of the first kind are written with a small ''s'', and those of the second kind with a large ''S''.  The Stirling numbers of the second kind are never negative, but those of the first kind can be negative; hence, there are notations for the "unsigned Stirling numbers of the first kind", which are the Stirling numbers without their signs,  Common notations are:
 
: <math> s(n,k)\,</math>  
for the ordinary (signed) Stirling numbers of the first kind,
 
: <math> c(n,k)=\left[{n \atop k}\right]=|s(n,k)|\,</math>
for the unsigned Stirling numbers of the first kind, and
 
: <math> S(n,k)=\left\{\begin{matrix} n \\ k \end{matrix}\right\}= S_n^{(k)} \,</math>
for the Stirling numbers of the second kind.
 
[[Abramowitz and Stegun]] use an uppercase S and a [[blackletter]] S, respectively, for the first and second kinds of Stirling number.  The notation of brackets and braces, in analogy to the [[binomial coefficients]], was introduced in 1935 by [[Jovan Karamata]] and promoted later by [[Donald Knuth]].  (The bracket notation conflicts with a common notation for the [[Gaussian coefficient]]s.)  The mathematical motivation for this type of notation, as well as additional Stirling number formulae, may be found on the page for [[Stirling numbers and exponential generating functions]].
 
==Stirling numbers of the first kind==
{{main|Stirling numbers of the first kind}}
 
The '''Stirling numbers of the first kind''' are the coefficients in the expansion
 
:<math>(x)_{n} = \sum_{k=0}^n s(n,k) x^k.</math>
 
where <math>(x)_{n}</math> (a [[Pochhammer symbol]]) denotes the [[falling factorial]],
 
:<math>(x)_{n}=x(x-1)(x-2)\cdots(x-n+1).</math>
 
Note that (''x'')<sub>0</sub> = 1 because it is an [[empty product]]. [[Combinatorics|Combinatorialists]] also sometimes use the notation <math style="vertical-align:baseline;">x^{\underline{n\!}}</math> for the falling factorial, and <math style="vertical-align:baseline;">x^{\overline{n\!}}</math> for the rising factorial.<ref>{{cite book|last=Aigner|first=Martin|title=A Course In Enumeration|publisher=Springer|year=2007|pages=561|chapter=Section 1.2 - Subsets and Binomial Coefficients|isbn=3-540-39032-4}}</ref>
 
(Confusingly, the Pochhammer symbol that many use for ''falling'' factorials is used in [[special function]]s for ''rising'' factorials.)
 
The unsigned Stirling numbers of the first kind,
 
:<math>c(n,k)=\left[{n \atop k}\right]=|s(n,k)|=(-1)^{n-k} s(n,k)</math>
 
(with a lower-case "''s''"), count the number of [[permutation]]s of ''n'' elements with ''k'' disjoint [[cyclic permutation|cycle]]s.
 
==Stirling numbers of the second kind==
{{main|Stirling numbers of the second kind}}
 
'''Stirling numbers of the second kind''' count the number of ways to partition a set of ''n'' elements into ''k'' nonempty subsets. They are denoted by <math>S(n,k)</math> or <math>\textstyle \lbrace{n\atop k}\rbrace</math>.<ref>Ronald L. Graham, Donald E. Knuth, Oren Patashnik (1988) ''[[Concrete Mathematics]]'', Addison-Wesley, Reading MA. ISBN 0-201-14236-8, p.&nbsp;244.</ref>  The sum
 
:<math>\sum_{k=0}^n S(n,k) = B_n</math>
 
is the ''n''th [[Bell numbers|Bell number]].
 
Using falling factorials, we can characterize the Stirling numbers of the second kind by the identity
 
:<math>\sum_{k=0}^n S(n,k)(x)_k=x^n.</math>
 
==Lah numbers==
{{main|Lah numbers}}
 
The Lah numbers are sometimes called Stirling numbers of the third kind. For example [http://books.google.com/books?id=B2WZkvmFKk8C&pg=PA464&lpg=PA464&dq=%22Stirling+numbers+of+the+third+kind%22&source=bl&ots=JhIJKIhaFH&sig=_0-CWfixhUoAuhh7DAo4fJco6y4&hl=en&ei=BKh2TfnBJ_KH0QGn17XZBg&sa=X&oi=book_result&ct=result&resnum=2&ved=0CCAQ6AEwAQ#v=onepage&q=%22Stirling%20numbers%20of%20the%20third%20kind%22&f=false see].
 
==Inversion relationships==
The Stirling numbers of the first and second kinds can be considered to be inverses of one another:
 
:<math>\sum_{n=0}^{\max\{j,k\}} s(n,j) S(k,n) = \delta_{jk}</math>
 
and
 
:<math>\sum_{n=0}^{\max\{j,k\}}  S(n,j) s(k,n) = \delta_{jk}</math>
 
where <math>\delta_{jk}</math> is the [[Kronecker delta]]. These two relationships may be understood to be matrix inverse relationships. That is, let ''s'' be the [[lower triangular matrix]] of Stirling numbers of first kind, so that it has matrix elements
 
:<math>s_{nk}=s(n,k).\,</math>
 
Then, the [[matrix inverse|inverse]] of this matrix is ''S'', the [[lower triangular matrix]] of Stirling numbers of second kind. Symbolically, one writes
 
:<math>s^{-1} = S\,</math>
 
where the matrix elements of ''S'' are
 
:<math>S_{nk}=S(n,k).</math>
 
Note that although ''s'' and ''S'' are infinite, so calculating a product entry involves an infinite sum, the matrix multiplications work because these matrices are lower triangular, so only a finite number of terms in the sum are nonzero.
 
A generalization of the inversion relationship gives the link with the Lah numbers <math> L(n,k):</math>
 
:<math> (-1)^n L(n,k) = \sum_{z}(-1)^{z} s(n,z)S(z,k),</math>
 
with the conventions <math>L(0,0)=1</math> and <math>L(n , k )=0</math> if <math>k>n</math>.
 
==Symmetric formulae==
 
Abramowitz and Stegun give the following symmetric formulae that relate the Stirling numbers of the first and second kind.
 
:<math>s(n,k) = \sum_{j=0}^{n-k} (-1)^j {n-1+j \choose n-k+j} {2n-k \choose n-k-j} S(n-k+j,j)</math>
 
and
 
:<math>S(n,k) = \sum_{j=0}^{n-k} (-1)^j {n-1+j \choose n-k+j} {2n-k \choose n-k-j} s(n-k+j,j).</math>
 
== See also ==
* [[Bell polynomials]]
* [[Cycles and fixed points]]
* [[Lah number]]
* [[Pochhammer symbol]]
* [[Polynomial sequence]]
* [[Stirling transform]]
* [[Touchard polynomials]]
 
==References==
{{Reflist}}
* M. Abramowitz and I. Stegun (Eds.). ''Stirling Numbers of the First Kind.'', §24.1.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p.&nbsp;824, 1972.
* Milton Abramowitz and Irene A. Stegun, eds., [http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP ''Handbook of Mathematical Functions (with Formulas, Graphs and Mathematical Tables)''], U.S. Dept. of Commerce, National Bureau of Standards, Applied Math. Series 55, 1964, 1046 pages (9th Printing: November 1970) - Combinatorial Analysis, Table 24.4, Stirling Numbers of the Second Kind (author: Francis L. Miksa), p.&nbsp;835.
* Victor Adamchik, "[http://www-2.cs.cmu.edu/~adamchik/articles/stirling.pdf On Stirling Numbers and Euler Sums]", Journal of Computational and Applied Mathematics '''79''' (1997) pp.&nbsp;119&ndash;130.
* Arthur T. Benjamin, Gregory O. Preston, Jennifer J. Quinn, ''[http://www.math.hmc.edu/~benjamin/papers/harmonic.pdf A Stirling Encounter with Harmonic Numbers]'', (2002) Mathematics Magazine, '''75''' (2) pp 95&ndash;103.
* Khristo N. Boyadzhiev, ''Close encounters with the Stirling numbers of the second kind'' (2012) Mathematics Magazine, '''85''' (4) pp 252&ndash;266.
* Louis Comtet, [http://www.techniques-ingenieur.fr/page/af202niv10002/permutations.html#2.2 ''Valeur de ''s''(''n'',&nbsp;''k'')''], Analyse combinatoire, Tome second (page 51), Presses universitaires de France, 1970.
* Louis Comtet, ''Advanced Combinatorics: The Art of Finite and Infinite Expansions'', Reidel Publishing Company, Dordrecht-Holland/Boston-U.S.A., 1974.
* {{cite journal| author=Hsien-Kuei Hwang |title=Asymptotic Expansions for the Stirling Numbers of the First Kind |journal=Journal of Combinatorial Theory, Series A |volume=71 |issue=2 |pages=343&ndash;351 |year=1995 |url=http://citeseer.ist.psu.edu/577040.html |doi=10.1016/0097-3165(95)90010-1}}
* [[Donald Knuth|D.E. Knuth]], [http://www-cs-faculty.stanford.edu/~knuth/papers/tnn.tex.gz ''Two notes on notation''] (TeX source).
* Francis L. Miksa (1901&ndash;1975), [http://links.jstor.org/sici?sici=0891-6837%28195601%2910%3A53%3C35%3ARADOTA%3E2.0.CO%3B2-X ''Stirling numbers of the first kind''], "27 leaves reproduced from typewritten manuscript on deposit in the UMT File", Mathematical Tables and Other Aids to Computation, vol. 10, no. 53, January 1956, pp.&nbsp;37&ndash;38 (Reviews and Descriptions of Tables and Books, 7[I]).
* Dragoslav S. Mitrinović, [http://pefmath2.etf.bg.ac.rs/files/23/23.pdf ''Sur les nombres de Stirling de première espèce et les polynômes de Stirling''], AMS 11B73_05A19, Publications de la Faculté d'Electrotechnique de l'Université de Belgrade, Série Mathématiques et Physique (ISSN 0522-8441), no. 23, 1959 (5.V.1959), pp.&nbsp;1&ndash;20.
* John J. O'Connor and Edmund F. Robertson, [http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Stirling.html ''James Stirling (1692&ndash;1770)''], (September 1998).
* {{cite journal| first1=J. M. |last1=Sixdeniers |first2= K. A. |last2=Penson
|first3=A. I. |last3= Solomon | url = http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.pdf
|title= Extended Bell and Stirling Numbers From Hypergeometric Exponentiation
|year=2001
|journal = Journal of Integer Sequences | volume= 4 | pages=01.1.4}}.
* {{cite news| first1=Michael Z. | last1=Spivey | title=Combinatorial sums and finite differences
|doi=10.1016/j.disc.2007.03.052 | journal=Discr. Math.
|year=2007 | volume=307 | number=24 | pages=3130–3146}}
* {{SloanesRef |sequencenumber=A008275|name=Stirling numbers of first kind}}
* {{SloanesRef |sequencenumber=A008277|name=Stirling numbers of 2nd kind}}
* {{planetmath reference |id=2809|title=Stirling numbers of the first kind, s(n,k)}}.
* {{planetmath reference |id=2805|title=Stirling numbers of the second kind, S(n,k)}}.
 
[[Category:Permutations]]
[[Category:Q-analogs]]
[[Category:Factorial and binomial topics]]
[[Category:Integer sequences]]

Latest revision as of 09:37, 12 November 2014

Name: Erica Bainton
My age: 23
Country: Australia
Home town: Goolgowi
ZIP: 2652
Street: 23 Grayson Street

Here is my website :: external hemorrhoids treatment