|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| {{For|the number of labeled trees in graph theory|Cayley's formula}}
| | == 「Nizi、単独で戻って、これらのものの男性が解くのが好きで == |
|
| |
|
| In [[group theory]], '''Cayley's theorem''', named in honor of [[Arthur Cayley]], states that every [[group (mathematics)|group]] ''G'' is [[group isomorphism|isomorphic]] to a [[subgroup]] of the [[symmetric group]] acting on ''G''.<ref>Jacobson (2009), p. 38.</ref> This can be understood as an example of the [[group action]] of ''G'' on the elements of ''G''.<ref>Jacobson (2009), p. 72, ex. 1.</ref>
| | 自分の願いに応じて、相互に多くのお金あまりに親密な関係、が、少なくとも2人は友人としてカウントし、現在そのような口調で薫の子供たちは今も、さらには彼の時に、彼に話を聞くことができ、以来努力するだけでなく、手に負えない内面の感情、顔」色は「ロット醜いなります。<br><br>「あなたは男であれば、あなたが女性の後ろに立っていないが [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-8.html カシオ 掛け時計]。「ゆっくり息、抑圧された怒りの心の中に生き続ける、白山は冷たくシャオヤン、口フック、軽蔑的冷笑を見た [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-9.html カシオ 腕時計 チタン]。<br><br>「白山!も過言ではないのですか [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-15.html カシオ gps 時計]!」薫子どもたちは急速な凝集の手のひらに少し重い、不動産ブローカーのフラッシュ、ゴールド」カラー「エネルギー、Qiaolian、白山シャオヤンに繰り返し挑発は、彼女に触れた一番下の行 [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-7.html カシオ電波ソーラー腕時計レディース]。<br><br>「Nizi、単独で戻って、これらのものの男性が解くのが好きで。 [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-7.html カシオ 腕時計 gps] '突然薫子どもHaowanをつかむ手を差し伸べる、、彼女は振り返ったが、それは顔にQiaodeシャオヤンかすかな笑顔です彼女と一緒に |
| | 相关的主题文章: |
| | <ul> |
| | |
| | <li>[http://bbs.pcsbo.com/home.php?mod=space&uid=91873 http://bbs.pcsbo.com/home.php?mod=space&uid=91873]</li> |
| | |
| | <li>[http://lib.ougz.com.cn/site/?action-viewnews-itemid-1539 http://lib.ougz.com.cn/site/?action-viewnews-itemid-1539]</li> |
| | |
| | <li>[http://www.chinabnn.com/plus/feedback.php?aid=368 http://www.chinabnn.com/plus/feedback.php?aid=368]</li> |
| | |
| | </ul> |
|
| |
|
| A [[permutation]] of a set ''G'' is any [[bijective]] [[function (mathematics)|function]] taking ''G'' onto ''G''; and the set of all such functions forms a group under [[function composition]], called ''the symmetric group on'' ''G'', and written as Sym(''G'').<ref>Jacobson (2009), p. 31.</ref>
| | == 彼の笑い声を聞く == |
|
| |
|
| Cayley's theorem puts all groups on the same footing, by considering any group (including infinite groups such as ('''''R''''',+)) as a [[permutation group]] of some underlying set. Thus, theorems which are true for permutation groups are true for groups in general.
| | とにも画像Skyfireの由緒ある [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-6.html casio 腕時計 説明書]。<br><br>「これらは、壊れた魂不完全画像のうち、これらの氷河の谷の弟子からの検索が、それの災い思想であるが、それでも毒性女性の外国からの援助はありますが、数人いることを、私は確かにそれはダンのドメインの外にあるべきで、不慣れな非常に古い男を見てねああ男、何年もの氷河の谷が満たされていないこれらおよびその他の挑発的な、ああ、老人の手が風水のヘビの目をもたれ」老人の一部の学生は、氷曇っ鏡を席巻しているが、それはそのようなフクロウのような笑顔、笑いあり、それは [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-15.html カシオ 腕時計 激安] '髪'骨直立感の一種である。<br>彼の笑い声を聞く<br>、3つの白い老人スキンの側は、すべての寒さを投げている、彼らはより幸せが、私の心は意図は殺すためにするときより集中している時にこの人が笑っていなかったことを知っています [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-4.html カシオ 電波ソーラー時計]。<br><br>「さあ、老人はまた、これらの奇妙な朝食は、強制氷河谷ではなく、挑発ああ強くなると思った。 [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-8.html カシオ 掛け時計] '<br><br>老人は静かにゆっくりに対して、その蛇は風水を傾いている、手を振った |
| | 相关的主题文章: |
| | <ul> |
| | |
| | <li>[http://www.150800.net/home.php?mod=space&uid=113009&do=blog&quickforward=1&id=24379 http://www.150800.net/home.php?mod=space&uid=113009&do=blog&quickforward=1&id=24379]</li> |
| | |
| | <li>[http://www.happyshopping.co/index.php?page=item&id=1898148 http://www.happyshopping.co/index.php?page=item&id=1898148]</li> |
| | |
| | <li>[http://www.duik.cn/forum/thread-1458040-1-1.html http://www.duik.cn/forum/thread-1458040-1-1.html]</li> |
| | |
| | </ul> |
|
| |
|
| == History == | | == 「私はとにかく、わからない、の一種である == |
| Although Burnside<ref>{{Citation | last = Burnside | first = William | author-link = William Burnside | title = Theory of Groups of Finite Order | location = Cambridge | year = 1911 | edition = 2 | isbn = 0-486-49575-2}}</ref>
| |
| attributes the theorem
| |
| to Jordan,<ref>{{Citation | last = Jordan | first = Camille | author-link = Camille Jordan | title = Traite des substitutions et des equations algebriques | publisher = Gauther-Villars | location = Paris | year = 1870}}</ref>
| |
| Eric Nummela<ref>{{Citation | last = Nummela | first = Eric | title = Cayley's Theorem for Topological Groups | journal = American Mathematical Monthly | volume = 87 | issue = 3 | year = 1980 | pages = 202–203 | doi = 10.2307/2321608 | jstor = 2321608 | publisher = Mathematical Association of America}}</ref>
| |
| nonetheless argues that the standard name—"Cayley's Theorem"—is in fact appropriate. Cayley, in his original 1854 paper,<ref>{{Citation | last = Cayley | first = Arthur | author-link = Arthur Cayley | title = On the theory of groups as depending on the symbolic equation θ<sup>n</sup>=1 | journal = Philosophical Magazine | volume = 7 | issue = 42 | pages = 40–47 | year = 1854 | url = http://books.google.com/books?id=_LYConosISUC&pg=PA40#v=onepage&q&f=false }}</ref>
| |
| showed that the correspondence in the theorem is one-to-one, but he failed to explicitly show it was a homomorphism (and thus an isomorphism). However, Nummela notes that Cayley made this result known to the mathematical community at the time, thus predating Jordan by 16 years or so.
| |
|
| |
|
| == Proof of the theorem ==
| | ゆっくりとすぐに一緒に、シャオヤンで焼成優しくデスクトップの左半分に上陸した柔らかな風に包まれ、消費され、緑と赤の骨先端の9作品の一つは、落下されています [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-6.html 電波腕時計 カシオ]。<br>仮焼骨の<br>これら10作品は、「色」の驚きのシャオヤンの目は多くのことを下に再生される、と指摘しQingtu息、彼の額にはほとんど汗を拭った [http://www.nnyagdev.org/sitemap.xml http://www.nnyagdev.org/sitemap.xml]。<br>脇パープル研究<br>、ヨーヨーこんにちは10個ちょっと笑顔、これはシャオヤンに向け、その後、自分のポケットの利益は慎重に、緑と赤の骨の先端を取得されます [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-14.html カシオ腕時計 メンズ]。<br><br>道路のシャオヤン紫調査をちらっと見少し容疑者「混乱」、それは明らかに前であるように、以前の研究紫色の外観を見て、「どのようにZhefanの外観になるのだろうか [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-11.html casio 腕時計 メンズ]?、焼成後にその手下異なる火災を知っていますか」これは特殊な淡いが、これは骨様の手下のスクラップのようだっ掘っ」の「それ以外の場合は、対物がないだろう、彼女について何かを知っておくと便利です [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-3.html カシオ gps 時計]。<br><br>「私はとにかく、わからない、の一種である |
| Where ''g'' is any element of a group ''G'' with operation ∗, consider the function {{nowrap|''f''<sub>''g''</sub> : ''G'' → ''G''}}, defined by {{nowrap|1=''f''<sub>''g''</sub>(''x'') = ''g'' ∗ ''x''}}. By the existence of inverses, this function has a two-sided inverse, <math>f_{g^{-1}}</math>. So multiplication by ''g'' acts as a [[bijective]] function. Thus, ''f''<sub>''g''</sub> is a permutation of ''G'', and so is a member of Sym(''G'').
| | 相关的主题文章: |
| | | <ul> |
| The set {{nowrap|1=''K'' = {''f''<sub>''g''</sub> : ''g'' ∈ ''G''} }} is a subgroup of Sym(''G'') that is isomorphic to ''G''. The fastest way to establish this is to consider the function {{nowrap|''T'' : ''G'' → Sym(''G'')}} with {{nowrap|1=''T''(''g'') = ''f''<sub>''g''</sub>}} for every ''g'' in ''G''. ''T'' is a [[group homomorphism]] because (using · to denote composition in Sym(''G'')):
| | |
| | | <li>[http://www.friendhk.com/home/space.php?uid=49674&do=blog&id=548022 http://www.friendhk.com/home/space.php?uid=49674&do=blog&id=548022]</li> |
| :<math> (f_g \cdot f_h)(x) = f_g(f_h(x)) = f_g(h*x) = g*(h*x) = (g*h)*x = f_{g*h}(x) ,</math>
| | |
| for all ''x'' in ''G'', and hence:
| | <li>[http://qhdfish.com/home.php?mod=space&uid=272155 http://qhdfish.com/home.php?mod=space&uid=272155]</li> |
| :<math> T(g) \cdot T(h) = f_g \cdot f_h = f_{g*h} = T(g*h) .</math>
| | |
| The homomorphism ''T'' is also [[injective]] since {{nowrap|1=''T''(''g'') = id<sub>''G''</sub>}} (the identity element of Sym(''G'')) implies that {{nowrap|1=''g'' ∗ ''x'' = ''x''}} for all ''x'' in ''G'', and taking ''x'' to be the identity element ''e'' of ''G'' yields {{nowrap|1=''g'' = ''g'' ∗ ''e'' = ''e''}}. Alternatively, ''T'' is also [[injective]] since, if {{nowrap|1=''g'' ∗ ''x'' = ''g''′ ∗ ''x''}} implies that {{nowrap|1=''g'' = ''g''′}} (because every group is [[cancellative]]).
| | <li>[http://santdom.ru/cgi-bin/wgoods.cgi http://santdom.ru/cgi-bin/wgoods.cgi]</li> |
| | | |
| Thus ''G'' is isomorphic to the image of ''T'', which is the subgroup ''K''.
| | </ul> |
| | |
| ''T'' is sometimes called the ''regular representation of'' ''G''.
| |
| | |
| === Alternative setting of proof ===
| |
| An alternative setting uses the language of [[group action]]s. We consider the group <math>G</math> as a G-set, which can be shown to have permutation representation, say <math>\phi</math>.
| |
| | |
| Firstly, suppose <math>G=G/H</math> with <math>H=\{e\}</math>. Then the group action is <math>g.e</math> by [[group action|classification of G-orbits]] (also known as the orbit-stabilizer theorem).
| |
| | |
| Now, the representation is faithful if <math>\phi</math> is injective, that is, if the kernel of <math>\phi</math> is trivial. Suppose <math>g\in\ker\phi</math> Then, <math>g=g.e=\phi(g).e</math> by the equivalence of the permutation representation and the group action. But since <math>g \in \ker\phi</math>, <math>\phi(g)=e</math> and thus <math>\ker\phi</math> is trivial. Then <math>\mathrm{Im} \phi < G</math> and thus the result follows by use of the [[first isomorphism theorem]].
| |
| | |
| ==Remarks on the regular group representation==
| |
| The identity group element corresponds to the identity permutation. All other group elements correspond to a permutation that does not leave any element unchanged. Since this also applies for powers of a group element, lower than the order of that element, each element corresponds to a permutation which consists of cycles which are of the same length: this length is the order of that element. The elements in each cycle form a left [[coset]] of the subgroup generated by the element.
| |
| | |
| ==Examples of the regular group representation==
| |
| Z<sub>2</sub> = {0,1} with addition modulo 2; group element 0 corresponds to the identity permutation e, group element 1 to permutation (12). E.g. 0 +1 = 1 and 1+1 = 0 , so 1 -> 0 and 0 -> 1, as they would under a permutation.
| |
| | |
| Z<sub>3</sub> = {0,1,2} with addition modulo 3; group element 0 corresponds to the identity permutation e, group element 1 to permutation (123), and group element 2 to permutation (132). E.g. 1 + 1 = 2 corresponds to (123)(123)=(132).
| |
| | |
| Z<sub>4</sub> = {0,1,2,3} with addition modulo 4; the elements correspond to e, (1234), (13)(24), (1432).
| |
| | |
| The elements of [[Klein four-group]] {e, a, b, c} correspond to e, (12)(34), (13)(24), and (14)(23).
| |
| | |
| S<sub>3</sub> ([[dihedral group of order 6]]) is the group of all permutations of 3 objects, but also a permutation group of the 6 group elements:
| |
| | |
| <!-- Looks ugly if it's left-aligned/non-square cells, so a bit of customization is good here -->
| |
| {| class="wikitable" style="text-align: center;"
| |
| ! style="width: 1.5em; height: 1.5em;" | *
| |
| ! style="width: 1.5em;" | ''e''
| |
| ! style="width: 1.5em;" | ''a''
| |
| ! style="width: 1.5em;" | ''b''
| |
| ! style="width: 1.5em;" | ''c''
| |
| ! style="width: 1.5em;" | ''d''
| |
| ! style="width: 1.5em;" | ''f''
| |
| ! permutation
| |
| |-
| |
| ! style="height: 1.5em;" | ''e''
| |
| | ''e'' || ''a'' || ''b'' || ''c'' || ''d'' || ''f'' || ''e''
| |
| |-
| |
| ! style="height: 1.5em;" | ''a''
| |
| | ''a'' || ''e'' || ''d'' || ''f'' || ''b'' || ''c'' || (12)(35)(46)
| |
| |-
| |
| ! style="height: 1.5em;" | ''b''
| |
| | ''b'' || ''f'' || ''e'' || ''d'' || ''c'' || ''a'' || (13)(26)(45)
| |
| |-
| |
| ! style="height: 1.5em;" | ''c''
| |
| | ''c'' || ''d'' || ''f'' || ''e'' || ''a'' || ''b'' || (14)(25)(36)
| |
| |-
| |
| ! style="height: 1.5em;" | ''d''
| |
| | ''d'' || ''c'' || ''a'' || ''b'' || ''f'' || ''e'' || (156)(243)
| |
| |-
| |
| ! style="height: 1.5em;" | ''f''
| |
| | ''f'' || ''b'' || ''c'' || ''a'' || ''e'' || ''d'' || (165)(234)
| |
| |}
| |
| | |
| == See also ==
| |
| * [[Containment order]], a similar result in order theory
| |
| * [[Frucht's theorem]], every group is the automorphism group of a graph
| |
| * [[Yoneda lemma]], an analogue of Cayley's theorem in category theory
| |
| * [[representation theorem]]
| |
| | |
| == Notes ==
| |
| {{Reflist}}
| |
| | |
| == References ==
| |
| * {{Citation| last=Jacobson| first=Nathan| author-link=Nathan Jacobson| year=2009| title=Basic algebra| edition=2nd| series= | publisher=Dover| isbn = 978-0-486-47189-1}}.
| |
| | |
| [[Category:Permutations]]
| |
| [[Category:Theorems in group theory]]
| |
| [[Category:Articles containing proofs]]
| |