|
|
Line 1: |
Line 1: |
| {{redirect|Euler's constant|the base of the natural logarithm, e ≈ 2.718...|e (mathematical constant)}}
| | The survival of an animal species requires a continuous supply of vitality for physiological working. As the supply of food is intermittent, this requirement is met by storing stamina because triglycerides inside the fat cells of adipose tissue depots. Whenever required, the stored stamina is introduced as free fatty acids for employ at different websites. The system controlled by the so called thrifty genes, permits people to survive starvation for because long as several months. However, an ample supply of calorie wealthy food along with a sedentary lifestyle increases adipose energy stores and causes-obesity.<br><br>Obesity will be defined because an excess of body fat or body weight that is 20% over the ideal. More exactly obesity may be calculated waist hip ratio by the unit: Body Mass Index (BMI). The BMI is body mass (kg) divided by the square of the height (meters). The BMI carefully correlates with body fat. Healthy persons have a BMI of 20-25, overweight has a BMI of 25-30, obese has a BMI of >30 plus extreme weight is BMI >40.<br><br>Ok, now this is a direct abs exercise. In fact, it's the best exercise you are able to do to minimize waist hip ratio calculator the waist size. My clients lose between 1.75-3 inches off their waists inside lower than a month carrying this out exercise.<br><br>Just as when the wrinkly skin wasn't creating we feel aged enough, how about you add hair thinning to the pot. Smoke contains harmful chemicals that could damage the DNA inside hair follicles plus generate cell damaging free radicals also. So in the finish it leaves you with thinner hair that greys faster too compared to non smokers.<br><br>It's among the most acknowledged details regarding smoking that it kills the teeth. So if a sitting there hoping for which winner of the smile with gleaming whilst teeth, but the still smoking like a train, I hate to break it to you yet you no matter how countless whitening toothpastes you buy, you can kiss that dream goodbye.Nicotine stains a teeth, thus in the event you want lovely yellow teeth, light up another 1 considering you'd be heading in the proper way.<br><br>[http://safedietplansforwomen.com/waist-to-hip-ratio waist to hip ratio]- This fitness test is selected to asses body fat distribution. The waist to cool ratio indicates the proportion of fat stored about the waist compared to hip girth. Those that hold more weight in their midsection because abdomen fat, are more probably to experience wellness problems like heart disease plus diabetes, and a lower fitness level. To calculate your waist to cool ratio, measure the circumference of the widest part of the hips, plus smallest piece of your waist. Then divide the waist measuring by the measuring of the hips. For ladies, a healthy ratio is less than .8, plus for guys it's lower than .9.<br><br>Gather a materials. You need the following: measuring tape (the kind selected by a tailor, not a carpenter), a sewing needle, thread of whatever color best suits your desired kilt, a pencil, a wonderful preponderance of safety pins, an iron, along with a can of spray-on starch. Oh, and, of course, the kilt information. How much we need may have to be determined by how big you may be, and how broad we create your pleats. I am an especially large fellow, nevertheless I moreover utilized incredibly wide pleats. I bought four yards of fabric, and had plenty left over. More on this later.<br><br>And that's where I realize that I need to exercise a bit more plus eat greater foods. I always coastline along at my good BMI of regarding 22. However the hot WTHR indicator doesn't look so nice. And there is 1 formula which never fails: eat lower than we employ. That takes care of BMI, WTHR plus any modern fat indicators really showing up. |
| | |
| [[File:gamma-area.svg|thumb|The area of the blue region converges on the Euler–Mascheroni constant.]]
| |
| | |
| The '''Euler–Mascheroni constant''' (also called '''Euler's constant''') is a [[mathematical constant]] recurring in [[mathematical analysis|analysis]] and [[number theory]], usually denoted by the lowercase Greek letter {{lang|el|gamma}} (<math>\gamma</math>).
| |
| | |
| It is defined as the [[limit of a sequence|limiting]] difference between the [[harmonic series (mathematics)|harmonic series]] and the [[natural logarithm]]:
| |
| | |
| :<math>\gamma = \lim_{n \rightarrow \infty } \left(
| |
| \sum_{k=1}^n \frac{1}{k} - \ln(n) \right)=\int_1^\infty\left({1\over\lfloor x\rfloor}-{1\over x}\right)\,dx.</math>
| |
| | |
| Here, <math>\lfloor x\rfloor</math> represents the [[floor and ceiling functions|floor function]].
| |
| | |
| The numerical value of the Euler–Mascheroni constant, to 50 decimal places, is
| |
| : {{gaps|0.57721|56649|01532|86060|65120|90082|40243|10421|59335|93992|…}} {{OEIS2C|id=A001620}}.
| |
| | |
| {| class="infobox" style ="width: 370px;"
| |
| | colspan="2" align="center" |{{Irrational numbers}}
| |
| |-
| |
| |[[Binary numeral system|Binary]]
| |
| |{{gaps|0.1001001111000100011001111110001101111101...}}
| |
| |-
| |
| |[[Decimal]]
| |
| |{{gaps|0.5772156649015328606065120900824024310421...}}
| |
| |-
| |
| |[[Hexadecimal]]
| |
| |{{gaps|0.93C467E37DB0C7A4D1BE3F810152CB56A1CECC3A...}}
| |
| |-
| |
| |[[Continued fraction]]
| |
| |{{nowrap|[0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, … ]}}<ref name="ReferenceA">{{OEIS2C|id=A002852|name=Continued fraction for Euler's constant}}</ref><small>(This continued fraction is not known to be finite or [[periodic function|periodic]]. Shown in [[continued fraction#Notations for continued fractions|linear notation]])</small>
| |
| |}
| |
| | |
| ==History==
| |
| The constant first appeared in a 1734 paper by the [[Ancien Régime of Switzerland|Swiss]] mathematician [[Leonhard Euler]], titled ''De Progressionibus harmonicis observationes'' (Eneström Index 43). Euler used the notations ''C'' and ''O'' for the constant. In 1790, [[Italy|Italian]] mathematician [[Lorenzo Mascheroni]] used the notations ''A'' and ''a'' for the constant. The notation <math>\gamma</math> appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time perhaps because of the constant's connection to the [[gamma function]].<ref name=lagarias>{{Cite journal| last = Lagarias | first = Jeffrey C. |date=Octoberl 2013 | title = Euler's constant: Euler's work and modern developments | journal = [[Bulletin of the American Mathematical Society]] | volume = 50 | issue = 4 | page = 556 | url = http://www.ams.org/journals/bull/2013-50-04/S0273-0979-2013-01423-X/S0273-0979-2013-01423-X.pdf | format = PDF }}</ref> For example, the German mathematician [[Carl Anton Bretschneider]] used the notation <math>\gamma</math> in 1835<ref>[[Carl Anton Bretschneider]]: ''Theoriae logarithmi integralis lineamenta nova'' (13 October 1835), Journal für die reine und angewandte Mathematik 17, 1837, pp. 257–285 (in Latin; “''γ'' = ''c'' = 0,577215 664901 532860 618112 090082 3..” on [http://books.google.de/books?id=OAoPAAAAIAAJ&pg=PA260 p. 260])</ref> and [[Augustus De Morgan]] used it in a textbook published in parts from 1836 to 1842.<ref>[[Augustus De Morgan]]: ''The differential and integral calculus'', Baldwin and Craddock, London 1836–1842 (“''γ''” on [http://books.google.com/books?id=95x4IrIcHrgC&pg=PA578 p. 578])</ref> | |
| | |
| ==Appearances==
| |
| The Euler–Mascheroni constant appears, among other places, in the following ('*' means that this entry contains an explicit equation):
| |
| * Expressions involving the [[exponential integral]]*
| |
| * The [[Laplace transform]]* of the [[natural logarithm]]
| |
| * The first term of the [[Taylor series]] expansion for the [[Riemann zeta function]]*, where it is the first of the [[Stieltjes constants]]*
| |
| * Calculations of the [[digamma function]]
| |
| * A product formula for the [[gamma function]]
| |
| * An inequality for [[Euler's totient function]]
| |
| * The growth rate of the [[divisor function]]
| |
| * The calculation of the [[Meissel–Mertens constant]]
| |
| * The third of [[Mertens' theorems]]*
| |
| * Solution of the second kind to [[Bessel's equation]]
| |
| * In the regularization/[[renormalization]] of the Harmonic series as a finite value
| |
| * In [[Dimensional regularization]] of [[Feynman diagram]]s in [[Quantum Field Theory]]
| |
| * The [[mean]] of the [[Gumbel distribution]]
| |
| * The [[information entropy]] of the [[Weibull distribution|Weibull]] and [[Lévy distribution|Lévy]] distributions, and, implicitly, of the [[chi-squared distribution]] for one or two degrees of freedom.
| |
| * The answer to the [[coupon collector's problem]]*
| |
| * In some formulations of [[Zipf's law]]
| |
| * A definition of the [[trigonometric integral#Cosine integral|cosine integral]]*
| |
| * In expressions revealing the key properties of an [[exoplanet]] atmosphere (temperature, pressure, and composition) embedded in its [[absorption spectrum]], which are at the basis of a new method to determine the mass of exoplanets, ''MassSpec''.<ref>{{cite journal|last=de Wit|first=Julien|coauthors=Seager, S.|title=Constraining Exoplanet Mass from Transmission Spectroscopy|journal=Science|date=19 December 2013|volume=342|issue=6165|pages=1473–1477|doi=10.1126/science.1245450|url=http://www.sciencemag.org/content/342/6165/1473}}</ref>
| |
| For more information of this nature, see [http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html Gourdon and Sebah (2004).]
| |
| | |
| ==Properties==
| |
| The number <math>\gamma</math> has not been proved [[algebraic number|algebraic]] or [[transcendental number|transcendental]]. In fact, it is not even known whether <math>\gamma</math> is [[irrational number|irrational]]. [[Continued fraction]] analysis reveals that if <math>\gamma</math> is [[rational number|rational]], its denominator must be greater than 10<sup>242080</sup>.<ref name=Havil /> The ubiquity of <math>\gamma</math> revealed by the large number of equations below makes the irrationality of <math>\gamma</math> a major open question in mathematics. Also see Sondow (2003a).
| |
| | |
| For more equations of the sort shown below, see [http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html Gourdon and Sebah (2002).]
| |
| | |
| ===Relation to gamma function===
| |
| <math>\gamma</math> is related to the [[digamma function]] Ψ, and hence the derivative of the [[gamma function]] Γ, when both functions are evaluated at 1. Thus:
| |
| | |
| :<math> \ -\gamma = \Gamma'(1) = \Psi(1). </math>
| |
| | |
| This is equal to the limits:
| |
| | |
| :<math> -\gamma = \lim_{z\to 0} \left\{\Gamma(z) - \frac1{z} \right\}
| |
| = \lim_{z\to 0} \left\{\Psi(z) + \frac1{z} \right\}.</math>
| |
| | |
| Further limit results are (Krämer, 2005):
| |
| | |
| :<math> \lim_{z\to 0} \frac1{z}\left\{\frac1{\Gamma(1+z)} - \frac1{\Gamma(1-z)} \right\} = 2\gamma</math>
| |
| :<math> \lim_{z\to 0} \frac1{z}\left\{\frac1{\Psi(1-z)} - \frac1{\Psi(1+z)} \right\} = \frac{\pi^2}{3\gamma^2}.</math>
| |
| | |
| A limit related to the [[beta function]] (expressed in terms of [[gamma function]]s) is
| |
| | |
| :<math> \gamma = \lim_{n \to \infty} \left \{\frac{ \Gamma(\frac{1}{n}) \Gamma(n+1)\, n^{1+1/n}}{\Gamma(2+n+\frac{1}{n})} - \frac{n^2}{n+1} \right\} </math>
| |
| | |
| :<math>\gamma = \lim\limits_{m \to \infty}\sum_{k=1}^m{m \choose k}\frac{(-1)^k}{k}\ln(\Gamma(k+1)).</math>
| |
| | |
| ===Relation to the zeta function===
| |
| <math>\gamma</math> can also be expressed as an [[series (mathematics)|infinite sum]] whose terms involve the [[Riemann zeta function]] evaluated at positive integers:
| |
| | |
| :<math>\begin{align}\gamma &= \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{m} \\
| |
| &= \ln \left ( \frac{4}{\pi} \right ) + \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{2^{m-1}m}.\end{align} </math>
| |
| | |
| Other series related to the zeta function include:
| |
| | |
| :<math>\begin{align} \gamma &= \frac{3}{2}- \ln 2 - \sum_{m=2}^\infty (-1)^m\,\frac{m-1}{m} [\zeta(m)-1] \\
| |
| &= \lim_{n \to \infty} \left [ \frac{2\,n-1}{2\,n} - \ln\,n + \sum_{k=2}^n \left ( \frac{1}{k} - \frac{\zeta(1-k)}{n^k} \right ) \right ] \\
| |
| &= \lim_{n \to \infty} \left [ \frac{2^n}{e^{2^n}} \sum_{m=0}^\infty \frac{2^{m \,n}}{(m+1)!} \sum_{t=0}^m \frac{1}{t+1} - n\, \ln 2+ O \left ( \frac{1}{2^n\,e^{2^n}} \right ) \right ].\end{align} </math>
| |
| | |
| The error term in the last equation is a rapidly decreasing function of ''n''. As a result, the formula is well-suited for efficient computation of the constant to high precision.
| |
| | |
| Other interesting limits equaling the Euler–Mascheroni constant are the antisymmetric limit (Sondow, 1998)
| |
| | |
| :<math> \gamma = \lim_{s \to 1^+} \sum_{n=1}^\infty \left ( \frac{1}{n^s}-\frac{1}{s^n} \right ) = \lim_{s \to 1} \left ( \zeta(s) - \frac{1}{s-1} \right ) = \lim_{s \to 0} \frac{\zeta(1+s)+\zeta(1-s)}{2}</math>
| |
| | |
| and [[Charles Jean de la Vallée-Poussin|de la Vallée-Poussin's]] formula
| |
| | |
| :<math>\begin{align} \gamma = \lim_{n \to \infty} \frac{1}{n}\, \sum_{k=1}^n \left ( \left \lceil \frac{n}{k} \right \rceil - \frac{n}{k} \right ).\end{align}</math>
| |
| | |
| Closely related to this is the [[rational zeta series]] expression. By peeling off the first few terms of the series above, one obtains an estimate for the classical series limit:
| |
| | |
| :<math>\gamma = \sum_{k=1}^n \frac{1}{k} - \ln n -
| |
| \sum_{m=2}^\infty \frac{\zeta (m,n+1)}{m}</math>
| |
| where ζ(''s'',''k'') is the [[Hurwitz zeta function]]. The sum in this equation involves the [[harmonic number]]s, ''H''<sub>''n''</sub>. Expanding some of the terms in the Hurwitz zeta function gives:
| |
| | |
| :<math>
| |
| H_n = \ln n + \gamma + \frac {1} {2n} - \frac {1} {12n^2} + \frac {1} {120n^4} - \varepsilon </math>, where <math>0 < \varepsilon < \frac {1} {252n^6}.</math>
| |
| | |
| ===Integrals===
| |
| <math>\gamma</math> equals the value of a number of definite [[integral]]s:
| |
| | |
| :<math>\begin{align}\gamma &= - \int_0^\infty { e^{-x} \ln x }\,dx = -4\int_0^\infty { e^{-x^2} x \ln x }\,dx\\
| |
| &= -\int_0^1 \ln\ln\left (\frac{1}{x}\right) dx \\
| |
| &= \int_0^\infty \left (\frac1{e^x-1}-\frac1{xe^x} \right)dx = \int_0^1\left(\frac 1{\ln x} + \frac 1{1-x}\right)dx\\
| |
| &= \int_0^\infty \left (\frac1{1+x^k}-e^{-x} \right)\frac{dx}{x},\quad k>0\\
| |
| &= \int_0^1 H_{x} dx \end{align} </math>
| |
| where <math>H_{x}</math> is the [[Harmonic number|fractional Harmonic number]].
| |
| | |
| Definite integrals in which <math>\gamma</math> appears include:
| |
| | |
| :<math> \int_0^\infty { e^{-x^2} \ln x }\,dx = -\tfrac14(\gamma+2 \ln 2) \sqrt{\pi} </math>
| |
| | |
| :<math> \int_0^\infty { e^{-x} \ln^2 x }\,dx = \gamma^2 + \frac{\pi^2}{6} .</math>
| |
| | |
| One can express <math>\gamma</math> using a special case of [[Hadjicostas's formula]] as a [[double integral]] (Sondow 2003a, 2005) with equivalent series:
| |
| | |
| : <math> \gamma = \int_{0}^{1}\int_{0}^{1} \frac{x-1}{(1-x\,y)\ln(x\,y)} \, dx\,dy = \sum_{n=1}^\infty \left ( \frac{1}{n}-\ln\frac{n+1}{n} \right ).
| |
| </math>
| |
| An interesting comparison by J. Sondow (2005) is the double integral and alternating series
| |
| | |
| :<math> \ln \left ( \frac{4}{\pi} \right ) = \int_{0}^{1}\int_{0}^{1} \frac{x-1}{(1+x\,y)\ln(x\,y)} \, dx\,dy = \sum_{n=1}^\infty (-1)^{n-1} \left( \frac{1}{n}-\ln\frac{n+1}{n} \right). </math>
| |
| | |
| It shows that <math>\ln \left ( \frac{4}{\pi} \right )</math> may be thought of as an "alternating Euler constant".
| |
| | |
| The two constants are also related by the pair of series (see Sondow 2005 #2)
| |
| | |
| :<math> \sum_{n=1}^\infty \frac{N_1(n) + N_0(n)}{2n(2n+1)} = \gamma </math>
| |
| | |
| :<math> \sum_{n=1}^\infty \frac{N_1(n) - N_0(n)}{2n(2n+1)} = \ln \left ( \frac{4}{\pi} \right ) </math>
| |
| | |
| where ''N''<sub>1</sub>(''n'') and ''N''<sub>0</sub>(''n'') are the number of 1's and 0's, respectively, in the [[base 2]] expansion of ''n''.
| |
| | |
| We have also Catalan's 1875 integral (see Sondow and Zudilin)
| |
| | |
| :<math> \gamma = \int_0^1 \frac{1}{1+x} \sum_{n=1}^\infty x^{2^n-1} \, dx. </math>
| |
| | |
| ===Series expansions===
| |
| Euler showed that the following [[infinite series]] approaches <math> \gamma </math>:
| |
| | |
| :<math>\gamma = \sum_{k=1}^\infty \left[ \frac{1}{k} - \ln \left( 1 + \frac{1}{k} \right) \right].</math>
| |
| | |
| The series for <math>\gamma</math> is equivalent to series Nielsen found in 1897:
| |
| | |
| :<math> \gamma = 1 - \sum_{k=2}^{\infty}(-1)^k\frac{\lfloor\log_2 k\rfloor}{k+1}.</math>
| |
| | |
| In 1910, Vacca found the closely related series:
| |
| | |
| :<math>{
| |
| \gamma = \sum_{k=2}^\infty (-1)^k \frac{ \left \lfloor \log_2 k \right \rfloor}{k}
| |
| = \frac12-\frac13
| |
| + 2\left(\frac14 - \frac15 + \frac16 - \frac17\right)
| |
| + 3\left(\frac18 - \frac19 + \frac1{10} - \frac1{11} + \dots - \frac1{15}\right) + \dots
| |
| }</math>
| |
| | |
| where <math>\log_2</math> is the [[logarithm]] of base 2 and <math> \lfloor \, \rfloor </math> is the [[floor function]].
| |
| | |
| In 1926 he found a second series:
| |
| | |
| :<math>{\gamma + \zeta(2) = \sum_{k=2}^\infty\left(\frac1{\lfloor \sqrt{k} \rfloor^2} - \frac1{k}\right) = \sum_{k=2}^{\infty} \frac{k - \lfloor\sqrt{k}\rfloor^2}{k\lfloor\sqrt{k}\rfloor^2} = \frac12 + \frac23 + \frac1{2^2} \sum_{k=1}^{2 \times 2} \frac k {k+2^2} + \frac1{3^2} \sum_{k=1}^{3 \times 2} \frac k {k+3^2} + \dots}.</math>
| |
| | |
| From the [[Ernst Eduard Kummer|Kummer]]-expansion of the gamma function we get:
| |
| :<math> \gamma = \ln\pi - 4\ln\Gamma(\tfrac34) + \frac4{\pi}\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\ln(2k+1)}{2k+1}.</math>
| |
| | |
| Series of prime numbers:
| |
| :<math>\begin{align} \gamma = \lim_{n \to \infty} \left( \ln n - \sum_{p \le n} \frac{ \ln p }{ p-1 } \right)\end{align}.</math> <ref>http://mathworld.wolfram.com/MertensConstant.html (15)</ref>
| |
| | |
| ===Asymptotic expansions===
| |
| | |
| <math>\gamma</math> equals the following asymptotic formulas (where <math>H_n</math> is the ''n''th [[harmonic number]].)
| |
| | |
| :<math>\gamma \sim H_n - \ln \left( n \right) - \frac{1}{{2n}} + \frac{1}{{12n^2 }} - \frac{1}{{120n^4 }} + ...</math>
| |
| :(''Euler'')
| |
| | |
| :<math>\gamma \sim H_n - \ln \left( {n + \frac{1}{2} + \frac{1}{{24n}} - \frac{1}{{48n^3 }} + ...} \right)</math>
| |
| :(''Negoi'')
| |
| | |
| :<math>\gamma \sim H_n - \frac{{\ln \left( n \right) + \ln \left( {n + 1} \right)}}{2} - \frac{1}{{6n\left( {n + 1} \right)}} + \frac{1}{{30n^2 \left( {n + 1} \right)^2 }} - ...</math>
| |
| :(''Cesaro'')
| |
| | |
| The third formula is also called the Ramanujan expansion. | |
| | |
| ===Relations with the reciprocal logarithm===
| |
| | |
| The reciprocal logarithm function (Krämer, 2005)
| |
| :<math>\frac{z}{\ln(1-z)} = \sum_{n=0}^{\infty}C_nz^n, \quad |z|<1,</math>
| |
| has a deep connection with Euler's constant and was studied by [[James Gregory (mathematician)|James Gregory]] in connection with [[numerical integration]]. The coefficients <math>C_n</math> are called [[Gregory coefficients]]; the first six were given in a letter to [[John Collins (mathematician)|John Collins]] in 1670. From the equations
| |
| :<math>C_0 = -1\;,\quad \sum_{k=0}^n\frac{C_k}{n+1-k} = 0,\quad n=1,2,3,\dots</math>
| |
| , which can be used [[recursively]] to get these coefficients for all <math>n \ge 1</math>, we get the table
| |
| {| class="wikitable" border="1" align="center"
| |
| |-
| |
| ! n
| |
| ! width="40" |1
| |
| ! width="40" |2
| |
| ! width="50" |3
| |
| ! width="50" |4
| |
| ! width="50" |5
| |
| ! width="50" |6
| |
| ! width="50" |7
| |
| ! width="50" |8
| |
| ! width="50" |9
| |
| ! width="80" |10
| |
| !| [[OEIS]] sequences
| |
| |- align="center"
| |
| ! C<sub>''n''</sub>
| |
| | <math>\tfrac12</math>
| |
| | <math>\tfrac1{12}</math>
| |
| | <math>\tfrac1{24}</math>
| |
| | <math>\tfrac{19}{720}</math>
| |
| | <math>\tfrac3{160}</math>
| |
| | <math>\tfrac{863}{60480}</math>
| |
| | <math>\tfrac{275}{24192}</math>
| |
| | <math>\tfrac{33953}{3628800}</math>
| |
| | <math>\tfrac{8183}{1036800}</math>
| |
| | <math>\tfrac{3250433}{479001600}</math>
| |
| | {{OEIS2C|id=A002206}} (numerators),
| |
| {{OEIS2C|id=A002207}}(denominators)
| |
| |}
| |
| Gregory coefficients are similar to [[Bernoulli numbers]] and satisfy the asymptotic relation
| |
| :<math>C_n = \frac1{n\ln^2 n} - \mathcal{O}\left(\frac1{n\ln^3 n}\right),\quad n\to\infty,</math>
| |
| and the integral representation
| |
| :<math>C_n = \int_0^{\infty}\frac{dx}{(1+x)^n\left(\ln^2 x + \pi^2\right)},\quad n=1,2,\dots.</math>
| |
| Euler's constant has the integral representations
| |
| :<math>\gamma = \int_0^{\infty}\frac{\ln(1+x)}{\ln^2 x + \pi^2}\cdot\frac{dx}{x^2}
| |
| = \int_{-\infty}^{\infty}\frac{\ln(1+e^{-x})}{x^2 + \pi^2}\,e^x\,dx.</math>
| |
| A very important expansion of [[Gregorio Fontana]] (1780) is:
| |
| :<math>
| |
| \begin{align}
| |
| H_n &= \gamma + \log n + \frac1{2n}
| |
| - \sum_{k=2}^{\infty}\frac{(k-1)!C_k}{n(n+1)\dots(n+k-1)},\quad n=1,2,\dots,\\
| |
| &= \gamma + \log n + \frac1{2n}
| |
| - \frac1{12n(n+1)} - \frac1{12n(n+1)(n+2)} - \frac{19}{120n(n+1)(n+2)(n+3)} - \dots
| |
| \end{align}
| |
| </math>
| |
| which is convergent for all ''n''.
| |
| | |
| Weighted sums of the Gregory coefficients give different constants:
| |
| :<math>
| |
| \begin{align}
| |
| 1 &= \sum_{n=1}^{\infty}C_n
| |
| = \tfrac12 + \tfrac1{12} + \tfrac1{24} + \tfrac{19}{720} + \tfrac3{160} + \dots,\\
| |
| \frac1{\log2} - 1 &= \sum_{n=1}^{\infty}(-1)^{n+1}C_n
| |
| = \tfrac12 - \tfrac1{12} + \tfrac1{24} - \tfrac{19}{720} + \tfrac3{160} - \dots,\\
| |
| \gamma &= \sum_{n=1}^{\infty}\frac{C_n}{n}
| |
| = \tfrac12 + \tfrac1{24} + \tfrac1{72} + \tfrac{19}{2880} + \tfrac3{800} + \dots.
| |
| \end{align}
| |
| </math>
| |
| | |
| ===''e''<sup>γ</sup>===
| |
| | |
| The constant ''e''<sup>γ</sup> is important in number theory. Some authors denote this quantity simply as <math> \gamma^\prime </math>. ''e''<sup>γ</sup> equals the following [[limit of a sequence|limit]], where ''p''<sub>''n''</sub> is the ''n''th [[prime number]]:
| |
| | |
| :<math>e^\gamma = \lim_{n \to \infty} \frac {1} {\ln p_n} \prod_{i=1}^n \frac {p_i} {p_i - 1}.</math>
| |
| This restates the third of [[Mertens' theorems]]. The numerical value of ''e''<sup>γ</sup> is:
| |
| :1.78107241799019798523650410310717954916964521430343 … {{OEIS2C|id=A073004}}.
| |
| | |
| Other [[infinite product]]s relating to ''e''<sup>γ</sup> include:
| |
| | |
| :<math> \frac{e^{1+\gamma /2}}{\sqrt{2\,\pi}} = \prod_{n=1}^\infty e^{-1+1/(2\,n)}\,\left (1+\frac{1}{n} \right )^n </math>
| |
| | |
| :<math> \frac{e^{3+2\gamma}}{2\, \pi} = \prod_{n=1}^\infty e^{-2+2/n}\,\left (1+\frac{2}{n} \right )^n. </math>
| |
| | |
| These products result from the [[Barnes G-function]].
| |
| | |
| We also have
| |
| :<math> e^{\gamma} = \left ( \frac{2}{1} \right )^{1/2} \left (\frac{2^2}{1 \cdot 3} \right )^{1/3} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/4}
| |
| \left (\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right )^{1/5} \cdots </math>
| |
| where the ''n''th factor is the (''n''+1)st root of
| |
| :<math>\prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}}.</math>
| |
| This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow (2003) using [[hypergeometric function]]s.
| |
| | |
| ===Continued fraction===
| |
| The [[continued fraction]] expansion of <math> \gamma </math> is of the form [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] {{OEIS2C|id=A002852}}, of which there is no ''apparent'' pattern. The continued fraction has '''at least''' 470,000 terms,<ref name=Havil>Havil 2003 p 97.</ref> and it has infinitely many terms [[if and only if]] <math>\gamma</math> is irrational.
| |
| | |
| ==Generalizations==
| |
| ''Euler's generalized constants'' are given by
| |
| | |
| :<math>\gamma_\alpha = \lim_{n \to \infty} \left[ \sum_{k=1}^n \frac{1}{k^\alpha} - \int_1^n \frac{1}{x^\alpha} \, dx \right],</math>
| |
| | |
| for 0 < α < 1, with <math>\gamma</math> as the special case α = 1.<ref>Havil, 117-118</ref> This can be further generalized to
| |
| | |
| :<math>c_f = \lim_{n \to \infty} \left[ \sum_{k=1}^n f(k) - \int_1^n f(x) \, dx \right]</math>
| |
| | |
| for some arbitrary decreasing function ''f''. For example,
| |
| | |
| :<math>f_n(x) = \frac{\ln^n x}{x}</math>
| |
| | |
| gives rise to the [[Stieltjes constants]], and
| |
| | |
| :<math>f_a(x) = x^{-a}</math>
| |
| | |
| gives
| |
| | |
| :<math>\gamma_{f_a} = \frac{(a-1)\zeta(a)-1}{a-1}</math>
| |
| | |
| where again the limit
| |
| | |
| :<math>\gamma = \lim_{a\to1}\left[ \zeta(a) - \frac{1}{a-1}\right]</math> | |
| | |
| appears.
| |
| | |
| A two-dimensional limit generalization is the [[Masser–Gramain constant]].
| |
| | |
| ''Euler-Lehmer constants'' are given by summation of inverses of numbers in a common
| |
| modulo class<ref>{{cite journal|first1=M. | last1=Ram Murty | first2=N. | last2=Saradha | title=Euler-lehmer constants and a conjecture of Erdos| journal = JNT| doi=10.1016/j.jnt.2010.07.004| year=2010|volume=130|pages=2671–2681}}</ref>
| |
| ,<ref>{{cite journal| first1=D. H. | last1=Lehmer|year=1975|title=Euler constants for arithmetical progressions | journal=Acta Arithm. |volume=27 |number=1| pages=125–142|url=http://matwbn.icm.edu.pl/ksiazki/aa/aa27/aa27121.pdf}}</ref> | |
| | |
| :<math>\gamma(a,q) = \lim_{x\to \infty}\left ( \sum_{0<n\le x \atop n\equiv a \pmod q} \frac{1}{n}-\frac{\log x}{q} \right ).</math>
| |
| | |
| The basic properties are
| |
| | |
| :<math>\gamma(0,q) = \frac{\gamma -\log q}{q},</math>
| |
| | |
| :<math>\sum_{a=0}^{q-1} \gamma(a,q)=\gamma,</math>
| |
| | |
| :<math>q\gamma(a,q) = \gamma-\sum_{j=1}^{q-1}e^{-2\pi aij/q}\log(1-e^{2\pi ij/q}),</math>
| |
| | |
| and if {{math|gcd(a,q){{=}}d}} then
| |
| | |
| :<math>q\gamma(a,q) = \frac{q}{d}\gamma(a/d,q/d)-\log d.</math>
| |
| | |
| ==Published digits==
| |
| Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 20th–22nd decimal places; starting from the 20th digit, he calculated ...'''181'''12090082'''39''' when the correct value is ...'''065'''12090082'''40'''.
| |
| | |
| {| class="wikitable" style="margin: 1em auto 1em auto"
| |
| |+ '''Published Decimal Expansions of ''<math>\gamma</math>'' '''
| |
| ! Date || Decimal digits || Author
| |
| |-
| |
| | 1734 || 5 || [[Leonhard Euler]]
| |
| |-
| |
| | 1735 || 15 || Leonhard Euler
| |
| |-
| |
| | 1790 || 19 || [[Lorenzo Mascheroni]]
| |
| |-
| |
| | 1809 || 22 || [[Johann Georg von Soldner|Johann G. von Soldner]]
| |
| |-
| |
| | 1811 || 22 || [[Carl Friedrich Gauss]]
| |
| |-
| |
| | 1812 || 40 || [[Friedrich Bernhard Gottfried Nicolai]]
| |
| |-
| |
| | 1857 || 34 || Christian Fredrik Lindman
| |
| |-
| |
| | 1861 || 41 || Ludwig Oettinger
| |
| |-
| |
| | 1867 || 49 || [[William Shanks]]
| |
| |-
| |
| | 1871 || 99 || [[James Whitbread Lee Glaisher|James W.L. Glaisher]]
| |
| |-
| |
| | 1871 || 101 || William Shanks
| |
| |-
| |
| | 1877 || 262 || [[John Couch Adams|J. C. Adams]]
| |
| |-
| |
| | 1952 || 328 || [[John Wrench|John William Wrench, Jr.]]
| |
| |-
| |
| | 1961 || 1050 || Helmut Fischer and Karl Zeller
| |
| |-
| |
| | 1962 || 1,271 || [[Donald Knuth]]
| |
| |-
| |
| | 1962 || 3,566 || Dura W. Sweeney
| |
| |-
| |
| | 1973 || 4,879 || William A. Beyer and [[Michael S. Waterman]]
| |
| |-
| |
| | 1977 || 20,700 || [[Richard Brent (scientist)|Richard P. Brent]]
| |
| |-
| |
| | 1980 || 30,100 || Richard P. Brent & [[Edwin McMillan|Edwin M. McMillan]]
| |
| |-
| |
| | 1993 || 172,000 || [[Jonathan Borwein]]
| |
| |-
| |
| | 2009 || 29,844,489,545 || Alexander J. Yee & Raymond Chan<ref>[http://www.numberworld.org/nagisa_runs/computations.html Nagisa – Large Computations]</ref>
| |
| |}
| |
| | |
| ==See also==
| |
| {{portal|Mathematics}}
| |
| {{quote box
| |
| |align=left
| |
| |quote={{Irrational numbers}}
| |
| |fontsize=100%
| |
| }}
| |
| {{-}}
| |
| | |
| ==Notes==
| |
| ;Footnotes
| |
| {{Reflist}}
| |
| | |
| ;References
| |
| *{{cite journal|author=Borwein, Jonathan M., David M. Bradley, Richard E. Crandall
| |
| |title=Computational Strategies for the Riemann Zeta Function
| |
| |journal=Journal of Computational and Applied Mathematics
| |
| |year=2000
| |
| |volume=121
| |
| |pages=11
| |
| |url=http://www.maths.ex.ac.uk/~mwatkins/zeta/borwein1.pdf}} Derives γ as sums over Riemann zeta functions.
| |
| *Gourdon, Xavier, and Sebah, P. (2002) "[http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html Collection of formulas for Euler's constant, γ.]"
| |
| *Gourdon, Xavier, and Sebah, P. (2004) "[http://numbers.computation.free.fr/Constants/Gamma/gamma.html The Euler constant: γ.]"
| |
| *[[Donald Knuth]] (1997) ''[[The Art of Computer Programming]], Vol. 1'', 3rd ed. Addison-Wesley. ISBN 0-201-89683-4
| |
| *Krämer, Stefan (2005) ''Die Eulersche Konstante γ und verwandte Zahlen''. Diplomarbeit, Universität Göttingen.
| |
| *[[Jonathan Sondow|Sondow, Jonathan]] (1998) "[http://home.earthlink.net/~jsondow/id8.html An antisymmetric formula for Euler's constant,]" ''[[Mathematics Magazine]] 71'': 219-220.
| |
| *[[Jonathan Sondow|Sondow, Jonathan]] (2002) "[http://arXiv.org/abs/math.NT/0211075 A hypergeometric approach, via linear forms involving logarithms, to irrationality criteria for Euler's constant.]" With an Appendix by [http://wain.mi.ras.ru/zlobin/ Sergey Zlobin], Mathematica Slovaca 59'': 307-314.
| |
| *{{cite arxiv | first1=Jonathan | last1= Sondow | year=2003 | eprint=math.CA/0306008 | title= An infinite product for e<sup>γ</sup> via hypergeometric formulas for Euler's constant, γ}}
| |
| *[[Jonathan Sondow|Sondow, Jonathan]] (2003a) "[http://arXiv.org/abs/math.NT/0209070 Criteria for irrationality of Euler's constant,]" ''[[Proceedings of the American Mathematical Society]] 131'': 3335-3344.
| |
| *[[Jonathan Sondow|Sondow, Jonathan]] (2005) "[http://arXiv.org/abs/math.CA/0211148 Double integrals for Euler's constant and ln 4/π and an analog of Hadjicostas's formula,]" ''[[American Mathematical Monthly]] 112'': 61-65.
| |
| *[[Jonathan Sondow|Sondow, Jonathan]] (2005) [http://arXiv.org/abs/math.NT/0508042 "New Vacca-type rational series for Euler's constant and its 'alternating' analog ln 4/π.]"
| |
| * {{cite arxiv| first1=Jonathan |last1=Sondow | first2=Wadim | last2=Zudilin | year=2006 |eprint=math.NT/0304021 |title= Euler's constant, q-logarithms, and formulas of Ramanujan and Gosper}} Ramanujan Journal 12: 225-244.
| |
| *G. Vacca (1926), "Nuova serie per la costante di Eulero, ''C'' = 0,577…". ''Rendiconti, Accademia Nazionale dei Lincei, Roma, Classe di Scienze Fisiche, Matematiche e Naturali'' (6) 3, 19–20.
| |
| *[[James Whitbread Lee Glaisher]] (1872), "On the history of Euler's constant". Messenger of Mathematics. New Series, vol.1, p. 25-30, JFM 03.0130.01
| |
| *Carl Anton Bretschneider (1837). "Theoriae logarithmi integralis lineamenta nova". Crelle Journal, vol.17, p. 257-285 (submitted 1835)
| |
| *[[Lorenzo Mascheroni]] (1790). "Adnotationes ad calculum integralem Euleri, in quibus nonnulla problemata ab Eulero proposita resolvuntur". Galeati, Ticini.
| |
| *[[Lorenzo Mascheroni]] (1792). "Adnotationes ad calculum integralem Euleri. In quibus nonnullae formulae ab Eulero propositae evolvuntur". Galeati, Ticini. Both online at: http://books.google.de/books?id=XkgDAAAAQAAJ
| |
| *{{cite book
| |
| |first = Julian
| |
| |last = Havil
| |
| |year = 2003
| |
| |title = Gamma: Exploring Euler's Constant
| |
| |publisher = Princeton University Press
| |
| |isbn = 0-691-09983-9
| |
| }}
| |
| *{{ cite journal| first1=E. A. |last1= Karatsuba |title=Fast evaluation of transcendental functions | journal=Probl. Inf. Transm. |volume =27 | number=44 | pages=339–360 |year=1991}}
| |
| *E.A. Karatsuba, On the computation of the Euler constant γ, J. of Numerical Algorithms Vol.24, No.1-2, pp. 83–97 (2000)
| |
| *M. Lerch, Expressions nouvelles de la constante d'Euler. Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften 42, 5 p. (1897)
| |
| * {{cite arxiv| first1=Jeffrey C|last1= Lagarias |title=Euler's constant: Euler's work and modern developments | eprint=1303.1856}}, [[Bulletin of the American Mathematical Society]] 50 (4): 527-628 (2013)
| |
| | |
| ==External links==
| |
| *{{mathworld|urlname=Euler-MascheroniConstant|title=Euler-Mascheroni constant}}
| |
| *Krämer, Stefan "[http://www.math.uni-goettingen.de/skraemer/gamma.html Euler's Constant γ=0.577... Its Mathematics and History.]"
| |
| *[http://home.earthlink.net/~jsondow/ Jonathan Sondow.]
| |
| *[http://www.ccas.ru/personal/karatsuba/algen.htm Fast Algorithms and the FEE Method], E.A. Karatsuba (2005)
| |
| | |
| {{DEFAULTSORT:Euler-Mascheroni Constant}}
| |
| [[Category:Mathematical constants]]
| |
| [[Category:Unsolved problems in mathematics]]
| |