|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| {{for|other θ functions|Theta function (disambiguation)}}
| | Their author is known via name of Gabrielle Lattimer though she doesn't surely like being called like this. To bake is something that the woman with been doing for years. Her job happens to be a cashier but inside the her husband and the actual woman's will start their own business. She's always loved living by using South Carolina. She is [http://browse.deviantart.com/?qh=§ion=&global=1&q=running running] and managing a blog here: http://circuspartypanama.com<br><br>Here is my web site ... [http://circuspartypanama.com clash of clans hack] |
| | |
| [[image:Complex theta minus0point1times e i pi 0point1.jpg|400px|thumb|upright=1.2|Jacobi's original theta function <math> \theta_1 </math> with <math> u = i \pi z</math> and with nome <math> q = e^{i \pi \tau}= 0.1 e^{0.1 i \pi}</math>. Conventions are (Mathematica):<math> \theta_1(u;q) = 2 q^{1/4} \sum_{n=0}^\infty (-1)^n q^{n(n+1)} \sin(2n+1)u </math> this is:
| |
| <math>\theta_1(u;q) = \sum_{n=-\infty}^{n=\infty} (-1)^{n-1/2} q^{(n+1/2)^2} e^{(2n+1)i u} </math>]]
| |
| In [[mathematics]], '''theta functions''' are [[special function]]s of [[several complex variables]]. They are important in many areas, including the theories of [[abelian variety|abelian varieties]] and [[moduli space]]s, and of [[quadratic form]]s. They have also been applied to [[soliton]] theory. When generalized to a [[Grassmann algebra]], they also appear in [[quantum field theory]].
| |
| | |
| The most common form of theta function is that occurring in the theory of [[elliptic function]]s. With respect to one of the complex variables (conventionally called ''z''), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a [[quasiperiodic function]]. In the abstract theory this comes from a [[line bundle]] condition of [[descent (category theory)|descent]].
| |
| | |
| ==Jacobi theta function==
| |
| There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them.
| |
| One '''Jacobi theta function''' (named after [[Carl Gustav Jacob Jacobi]]) is a function defined for two complex variables ''z'' and τ, where ''z'' can be any complex number and τ is confined to the [[upper half-plane]], which means it has positive imaginary part. It is given by the formula
| |
| | |
| :<math>
| |
| \vartheta(z; \tau) = \sum_{n=-\infty}^\infty \exp (\pi i n^2 \tau + 2 \pi i n z)
| |
| = 1 + 2 \sum_{n=1}^\infty \left(e^{\pi i\tau}\right)^{n^2} \cos(2\pi n z) = \sum_{n=-\infty}^\infty q^{n^2}\eta^n
| |
| </math>
| |
| where ''q'' = exp(π''i''τ) and η = exp(2π''iz''). It is a [[Jacobi form]].
| |
| If τ is fixed, this becomes a [[Fourier series]] for a periodic [[entire function]] of ''z'' with period 1; in this case, the theta function satisfies the identity
| |
| | |
| :<math>\vartheta(z+1; \tau) = \vartheta(z; \tau).</math>
| |
| | |
| The function also behaves very regularly with respect to its quasi-period τ and satisfies the functional equation
| |
| | |
| :<math>\vartheta(z+a+b\tau;\tau) = \exp(-\pi i b^2 \tau -2 \pi i b z)\,\vartheta(z;\tau)</math>
| |
| | |
| where ''a'' and ''b'' are integers.
| |
| | |
| [[image:Complex theta animated1.gif|500px|thumb|center|Theta function <math>\theta_1 </math> with different nome <math>q = e^{i \pi \tau}</math>. The black dot in the right-hand picture indicates how <math>\tau</math> is changing.]]
| |
| [[image:Complex theta animated2.gif|500px|thumb|center|Theta function <math>\theta_1 </math> with different nome <math>q = e^{i \pi \tau}</math>. The black dot in the right-hand picture indicates how <math>\tau</math> is changing.]]
| |
| | |
| ==Auxiliary functions==
| |
| | |
| The Jacobi theta function defined above is sometimes considered along with three
| |
| auxiliary theta functions, in which case it is written with a double 0 subscript:
| |
| :<math>\vartheta_{00}(z;\tau) = \vartheta(z;\tau)</math>
| |
| The auxiliary (or half-period) functions are defined by
| |
| :<math>
| |
| \begin{align}
| |
| \vartheta_{01}(z;\tau)& = \vartheta\!\left(z+{\textstyle\frac{1}{2}};\tau\right)\\[3pt]
| |
| \vartheta_{10}(z;\tau)& = \exp\!\left({\textstyle\frac{1}{4}}\pi i \tau + \pi i z\right)
| |
| \vartheta\!\left(z + {\textstyle\frac{1}{2}}\tau;\tau\right)\\[3pt]
| |
| \vartheta_{11}(z;\tau)& = \exp\!\left({\textstyle\frac{1}{4}}\pi i \tau + \pi i\!\left(z+{\textstyle
| |
| \frac{1}{2}}\right)\right)\vartheta\!\left(z+{\textstyle\frac{1}{2}}\tau + {\textstyle\frac{1}{2}};\tau\right).
| |
| \end{align}
| |
| </math>
| |
| | |
| This notation follows [[Bernhard Riemann|Riemann]] and [[David Mumford|Mumford]]; [[Carl Gustav Jacobi|Jacobi]]'s original formulation was in terms of the [[nome (mathematics)|nome]] ''q'' = exp(''πiτ'') rather than τ. In Jacobi's notation the θ-functions are written:
| |
| | |
| :<math>
| |
| \begin{align}
| |
| \theta_1(z;q) &= -\vartheta_{11}(z;\tau)\\
| |
| \theta_2(z;q) &= \vartheta_{10}(z;\tau)\\
| |
| \theta_3(z;q) &= \vartheta_{00}(z;\tau)\\
| |
| \theta_4(z;q) &= \vartheta_{01}(z;\tau)
| |
| \end{align}
| |
| </math>
| |
| | |
| The above definitions of the Jacobi theta functions are by no means unique. See [[Jacobi theta functions – notational variations]] for further discussion.
| |
| | |
| If we set ''z'' = 0 in the above theta functions, we obtain four functions of τ only, defined on the upper half-plane (sometimes called theta constants.) These can be used to define a variety of [[modular forms]], and to parametrize certain curves; in particular, the '''Jacobi identity''' is
| |
| | |
| :<math>
| |
| \vartheta_{00}(0;\tau)^4 = \vartheta_{01}(0;\tau)^4 + \vartheta_{10}(0;\tau)^4
| |
| </math>
| |
| | |
| which is the [[Fermat's last theorem|Fermat curve]] of degree four.
| |
| | |
| ==Jacobi identities==
| |
| Jacobi's identities describe how theta functions transform under the [[modular group]], which is generated by τ ↦ τ+1 and τ ↦ -1/τ. Equations for the first transform are easily found since adding one to τ in the exponent has the same effect as adding 1/2 to z (n is congruent to n squared modulo 2). For the second, let
| |
| | |
| :<math> | |
| \alpha = (-i \tau)^{\frac{1}{2}} \exp\!\left(\frac{\pi}{\tau} i z^2 \right).\,
| |
| </math>
| |
| | |
| Then
| |
| | |
| :<math>
| |
| \begin{align}
| |
| \vartheta_{00}\!\left({\textstyle\frac{z}{\tau}; \frac{-1}{\tau}}\right)& = \alpha\,\vartheta_{00}(z; \tau)\quad&
| |
| \vartheta_{01}\!\left({\textstyle\frac{z}{\tau}; \frac{-1}{\tau}}\right)& = \alpha\,\vartheta_{10}(z; \tau)\\[3pt]
| |
| \vartheta_{10}\!\left({\textstyle\frac{z}{\tau}; \frac{-1}{\tau}}\right)& = \alpha\,\vartheta_{01}(z; \tau)\quad&
| |
| \vartheta_{11}\!\left({\textstyle\frac{z}{\tau}; \frac{-1}{\tau}}\right)& = -i\alpha\,\vartheta_{11}(z; \tau).
| |
| \end{align}
| |
| </math>
| |
| | |
| ==Theta functions in terms of the nome==
| |
| Instead of expressing the Theta functions in terms of <math>z\,</math> and <math>\tau \,</math>, we may express them in terms of arguments <math>w\,</math> and the [[nome (mathematics)|nome]] q, where <math>w=e^{\pi {\mathrm{i}}z}\,</math> and <math>q=e^{\pi {\mathrm{i}}\tau}\,</math> . In this form, the functions become
| |
| | |
| :<math>
| |
| \begin{align}
| |
| \vartheta_{00}(w, q)& = \sum_{n=-\infty}^\infty (w^2)^n q^{n^2}\quad&
| |
| \vartheta_{01}(w, q)& = \sum_{n=-\infty}^\infty (-1)^n (w^2)^n q^{n^2}\\[3pt]
| |
| \vartheta_{10}(w, q)& = \sum_{n=-\infty}^\infty (w^2)^{\left(n+1/2\right)}
| |
| q^{\left(n + 1/2\right)^2}\quad&
| |
| \vartheta_{11}(w, q)& = i \sum_{n=-\infty}^\infty (-1)^n (w^2)^{\left(n+1/2\right)}
| |
| q^{\left(n + 1/2\right)^2}.
| |
| \end{align}
| |
| </math>
| |
| | |
| We see that the Theta functions can also be defined in terms of ''w'' and ''q'', without a direct reference to the exponential function. These formulas can, therefore, be used to define the Theta functions over other [[field (mathematics)|fields]] where the exponential function might not be everywhere defined, such as fields of [[p-adic number]]s.
| |
| | |
| ==Product representations==
| |
| The [[Jacobi triple product]] tells us that for complex numbers ''w'' and ''q'' with |''q''| < 1 and ''w'' ≠ 0 we have
| |
| :<math>\prod_{m=1}^\infty
| |
| \left( 1 - q^{2m}\right)
| |
| \left( 1 + w^{2}q^{2m-1}\right)
| |
| \left( 1 + w^{-2}q^{2m-1}\right)
| |
| = \sum_{n=-\infty}^\infty w^{2n}q^{n^2}.
| |
| </math>
| |
| | |
| It can be proven by elementary means, as for instance in Hardy and Wright's ''An Introduction to the Theory of Numbers''.
| |
| | |
| If we express the theta function in terms of the nome <math>q = \exp(\pi i \tau)</math> and <math>w = \exp(\pi i z)</math> then
| |
| | |
| :<math>\vartheta(z; \tau) = \sum_{n=-\infty}^\infty \exp(\pi i \tau n^2) \exp(\pi i z 2n) = \sum_{n=-\infty}^\infty w^{2n}q^{n^2}. </math>
| |
| | |
| We therefore obtain a product formula for the theta function in the form
| |
| | |
| :<math>\vartheta(z; \tau) = \prod_{m=1}^\infty
| |
| \left( 1 - \exp(2m \pi i \tau)\right)
| |
| \left( 1 + \exp((2m-1) \pi i \tau + 2 \pi i z)\right)
| |
| \left( 1 + \exp((2m-1) \pi i \tau -2 \pi i z)\right).
| |
| </math>
| |
| | |
| In terms of ''w'' and ''q'':
| |
| :<math>\vartheta(z; \tau) = \prod_{m=1}^\infty
| |
| \left( 1 - q^{2m}\right)
| |
| \left( 1 + q^{2m-1}w^2\right)
| |
| \left( 1 + q^{2m-1}/w^2\right)
| |
| </math>
| |
| :<math> = (q^2;q^2)_\infty\,(-w^2q;q^2)_\infty\,(-q/w^2;q^2)_\infty </math>
| |
| :<math> = (q^2;q^2)_\infty\,\theta(-w^2q;q^2)</math>
| |
| | |
| where <math>(\cdot \cdot)_\infty</math> is the [[q-Pochhammer symbol]] and <math>\theta(\cdot \cdot)</math> is the [[q-theta function]].
| |
| Expanding terms out, the Jacobi triple product can also be written
| |
| | |
| :<math>\prod_{m=1}^\infty
| |
| \left( 1 - q^{2m}\right)
| |
| \left( 1 + (w^{2}+w^{-2})q^{2m-1}+q^{4m-2}\right),</math>
| |
| | |
| which we may also write as
| |
| | |
| :<math>\vartheta(z|q) = \prod_{m=1}^\infty
| |
| \left( 1 - q^{2m}\right)
| |
| \left( 1 + 2 \cos(2 \pi z)q^{2m-1}+q^{4m-2}\right).</math>
| |
| | |
| This form is valid in general but clearly is of particular interest when z is real. Similar product formulas for the auxiliary theta functions are
| |
| | |
| :<math>\vartheta_{01}(z|q) = \prod_{m=1}^\infty
| |
| \left( 1 - q^{2m}\right)
| |
| \left( 1 - 2 \cos(2 \pi z)q^{2m-1}+q^{4m-2}\right).</math>
| |
| | |
| :<math>\vartheta_{10}(z|q) = 2 q^{1/4}\cos(\pi z)\prod_{m=1}^\infty
| |
| \left( 1 - q^{2m}\right)
| |
| \left( 1 + 2 \cos(2 \pi z)q^{2m}+q^{4m}\right).</math>
| |
| | |
| :<math>\vartheta_{11}(z|q) = -2 q^{1/4}\sin(\pi z)\prod_{m=1}^\infty
| |
| \left( 1 - q^{2m}\right)
| |
| \left( 1 - 2 \cos(2 \pi z)q^{2m}+q^{4m}\right).</math>
| |
| | |
| ==Integral representations==
| |
| The Jacobi theta functions have the following integral representations:
| |
| | |
| :<math>\vartheta_{00} (z; \tau) = -i
| |
| \int_{i - \infty}^{i + \infty} {e^{i \pi \tau u^2}
| |
| \cos (2 u z + \pi u) \over \sin (\pi u)} du</math>
| |
| | |
| :<math>\vartheta_{01} (z; \tau) = -i
| |
| \int_{i - \infty}^{i + \infty} {e^{i \pi \tau u^2}
| |
| \cos (2 u z) \over \sin (\pi u)} du.</math>
| |
| | |
| :<math>\vartheta_{10} (z; \tau) = -i e^{iz + i \pi \tau / 4}
| |
| \int_{i - \infty}^{i + \infty} {e^{i \pi \tau u^2}
| |
| \cos (2 u z + \pi u + \pi \tau u) \over \sin (\pi u)} du</math>
| |
| | |
| :<math>\vartheta_{11} (z; \tau) = e^{iz + i \pi \tau / 4}
| |
| \int_{i - \infty}^{i + \infty} {e^{i \pi \tau u^2}
| |
| \cos (2 u z + \pi \tau u) \over \sin (\pi u)} du</math>
| |
| | |
| ==Explicit values==
| |
| | |
| See <ref name="Yi">{{Citation
| |
| | last = Jinhee
| |
| | first = Yi
| |
| | coauthors =
| |
| | title = Theta-function identities and the explicit formulas for theta-function and their applications
| |
| | journal = Journal of Mathematical Analysis and Applications
| |
| | pages = 381–400
| |
| | volume = 292
| |
| | doi=10.1016/j.jmaa.2003.12.0091
| |
| | year = 2004
| |
| | postscript = .}}
| |
| </ref>
| |
| | |
| :<math>
| |
| \varphi(e^{-\pi x}) = \vartheta(0; {\mathrm{i}}x) = \theta_3(0;e^{-\pi x}) = \sum_{n=-\infty}^\infty e^{-x \pi n^2}
| |
| </math>
| |
| | |
| :<math>
| |
| \varphi\left(e^{-\pi} \right) = \frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}
| |
| </math>
| |
| | |
| :<math>
| |
| \varphi\left(e^{-2\pi} \right) = \frac{\sqrt[4]{6\pi+4\sqrt2\pi}}{2\Gamma(\frac{3}{4})}
| |
| </math>
| |
| | |
| :<math>
| |
| \varphi\left(e^{-3\pi}\right) = \frac{\sqrt[4]{27\pi+18\sqrt3\pi}}{3\Gamma(\frac{3}{4})}
| |
| </math>
| |
| | |
| :<math>
| |
| \varphi\left(e^{-4\pi}\right) =\frac{\sqrt[4]{8\pi}+2\sqrt[4]{\pi}}{4\Gamma(\frac{3}{4})}
| |
| </math>
| |
| | |
| :<math>
| |
| \varphi\left(e^{-5\pi} \right) =\frac{\sqrt[4]{225\pi+ 100\sqrt5 \pi}}{5\Gamma(\frac{3}{4})}
| |
| </math>
| |
| | |
| :<math>
| |
| \varphi\left(e^{-6\pi}\right) = \frac{\sqrt[3]{3\sqrt{2}+3\sqrt[4]{3}+2\sqrt{3}-\sqrt[4]{27}+\sqrt[4]{1728}-4}\cdot \sqrt[8]{243{\pi}^2}}{6\sqrt[6]{1+\sqrt6-\sqrt2-\sqrt3}{\Gamma(\frac{3}{4})}}
| |
| </math>
| |
| | |
| ==Some series identities==
| |
| | |
| The next two series identities were proved by István Mező
| |
| :<ref name="Mezo2">{{Citation
| |
| | last = Mező
| |
| | first = István
| |
| | title = Duplication formulae involving Jacobi theta functions and Gosper's ''q''-trigonometric functions
| |
| | journal = Proceedings of the American Mathematical Society
| |
| | pages = 2401–2410
| |
| | volume = 141
| |
| | issue = 7
| |
| | year = 2013
| |
| }}</ref>
| |
| | |
| : <math>
| |
| \vartheta_4^2(q)=iq^{\frac14}\sum_{k=-\infty}^\infty q^{2k^2-k}\vartheta_1\left(\frac{2k-1}{2i}\ln q,q\right),
| |
| </math>
| |
| | |
| : <math>
| |
| \vartheta_4^2(q)=\sum_{k=-\infty}^\infty q^{2k^2}\vartheta_4\left(\frac{k\ln q}{i},q\right).
| |
| </math>
| |
| These relations hold for all 0 < ''q'' < 1. Specializing the values of ''q'', we have the next parameter free sums
| |
| | |
| :<math>
| |
| \sqrt{\frac{\pi\sqrt{e^\pi}}{2}}\frac{1}{\Gamma^2\left(\frac34\right)}=i\sum_{k=-\infty}^\infty e^{\pi(k-2k^2)}\vartheta_1\left(\frac{i\pi}{2}(2k-1),e^{-\pi}\right),
| |
| </math>
| |
| | |
| and
| |
| | |
| :<math>
| |
| \sqrt{\frac{\pi}{2}}\frac{1}{\Gamma^2\left(\frac34\right)}=\sum_{k=-\infty}^\infty\frac{\vartheta_4(ik\pi,e^{-\pi})}{e^{2\pi k^2}}
| |
| </math>
| |
| | |
| ==Zeros of the Jacobi theta functions==
| |
| All zeros of the Jacobi theta functions are simple zeros and are given by the following:
| |
| :<math> \vartheta(z,\tau) = \vartheta_3(z,\tau) = 0 \quad \Longleftrightarrow \quad z = m + n \tau + \frac{1}{2} + \frac{\tau}{2} </math>
| |
| | |
| :<math> \vartheta_1(z,\tau) = 0 \quad \Longleftrightarrow \quad z = m + n \tau </math>
| |
| | |
| :<math> \vartheta_2(z,\tau) = 0 \quad \Longleftrightarrow \quad z = m + n \tau + \frac{1}{2} </math>
| |
| | |
| :<math> \vartheta_4(z,\tau) = 0 \quad \Longleftrightarrow \quad z = m + n \tau + \frac{\tau}{2} </math>
| |
| where ''m,n'' are arbitrary integers.
| |
| | |
| ==Relation to the Riemann zeta function==
| |
| The relation
| |
| :<math>\vartheta(0;-1/\tau)=(-i\tau)^{1/2} \vartheta(0;\tau)</math>
| |
| was used by [[Riemann]] to prove the functional equation for the [[Riemann zeta function]], by means of the integral
| |
| :<math>\Gamma\left(\frac{s}{2}\right) \pi^{-s/2} \zeta(s) =
| |
| \frac{1}{2}\int_0^\infty\left[\vartheta(0;it)-1\right]
| |
| t^{s/2}\frac{dt}{t}</math>
| |
| which can be shown to be invariant under substitution of ''s'' by 1 − ''s''. The corresponding integral for ''z'' not zero is given in the article on the [[Hurwitz zeta function]].
| |
| | |
| ==Relation to the Weierstrass elliptic function==
| |
| The theta function was used by Jacobi to construct (in a form adapted to easy calculation) [[Jacobi's elliptic functions|his elliptic functions]] as the quotients of the above four theta functions, and could have been used by him to construct [[Weierstrass's elliptic functions]] also, since
| |
| | |
| :<math>\wp(z;\tau) = -(\log \vartheta_{11}(z;\tau))'' + c</math>
| |
| | |
| where the second derivative is with respect to z and the constant c is defined so that the [[Laurent expansion]] of <math>\wp(z)</math> at ''z'' = 0 has zero constant term.
| |
| | |
| ==Relation to the ''q''-gamma function==
| |
| | |
| The fourth theta function – and thus the others too – is intimately connected to the [[q-gamma function|Jackson ''q''-gamma function]] via the relation<ref name = 'Mezo'>{{Cite journal| last1=Mező | first1=István | title=A q-Raabe formula and an integral of the fourth Jacobi theta function | year=2012 | journal=Journal of Number Theory | volume=130 | issue=2 | pages=360–369}}</ref>
| |
| | |
| : <math> \left(\Gamma_{q^2}(x)\Gamma_{q^2}(1-x)\right)^{-1}=\frac{q^{2x(1-x)}}{(q^{-2};q^{-2})^3_\infty(q^2-1)}\vartheta_4\left(\frac{1}{2i}(1-2x)\log q,\frac{1}{q}\right). </math>
| |
| | |
| ==Some relations to modular forms==
| |
| Let η be the [[Dedekind eta function]]. Then
| |
| :<math>\vartheta(0;\tau)=\frac{\eta^2\left(\tfrac{1}{2}(\tau+1)\right)}{\eta(\tau+1)}.</math>
| |
| | |
| ==A solution to heat equation==
| |
| The Jacobi theta function is the unique solution to the one-dimensional [[heat equation]] with periodic boundary conditions at time zero. This is most easily seen by taking ''z'' = ''x'' to be real, and taking τ = ''it'' with ''t'' real and positive. Then we can write
| |
| | |
| :<math>\vartheta (x,it)=1+2\sum_{n=1}^\infty \exp(-\pi n^2 t) \cos(2\pi nx)</math>
| |
| | |
| which solves the heat equation
| |
| | |
| :<math>\frac{\partial}{\partial t} \vartheta(x,it)=\frac{1}{4\pi} \frac{\partial^2}{\partial x^2} \vartheta(x,it).</math>
| |
| | |
| That this solution is unique can be seen by noting that at ''t'' = 0, the theta function becomes the [[Dirac comb]]:
| |
| | |
| :<math>\lim_{t\rightarrow 0} \vartheta(x,it)=\sum_{n=-\infty}^\infty \delta(x-n)</math>
| |
| | |
| where δ is the [[Dirac delta function]]. Thus, general solutions can be specified by convolving the (periodic) boundary condition at ''t'' = 0 with the theta function.
| |
| | |
| ==Relation to the Heisenberg group==
| |
| The Jacobi theta function is invariant under the action of a discrete subgroup of the [[Heisenberg group]]. This invariance is presented in the article on the [[theta representation]] of the Heisenberg group.
| |
| | |
| ==Generalizations==
| |
| If ''F'' is a [[quadratic form]] in ''n'' variables, then the theta function associated with ''F'' is
| |
| :<math>\theta_F (z)= \sum_{m\in Z^n} \exp(2\pi izF(m))</math> | |
| with the sum extending over the [[lattice (group)|lattice]] of integers '''Z'''<sup>''n''</sup>. This theta function is a [[modular form]] of weight ''n''/2 (on an appropriately defined subgroup) of the [[modular group]]. In the Fourier expansion,
| |
| :<math>\widehat{\theta}_F (z) = \sum_{k=0}^\infty R_F(k) \exp(2\pi ikz),</math> | |
| the numbers ''R''<sub>F</sub>(''k'') are called the ''representation numbers'' of the form.
| |
| | |
| ===Ramanujan theta function===
| |
| {{see|Ramanujan theta function|mock theta function}}
| |
| | |
| ===Riemann theta function===
| |
| Let
| |
| | |
| :<math>\mathbb{H}_n=\{F\in M(n,\mathbb{C}) \; \mathrm{s.t.}\, F=F^T \;\textrm{and}\; \mbox{Im} F >0 \}</math>
| |
| | |
| be set of [[symmetric]] square [[matrix (mathematics)|matrices]] whose imaginary part is [[Positive-definite matrix|positive definite]]. ''H''<sub>''n''</sub> is called the [[Siegel upper half-space]] and is the multi-dimensional analog of the [[upper half-plane]]. The ''n''-dimensional analogue of the [[modular group]] is the [[symplectic group]] Sp(2n,'''Z'''); for ''n'' = 1, Sp(2,'''Z''') = SL(2,'''Z'''). The ''n''-dimensional analog of the [[congruence subgroup]]s is played by <math>\textrm{Ker} \{\textrm{Sp}(2n,\mathbb{Z})\rightarrow \textrm{Sp}(2n,\mathbb{Z}/k\mathbb{Z}) \}</math>.
| |
| | |
| Then, given <math>\tau\in \mathbb{H}_n</math>, the '''Riemann theta function''' is defined as
| |
| | |
| :<math>\theta (z,\tau)=\sum_{m\in Z^n} \exp\left(2\pi i
| |
| \left(\frac{1}{2} m^T \tau m +m^T z \right)\right). </math>
| |
| | |
| Here, <math>z\in \mathbb{C}^n</math> is an ''n''-dimensional complex vector, and the superscript ''T'' denotes the [[transpose]]. The Jacobi theta function is then a special case, with ''n'' = 1 and <math>\tau \in \mathbb{H}</math> where <math>\mathbb{H}</math> is the upper half-plane. | |
| | |
| The Riemann theta converges absolutely and uniformly on compact subsets of <math>\mathbb{C}^n\times \mathbb{H}_n.</math>
| |
| | |
| The functional equation is
| |
| | |
| :<math>\theta (z+a+\tau b, \tau) = \exp 2\pi i
| |
| \left(-b^Tz-\frac{1}{2}b^T\tau b\right) \theta (z,\tau)</math>
| |
| | |
| which holds for all vectors <math>a,b \in \mathbb{Z}^n</math>, and for all <math>z \in \mathbb{C}^n</math> and <math>\tau \in \mathbb{H}_n</math>.
| |
| | |
| ===Poincaré series===
| |
| The [[Poincaré series (modular form)|Poincaré series]] generalizes the theta series to automorphic forms with respect to arbitrary [[Fuchsian group]]s.
| |
| | |
| == Notes ==
| |
| {{Reflist}}
| |
| | |
| ==References==
| |
| *{{Citation |first=Milton |last=Abramowitz |lastauthoramp=yes |first2=Irene A. |last2=Stegun |title=[[Abramowitz and Stegun|Handbook of Mathematical Functions]] |year=1964 |publisher=Dover Publications |location=New York |isbn=0-486-61272-4 }}. ''(See section 16.27ff.)''
| |
| *{{Citation |first=Naum Illyich |last=Akhiezer |title=Elements of the Theory of Elliptic Functions |origyear=1970 |series=AMS Translations of Mathematical Monographs |volume=79 |year=1990 |publisher=AMS |location=Providence, RI |isbn=0-8218-4532-2 }}.
| |
| *{{Citation |first=Hershel M. |last=Farkas |lastauthoramp=yes |first2=Irwin |last2=Kra |title=Riemann Surfaces |year=1980 |publisher=Springer-Verlag |location=New York |isbn=0-387-90465-4 }}. ''(See Chapter 6 for treatment of the Riemann theta)''
| |
| *{{Citation |first=G. H. |last=Hardy |authorlink=G. H. Hardy |lastauthoramp=yes |first2=E. M. |last2=Wright |authorlink2=E. M. Wright |title=An Introduction to the Theory of Numbers |edition=Fourth |year=1959 |publisher=Clarendon Press |location=Oxford |isbn= }}.
| |
| *{{Citation |first=David |last=Mumford |authorlink=David Mumford |title=Tata Lectures on Theta I |year=1983 |publisher=Birkhauser |location=Boston |isbn=3-7643-3109-7 }}.
| |
| *{{Citation |authorlink=James Pierpont (mathematician) |first=James |last=Pierpont |title=Functions of a Complex Variable |location=New York |publisher=Dover |year=1959 |isbn= }}.
| |
| *{{Citation |first=Harry E. |last=Rauch |lastauthoramp=yes |first2=Hershel M. |last2=Farkas |title=Theta Functions with Applications to Riemann Surfaces |year=1974 |publisher=Williams & Wilkins |location=Baltimore |isbn=0-683-07196-3 }}.
| |
| *{{dlmf|first=William P. |last=Reinhardt|first2=Peter L. |last2=Walker|id=20|title=Theta Functions}}
| |
| *{{Citation |authorlink=E. T. Whittaker |first=E. T. |last=Whittaker |lastauthoramp=yes |first2=G. N. |last2=Watson |authorlink2=G. N. Watson |title=A Course in Modern Analysis |edition=Fourth |publisher=Cambridge University Press |location=Cambridge |year=1927 }}. ''(See chapter XXI for the history of Jacobi's θ functions)''
| |
| | |
| ==Further reading==
| |
| * {{cite book | editor1-first=Krishnaswami | editor1-last=Alladi | title=Surveys in Number Theory | series=Developments in Mathematics | volume=17 | publisher=[[Springer-Verlag]] | year=2008 | isbn=978-0-387-78509-7 | first=Hershel M. |last=Farkas | chapter=Theta functions in complex analysis and number theory | pages=57–87 | zbl=1206.11055 }}
| |
| * {{cite book | first=Bruno | last=Schoeneberg | title=Elliptic modular functions | series=Die Grundlehren der mathematischen Wissenschaften | volume=203 | publisher=[[Springer-Verlag]] | year=1974 | isbn=3-540-06382-X | chapter=IX. Theta series | pages=203–226 }}
| |
| | |
| ==External links==
| |
| *[http://elliptic.googlecode.com/ Matlab code for theta function evaluation] by elliptic project
| |
| | |
| {{PlanetMath attribution|id=6262|title=Integral representations of Jacobi theta functions}}
| |
| | |
| [[Category:Theta functions| ]]
| |
| [[Category:Elliptic functions]]
| |
| [[Category:Modular forms]]
| |
| [[Category:Q-analogs]]
| |
| [[Category:Riemann surfaces]]
| |
| [[Category:Analytic functions]]
| |
| [[Category:Several complex variables]]
| |