Barycentric Julian Date: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Bgwhite
There must be no material between TOC and headline per WP:TOC using AWB (9890)
en>Primefac
mNo edit summary
 
Line 1: Line 1:
[[Image:BendingCircularPlate.png| thumb | 300px | Bending of an edge clamped circular plate under the action of a transverse pressure.  The left half of the plate shows the deformed shape while the right half shows the undeformed shape.  This calculation was performed using [[Ansys]].]]
Hi there! :) My name is Shellie, I'm a student studying Arts and Sciences from Interlaken, United States.<br><br>Feel free to visit my site; [http://www.oyunmatik.net/profile/wisimcox.html Here is your mountain bike sizing.]
'''Bending of plates''' or plate bending refers to the [[Deflection (engineering)|deflection]] of a [[plate]] perpendicular to the plane of the plate under the action of external [[force]]s and [[Moment (physics)|moments]].  The amount of deflection can be determined by solving the differential equations of an appropriate [[plate theory]].  The [[stress (physics)|stress]]es in the plate can be calculated from these deflections.  Once the stresses are known, [[material failure theory|failure theories]] can be used to determine whether a plate will fail under a given load.
 
== Bending of Kirchhoff-Love plates ==
[[Image:PlateForcesMoments upd.png|thumb | 350px | Forces and moments on a flat plate.]]
In the [[Kirchhoff–Love plate theory]] for  plates the governing equations are<ref name=Reddy>Reddy, J. N., 2007, '''Theory and analysis of elastic plates and shells''', CRC Press, Taylor and Francis.</ref>
:<math>
    N_{\alpha\beta,\alpha} = 0
</math>
and
:<math>
    M_{\alpha\beta,\alpha\beta} - q = 0
</math>
In expanded form,
:<math>
      \cfrac{\partial N_{11}}{\partial x_1} + \cfrac{\partial N_{21}}{\partial x_2} = 0 ~;~~
      \cfrac{\partial N_{12}}{\partial x_1} + \cfrac{\partial N_{22}}{\partial x_2} = 0
</math>
and
:<math>
      \cfrac{\partial^2 M_{11}}{\partial x_1^2} + 2\cfrac{\partial^2 M_{12}}{\partial x_1 \partial x_2} +
      \cfrac{\partial^2 M_{22}}{\partial x_2^2} = q
</math>
where <math>q(x)</math> is an applied transverse [[load]] per unit area, the thickness of the plate is <math>H=2h</math>, the stresses are <math>\sigma_{ij}</math>, and
:<math>
  N_{\alpha\beta} := \int_{-h}^h \sigma_{\alpha\beta}~dx_3 ~;~~
  M_{\alpha\beta} := \int_{-h}^h x_3~\sigma_{\alpha\beta}~dx_3~.
</math>
The quantity <math>N</math> has units of [[force]] per unit length.  The quantity <math>M</math> has units of [[Moment (physics)|moment]] per unit length.
 
For [[isotropic]], [[homogeneous]], plates with [[Young's modulus]] <math>E</math> and [[Poisson's ratio]] <math>\nu</math> these equations reduce to<ref name=Timo>Timoshenko, S. and Woinowsky-Krieger, S., (1959), '''Theory of plates and shells''', McGraw-Hill New York.</ref>
:<math>
  \nabla^2\nabla^2 w = -\cfrac{q}{D} ~;~~ D := \cfrac{2h^3E}{3(1-\nu^2)} = \cfrac{H^3E}{12(1-\nu^2)}
</math>
where <math>w(x_1,x_2)</math> is the deflection of the mid-surface of the plate. 
 
In rectangular Cartesian coordinates,
:<math>
  \cfrac{\partial^4 w}{\partial x_1^4} + 2\cfrac{\partial^4 w}{\partial x_1^2 \partial x_2^2} +
      \cfrac{\partial^4 w}{\partial x_2^4} = -\cfrac{q}{D} \,.
</math>
 
==Circular Kirchhoff-Love plates==
The bending of circular plates can be examined by solving the governing equation with
appropriate boundary conditions.  These solutions were first found by Poisson in 1829.
Cylindrical coordinates are convenient for such problems.
 
The governing equation in coordinate-free form is
:<math>
  \nabla^2 \nabla^2 w = -\frac{q}{D} \,.
</math>
In cylindrical coordinates <math>(r, \theta, z)</math>,
:<math>
  \nabla^2 w \equiv \frac{1}{r}\frac{\partial }{\partial r}\left(r \frac{\partial w}{\partial r}\right) +
      \frac{1}{r^2}\frac{\partial^2 w}{\partial \theta^2} + \frac{\partial^2 w}{\partial z^2} \,.
</math>
For symmetrically loaded circular plates, <math> w = w(r)</math>, and we have
:<math>
  \nabla^2 w \equiv \frac{1}{r}\cfrac{d }{d r}\left(r \cfrac{d w}{d r}\right) \,.
</math>
Therefore, the governing equation is
:<math>
  \frac{1}{r}\cfrac{d }{d r}\left[r \cfrac{d }{d r}\left\{\frac{1}{r}\cfrac{d }{d r}\left(r \cfrac{d w}{d r}\right)\right\}\right] = -\frac{q}{D}\,.
</math>
If <math>q</math> and <math>D</math> are constant, direct integration of the governing equation gives us
<blockquote style="border: 1px solid black; padding:10px; width:530px">
:<math>
  w(r) = -\frac{qr^4}{64 D} + C_1\ln r + \cfrac{C_2 r^2}{2} + \cfrac{C_3r^2}{4}(2\ln r - 1) + C_4
</math>
</blockquote>
where <math>C_i</math> are constants.  The slope of the deflection surface is
:<math>
  \phi(r) = \cfrac{d w}{d r} = -\frac{qr^3}{16D} + \frac{C_1}{r} + C_2 r + C_3 r \ln r \,.
</math>
For a circular plate, the requirement that the deflection and the slope of the deflection are finite
at <math>r = 0</math> implies that <math>C_1 = C_3 = 0</math>.
 
===Clamped edges===
For a circular plate with clamped edges, we have <math>w(a) = 0</math> and <math>\phi(a) = 0</math> at the edge of
the plate (radius <math>a</math>).  Using these boundary conditions we get
<blockquote style="border: 1px solid black; padding:10px; width:530px">
:<math>
  w(r) = -\frac{q}{64 D} (a^2 -r^2)^2 \quad \text{and} \quad
  \phi(r) = \frac{qr}{16 D}(a^2-r^2) \,.
</math>
</blockquote>
The in-plane displacements in the plate are
:<math>
  u_r(r) = -z\phi(r) \quad \text{and} \quad u_\theta(r) = 0 \,.
</math>
The in-plane strains in the plate are
:<math>
  \varepsilon_{rr} = \cfrac{d u_r}{d r} = -\frac{qz}{16D}(a^2-3r^2) ~,~~
  \varepsilon_{\theta\theta} = \frac{u_r}{r} = -\frac{qz}{16D}(a^2-r^2) ~,~~
  \varepsilon_{r\theta} = 0 \,.
</math>
The in-plane stresses in the plate are
:<math>
  \sigma_{rr} = \frac{E}{1-\nu^2}\left[\varepsilon_{rr} + \nu\varepsilon_{\theta\theta}\right] ~;~~
  \sigma_{\theta\theta} = \frac{E}{1-\nu^2}\left[\varepsilon_{\theta\theta} + \nu\varepsilon_{rr}\right] ~;~~
  \sigma_{r\theta} = 0 \,.
</math>
For a plate of thickness <math>2h</math>, the bending stiffness is <math>D = 2Eh^3/[3(1-\nu^2)]</math> and we
have
<blockquote style="border: 1px solid black; padding:10px; width:430px">
:<math>
  \begin{align}
  \sigma_{rr} &= -\frac{3qz}{32h^3}\left[(1+\nu)a^2-(3+\nu)r^2\right] \\
  \sigma_{\theta\theta} &= -\frac{3qz}{32h^3}\left[(1+\nu)a^2-(1+3\nu)r^2\right]\\
  \sigma_{r\theta} &= 0 \,.
  \end{align}
</math>
</blockquote>
The moment resultants (bending moments) are
:<math>
  M_{rr} = -\frac{q}{16}\left[(1+\nu)a^2-(3+\nu)r^2\right] ~;~~
  M_{\theta\theta} = -\frac{q}{16}\left[(1+\nu)a^2-(1+3\nu)r^2\right] ~;~~
  M_{r\theta} = 0 \,.
</math>
The maximum radial stress is at <math>z = h</math> and <math>r = a</math>:
:<math>
  \left.\sigma_{rr}\right|_{z=h,r=a} = \frac{3qa^2}{16h^2} = \frac{3qa^2}{4H^2}
</math>
where <math>H := 2h</math>.  The bending moments at the boundary and the center of the plate are
:<math>
  \left.M_{rr}\right|_{r=a} = \frac{qa^2}{8} ~,~~
  \left.M_{\theta\theta}\right|_{r=a} = \frac{\nu qa^2}{8} ~,~~
  \left.M_{rr}\right|_{r=0} = \left.M_{\theta\theta}\right|_{r=0} = -\frac{(1+\nu) qa^2}{16} \,.
</math>
 
==Rectangular Kirchhoff-Love plates==
[[Image:RectangularPlateBending.svg|thumb | 250px | Bending of a rectangular plate under the action of a distributed force <math>q</math> per unit area.]]
For rectangular plates, Navier in 1820 introduced a simple method for finding the displacement and stress when a plate is simply supported. The idea was to express the applied load in terms of Fourier components, find the solution for a sinusoidal load (a single Fourier component), and then superimpose the Fourier components to get the solution for an arbitrary load.
 
===Sinusoidal load===
Let us assume that the load is of the form
:<math>
  q(x,y) = q_0 \sin\frac{\pi x}{a}\sin\frac{\pi y}{b} \,.
</math>
Here <math>q_0</math> is the amplitude, <math>a</math> is the width of the plate in the <math>x</math>-direction, and
<math>b</math> is the width of the plate in the <math>y</math>-direction.
 
Since the plate is simply supported, the displacement <math>w(x,y)</math> along the edges of
the plate is zero, the bending moment <math>M_{xx}</math> is zero at <math>x=0</math> and <math>x=a</math>, and
<math>M_{yy}</math> is zero at <math>y=0</math> and <math>y=b</math>.
 
If we apply these boundary conditions and solve the plate equation, we get the
solution
:<math>
  w(x,y) = \frac{q_0}{\pi^4 D}\,\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^{-2}\,\sin\frac{\pi x}{a}\sin\frac{\pi y}{b} \,.
</math>
We can calculate the stresses and strains in the plate once we know the displacement.
 
For a more general load of the form
:<math>
  q(x,y) = q_0 \sin\frac{m \pi x}{a}\sin\frac{n \pi y}{b}
</math>
where <math>m</math> and <math>n</math> are integers, we get the solution
<blockquote style="border: 1px solid black; padding:10px; width:530px">
:<math> \text{(1)} \qquad
  w(x,y) = \frac{q_0}{\pi^4 D}\,\left(\frac{m^2}{a^2}+\frac{n^2}{b^2}\right)^{-2}\,\sin\frac{m \pi x}{a}\sin\frac{n \pi y}{b} \,.
</math>
</blockquote>
 
===Navier solution===
Let us now consider a more general load <math>q(x,y)</math>.  We can break this load up into
a sum of Fourier components such that
:<math>
  q(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^\infty a_{mn}\sin\frac{m \pi x}{a}\sin\frac{n \pi y}{b}
</math>
where <math>a_{mn}</math> is an amplitude.  We can use the orthogonality of Fourier components,
:<math>
  \int_0^a \sin\frac{k\pi x}{a}\sin\frac{\ell \pi x}{a}\text{d}x =
    \begin{cases} 0 & k \ne \ell \\ a/2 & k = \ell \end{cases}
</math>
to find the amplitudes <math>a_{mn}</math>.  Thus we have, by integrating over <math>y</math>,
:<math>
  \int_0^b q(x,y)\sin\frac{\ell\pi y}{b}\,\text{d}y =
    \sum_{m=1}^{\infty} \sum_{n=1}^\infty a_{mn}\sin\frac{m \pi x}{a}
    \int_0^b \sin\frac{n \pi y}{b} \sin\frac{\ell\pi y}{b}\,\text{d}y =
    \frac{b}{2}\sum_{m=1}^{\infty} a_{m\ell}\sin\frac{m \pi x}{a} \,.
</math>
If we repeat the process by integrating over <math>x</math>, we have
:<math>
  \int_0^b \int_0^a q(x,y)\sin\frac{k\pi x}{a}\sin\frac{\ell\pi y}{b}\,\text{d}x\text{d}y =
    \frac{b}{2}\sum_{m=1}^{\infty} a_{m\ell}
    \int_0^a \sin\frac{m \pi x}{a} \sin\frac{k\pi x}{a}\,\text{d}x =
    \frac{ab}{4} a_{k\ell} \,.
</math>
Therefore,
:<math>
  a_{mn} = \frac{4}{ab}
  \int_0^b \int_0^a q(x,y)\sin\frac{m\pi x}{a}\sin\frac{n\pi y}{b}\,\text{d}x\text{d}y \,.
</math>
Now that we know <math>a_{mn}</math>, we can just superpose solutions of the form given in
equation (1) to get the displacement, i.e.,
<blockquote style="border: 1px solid black; padding:10px; width:630px">
:<math> \text{(2)} \qquad
  w(x,y) = \sum_{m=1}^\infty \sum_{n=1}^\infty \frac{a_{mn}}{\pi^4 D}\,\left(\frac{m^2}{a^2}+\frac{n^2}{b^2}\right)^{-2}\,\sin\frac{m \pi x}{a}\sin\frac{n \pi y}{b} \,.
</math>
</blockquote>
 
====Uniform load====
Consider the situation where a uniform load is applied on the plate, i.e.,
<math>q(x,y) = q_0</math>.  Then
:<math>
  a_{mn} = \frac{4q_0}{ab}
  \int_0^a \int_0^b \sin\frac{m\pi x}{a}\sin\frac{n\pi y}{b}\,\text{d}x\text{d}y \,.
</math>
Now
:<math>
  \int_0^a \sin\frac{m\pi x}{a}\,\text{d}x = \frac{a}{m\pi}(1 - \cos m\pi) \quad\text{and}\quad
  \int_0^b \sin\frac{n\pi y}{b}\,\text{d}y = \frac{b}{n\pi}(1 - \cos n\pi)\,.
</math>
We can use these relations to get a simpler expression for <math>a_{mn}</math>:
:<math>
  a_{mn} = \frac{4q_0}{mn\pi^2}(1 - \cos m\pi)(1 - \cos n\pi) \,.
</math>
Since <math>\cos m\pi = \cos n\pi = 1</math> [ so <math>(1 - \cos m\pi) = (1 - \cos n\pi) = 0</math> ] when <math>m</math> and <math>n</math> are even, we can get an even simpler expression for <math>a_{mn}</math> when both <math>m</math> and <math>n</math> are odd:
:<math>
  a_{mn} = \begin{cases}
            0 & m~\text{or}~n~\text{even}, \\
            \cfrac{16q_0}{mn\pi^2} & m~\text{and}~n~\text{odd}\,.
            \end{cases}
</math>
Plugging this expression into equation (2) and keeping in mind
that only odd terms contribute to the displacement, we have
<blockquote style="border: 1px solid black; padding:10px; width:630px">
:<math>
  \begin{align}
  w(x,y) & = \sum_{m=1}^\infty \sum_{n=1}^\infty \frac{16 q_0}{(2m-1)(2n-1)\pi^6 D}\,\left[\frac{(2m-1)^2}{a^2}+\frac{(2n-1)^2}{b^2}\right]^{-2} \,\times\\
    & \qquad \qquad \quad \sin\frac{(2m-1) \pi x}{a}\sin\frac{(2n-1) \pi y}{b} \,.
  \end{align}
</math>
</blockquote>
The corresponding moments are given by
:<math>
  \begin{align}
    M_{xx} & = -D\left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2}\right) \\
          & = \sum_{m=1}^\infty \sum_{n=1}^\infty\frac{16 q_0}{(2m-1)(2n-1)\pi^4}\,
              \left[\frac{(2m-1)^2}{a^2}+\nu\frac{(2n-1)^2}{b^2}\right] \,\times\\
          &    \qquad \qquad \left[\frac{(2m-1)^2}{a^2}+\frac{(2n-1)^2}{b^2}\right]^{-2}
              \sin\frac{(2m-1) \pi x}{a}\sin\frac{(2n-1) \pi y}{b} \\
    M_{yy} & = -D\left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2}\right) \\
          & = \sum_{m=1}^\infty \sum_{n=1}^\infty\frac{16 q_0}{(2m-1)(2n-1)\pi^4}\,
              \left[\frac{(2n-1)^2}{b^2}+\nu\frac{(2m-1)^2}{a^2}\right] \,\times\\
          &    \qquad \qquad \left[\frac{(2m-1)^2}{a^2}+\frac{(2n-1)^2}{b^2}\right]^{-2}
              \sin\frac{(2m-1) \pi x}{a}\sin\frac{(2n-1) \pi y}{b} \,.
  \end{align}
</math>
The stresses in the plate are
:<math>
  \sigma_{xx} = \frac{3z}{2h^3}\,M_{xx} = \frac{12 z}{H^3}\,M_{xx} \quad \text{and} \quad
  \sigma_{yy} = \frac{3z}{2h^3}\,M_{yy} = \frac{12 z}{H^3}\,M_{yy} \,.
</math>
:{{multiple image
  | width    = 400
  | footer    = Displacement and stresses along <math>x=a/2</math> for a rectangular plate with <math>a=20</math> mm, <math>b=40</math> mm, <math>H=2h=0.4</math> mm, <math>E=70</math> GPa, and <math>\nu=0.35</math> under a load <math>q_0 = -10</math> kPa.  The red line represents the bottom of the plate, the green line the middle, and the blue line the top of the plate.
  | image1    = wx rectangularPlate.svg
  | caption1  = Displacement (<math>w</math>)
  | image2    = sxx rectangularPlate.svg
  | caption2  = Stress (<math>\sigma_{xx}</math>)
  | image3    = syy rectangularPlate.svg
  | caption3  = Stress (<math>\sigma_{yy}</math>)
  }}
<!--
<gallery widths=270px heights=270px perrow=2 caption="Displacement and stresses along <math>x=a/2</math> for a rectangular plate with <math>a=20</math> mm, <math>b=40</math> mm, <math>H=2h=0.4</math> mm, <math>E=70</math> GPa, and <math>\nu=0.35</math> under a load <math>q_0 = -10</math> kPa.  The red line represents the bottom of the plate, the green line the middle, and the blue line the top of the plate.">
file:wx rectangularPlate.svg|Displacement (<math>w</math>)
file:sxx rectangularPlate.svg|Stress (<math>\sigma_{xx}</math>)
file:syy rectangularPlate.svg|Stress (<math>\sigma_{yy}</math>)
</gallery>
-->
 
===Levy solution===
Another approach was proposed by Levy in 1899.  In this case we start with an
assumed form of the displacement and try to fit the parameters so that the
governing equation and the boundary conditions are satisfied.
 
Let us assume that
:<math>
  w(x,y) = \sum_{m=1}^\infty Y_m(y) \sin \frac{m\pi x}{a} \,.
</math>
For a plate that is simply supported at <math>x=0</math> and <math>x=a</math>, the boundary conditions
are <math>w=0</math> and <math>M_{xx} = 0</math>.  The moment boundary condition is equivalent to
<math>\partial^2 w/\partial x^2 = 0</math> (verify).  The goal is to find <math>Y_m(y)</math> such that
it satisfies the boundary conditions at <math>y = 0</math> and <math>y = b</math> and, of course, the
governing equation <math>\nabla^2 \nabla^2 w = q/D</math>.
 
====Moments along edges====
Let us consider the case of pure moment loading.  In that case <math>q = 0</math> and
<math>w(x,y)</math> has to satisfy <math>\nabla^2 \nabla^2 w = 0</math>.  Since we are working in rectangular
Cartesian coordinates, the governing equation can be expanded as
:<math>
  \frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2\partial y^2}
  + \frac{\partial^4 w}{\partial y^4}  = 0 \,.
</math>
Plugging the expression for <math>w(x,y)</math> in the governing equation gives us
:<math>
  \sum_{m=1}^\infty \left[\left(\frac{m\pi}{a}\right)^4 Y_m \sin\frac{m\pi x}{a}
  - 2\left(\frac{m\pi}{a}\right)^2 \cfrac{d^2 Y_m}{d y^2} \sin\frac{m\pi x}{a}
  + \frac{d^4Y_m}{dy^4} \sin\frac{m\pi x}{a}\right] = 0
</math>
or
:<math>
  \frac{d^4Y_m}{dy^4}  - 2 \frac{m^2\pi^2}{a^2} \cfrac{d^2Y_m}{dy^2} + \frac{m^4\pi^4}{a^4} Y_m = 0 \,.
</math>
This is an ordinary differential equation which has the general solution
:<math>
  Y_m = A_m \cosh\frac{m\pi y}{a} + B_m\frac{m\pi y}{a} \cosh\frac{m\pi y}{a} +
  C_m \sinh\frac{m\pi y}{a} + D_m\frac{m\pi y}{a} \sinh\frac{m\pi y}{a} 
</math>
where <math>A_m, B_m, C_m, D_m</math> are constants that can be determined from the boundary
conditions.  Therefore the displacement solution has the form
<blockquote style="border: 1px solid black; padding:1px; width:800px">
:<math>
  w(x,y) = \sum_{m=1}^\infty \left[ 
  \left(A_m  + B_m\frac{m\pi y}{a}\right) \cosh\frac{m\pi y}{a} +
  \left(C_m  + D_m\frac{m\pi y}{a}\right) \sinh\frac{m\pi y}{a} 
      \right] \sin \frac{m\pi x}{a} \,.
</math>
</blockquote>
Let us choose the coordinate system such that the boundaries of the plate are
at <math>x = 0</math> and <math>x = a</math> (same as before) and at <math>y = \pm b/2</math> (and not <math>y=0</math> and
<math>y=b</math>).  Then the moment boundary conditions at the <math>y = \pm b/2</math> boundaries are
:<math>
  w = 0 \,, -D\frac{\partial^2 w}{\partial y^2}\Bigr|_{y=b/2} = f_1(x) \,,
  -D\frac{\partial^2 w}{\partial y^2}\Bigr|_{y=-b/2} = f_2(x) 
</math>
where <math>f_1(x), f_2(x)</math> are known functions.  The solution can be found by
applying these boundary conditions.  We can show that for the ''symmetrical'' case
where
:<math>
  M_{yy}\Bigr|_{y=-b/2} = M_{yy}\Bigr|_{y=b/2}
</math>
and
:<math>
  f_1(x) = f_2(x) = \sum_{m=1}^\infty E_m\sin\frac{m\pi x}{a}
</math>
we have
<blockquote style="border: 1px solid black; padding:1px; width:800px">
:<math>
  w(x,y) = \frac{a^2}{2\pi^2 D}\sum_{m=1}^\infty \frac{E_m}{m^2\cosh\alpha_m}\,
    \sin\frac{m\pi x}{a}\, \left(\alpha_m \tanh\alpha_m \cosh\frac{m\pi y}{a}
    - \frac{m\pi y}{a}\sinh\frac{m\pi y}{a}\right)
</math>
</blockquote>
where
:<math>
  \alpha_m = \frac{m\pi b}{2a} \,.
</math>
Similarly, for the ''antisymmetrical'' case where
:<math>
  M_{yy}\Bigr|_{y=-b/2} = -M_{yy}\Bigr|_{y=b/2}
</math>
we have
<blockquote style="border: 1px solid black; padding:1px; width:800px">
:<math>
  w(x,y) = \frac{a^2}{2\pi^2 D}\sum_{m=1}^\infty \frac{E_m}{m^2\sinh\alpha_m}\,
    \sin\frac{m\pi x}{a}\, \left(\alpha_m \coth\alpha_m \sinh\frac{m\pi y}{a}
    - \frac{m\pi y}{a}\cosh\frac{m\pi y}{a}\right) \,.
</math>
</blockquote>
We can superpose the symmetric and antisymmetric solutions to get more general
solutions.
 
====  Uniform and symmetric moment load ====
For the special case where the loading is symmetric and the moment is uniform, we have at <math>y=\pm b/2</math>,
:<math>
  M_{yy} = f_1(x) = \frac{4M_0}{\pi}\sum_{m=1}^\infty \frac{1}{2m-1}\,\sin\frac{(2m-1)\pi x}{a} \,.
</math>
:{{multiple image
  | width    = 400
  | footer    = Displacement and stresses for a rectangular plate under uniform bending moment along the edges <math>y=-b/2</math> and <math>y=b/2</math>.  The bending stress <math>\sigma_{yy}</math> is along the bottom surface of the plate.  The transverse shear stress <math>\sigma_{yz}</math> is along the mid-surface of the plate.
  | image1    = surfRecBMIso_w.png
  | caption1  = Displacement (<math>w</math>)
  | image2    = surfRecBMIso_sy.png
  | caption2  = Bending stress (<math>\sigma_{yy}</math>)
  | image3    = surfRecBMIso_syz.png
  | caption3  = Transverse shear stress (<math>\sigma_{yz}</math>)
  }}
The resulting displacement is
<blockquote style="border: 1px solid black; padding:1px; width:800px">
:<math>
  \begin{align}
  w(x,y) & = \frac{2M_0 a^2}{\pi^3 D}\sum_{m=1}^\infty
    \frac{1}{(2m-1)^3\cosh\alpha_m}\sin\frac{(2m-1)\pi x}{a} \times\\
  & \qquad \left[
        \alpha_m\,\tanh\alpha_m\cosh\frac{(2m-1)\pi y}{a} -\frac{(2m-1)\pi y}{a}
    \sinh\frac{(2m-1)\pi y}{a}\right]
  \end{align}
</math>
</blockquote>
where
:<math>
  \alpha_m = \frac{\pi (2m-1)b}{2a} \,.
</math>
The bending moments and shear forces corresponding to the displacement <math>w</math> are
:<math>
  \begin{align}
    M_{xx} & = -D\left(\frac{\partial^2 w}{\partial x^2}+\nu\,\frac{\partial^2 w}{\partial y^2}\right) \\
            & = \frac{2M_0(1-\nu)}{\pi}\sum_{m=1}^\infty\frac{1}{(2m-1)\cosh\alpha_m}\,
                \sin\frac{(2m-1)\pi x}{a}
                \left[
                  -\frac{(2m-1)\pi y}{a}\sinh\frac{(2m-1)\pi y}{a} + \right. \\
            & \qquad \qquad \qquad \qquad
              \left. \left\{\frac{2\nu}{1-\nu} + \alpha_m\tanh\alpha_m\right\}\cosh\frac{(2m-1)\pi y}{a}
                \right] \\
    M_{xy} & = (1-\nu)D\frac{\partial^2 w}{\partial x \partial y} \\
            & = -\frac{2M_0(1-\nu)}{\pi}\sum_{m=1}^\infty\frac{1}{(2m-1)
                    \cosh\alpha_m}\,\cos\frac{(2m-1)\pi x}{a}
              \left[\frac{(2m-1)\pi y}{a}\cosh\frac{(2m-1)\pi y}{a} + \right. \\
            & \qquad \qquad \qquad \qquad
              \left. (1-\alpha_m\tanh\alpha_m)\sinh\frac{(2m-1)\pi y}{a}\right] \\
    Q_{zx} & = \frac{\partial M_{xx}}{\partial x}-\frac{\partial M_{xy}}{\partial y} \\
            & = \frac{4M_0}{a}\sum_{m=1}^\infty \frac{1}{\cosh\alpha_m}\,
                \cos\frac{(2m-1)\pi x}{a}\cosh\frac{(2m-1)\pi y}{a}\,.
  \end{align}
</math>
The stresses are
:<math>
  \sigma_{xx} = \frac{12z}{h^3}\,M_{xx} \quad \text{and} \quad
  \sigma_{zx} = \frac{1}{\kappa h}\,Q_{zx}\left(1 - \frac{4z^2}{h^2}\right)\,.
</math>
 
=== Cylindrical plate bending ===
Cylindrical bending occurs when a rectangular plate that has dimensions <math>a \times b \times h</math>, where <math>a \ll b</math> and the thickness <math>h</math> is small, is subjected to a uniform distributed load perpendicular to the plane of the plate.  Such a plate takes the shape of the surface of a cylinder.
 
==== Simply supported plate with axially fixed ends ====
For a simply supported plate under cylindrical bending with edges that are free to rotate but have a fixed <math>x_1</math>.  Cylindrical bending solutions can be found using the Navier and Levy techniques.
 
==Bending of thick Mindlin plates==
For thick plates, we have to consider the effect of through-the-thickness shears on
the orientation of the normal to the mid-surface after deformation.  Mindlin's theory
provides one approach for find the deformation and stresses in such plates.  Solutions
to Mindlin's theory can be derived from the equivalent Kirchhoff-Love solutions using
canonical relations.<ref name=lim03>Lim, G. T. and Reddy, J. N., 2003, ''On canonical bending
relationships for plates'', International Journal of Solids and Structures, vol. 40,
pp. 3039-3067.</ref>
 
===Governing equations===
The canonical governing equation for isotropic thick plates can be expressed as<ref name=lim03/>
:<math>
  \begin{align}
    & \nabla^2 \left(\mathcal{M} - \frac{\mathcal{B}}{1+\nu}\,q\right) = -q \\
    & \kappa G h\left(\nabla^2 w + \frac{\mathcal{M}}{D}\right) =
      -\left(1 - \cfrac{\mathcal{B} c^2}{1+\nu}\right)q \\
    & \nabla^2 \left(\frac{\partial \varphi_1}{\partial x_2} - \frac{\partial \varphi_2}{\partial x_1}\right)
      = c^2\left(\frac{\partial \varphi_1}{\partial x_2} - \frac{\partial \varphi_2}{\partial x_1}\right)
  \end{align}
</math>
where <math>q</math> is the applied transverse load, <math>G</math> is the shear modulus, <math>D = Eh^3/[12(1-\nu^2)]</math>
is the bending rigidity, <math>h</math> is the plate thickness, <math>c^2 = 2\kappa G h/[D(1-\nu)]</math>,
<math>\kappa</math> is the shear correction factor, <math>E</math> is the Young's modulus, <math>\nu</math> is the Poisson's
ratio, and
:<math>
    \mathcal{M}  = D\left[\mathcal{A}\left(\frac{\partial \varphi_1}{\partial x_1} + \frac{\partial \varphi_2}{\partial x_2}\right)
    - (1-\mathcal{A})\nabla^2 w\right] + \frac{2q}{1-\nu^2}\mathcal{B}  \,.
</math>
In Mindlin's theory, <math>w</math> is the transverse displacement of the mid-surface of the plate
and the quantities <math>\varphi_1</math> and <math>\varphi_2</math> are the rotations of the mid-surface normal
about the <math>x_2</math> and <math>x_1</math>-axes, respectively.  The canonical parameters for this theory
are <math>\mathcal{A} = 1</math> and <math>\mathcal{B} = 0</math>.  The shear correction factor <math>\kappa</math> usually has the
value <math>5/6</math>.
 
The solutions to the governing equations can be found if one knows the corresponding
Kirchhoff-Love solutions by using the relations
:<math>
  \begin{align}
    w & = w^K + \frac{\mathcal{M}^K}{\kappa G h}\left(1 - \frac{\mathcal{B} c^2}{2}\right)
        - \Phi + \Psi \\
    \varphi_1 & = - \frac{\partial w^K}{\partial x_1}
    - \frac{1}{\kappa G h}\left(1 - \frac{1}{\mathcal{A}} - \frac{\mathcal{B} c^2}{2}\right)Q_1^K
    + \frac{\partial }{\partial x_1}\left(\frac{D}{\kappa G h \mathcal{A}}\nabla^2 \Phi + \Phi - \Psi\right)
    + \frac{1}{c^2}\frac{\partial \Omega}{\partial x_2} \\
    \varphi_2 & = - \frac{\partial w^K}{\partial x_2}
    - \frac{1}{\kappa G h}\left(1 - \frac{1}{\mathcal{A}} - \frac{\mathcal{B} c^2}{2}\right)Q_2^K
    + \frac{\partial }{\partial x_2}\left(\frac{D}{\kappa G h \mathcal{A}}\nabla^2 \Phi + \Phi - \Psi\right)
    + \frac{1}{c^2}\frac{\partial \Omega}{\partial x_1}
  \end{align}
</math>
where <math>w^K</math> is the displacement predicted for a Kirchhoff-Love plate, <math>\Phi</math> is a
biharmonic function such that <math>\nabla^2 \nabla^2 \Phi = 0</math>, <math>\Psi</math> is a function that satisfies the
Laplace equation, <math>\nabla^2 \Psi = 0</math>, and
:<math>
  \begin{align}
    \mathcal{M} & = \mathcal{M}^K + \frac{\mathcal{B}}{1+\nu}\,q + D \nabla^2 \Phi ~;~~ \mathcal{M}^K := -D\nabla^2 w^K \\
    Q_1^K & = -D\frac{\partial }{\partial x_1}\left(\nabla^2 w^K\right) ~,~~
    Q_2^K = -D\frac{\partial }{\partial x_2}\left(\nabla^2 w^K\right) \\
    \Omega & = \frac{\partial \varphi_1}{\partial x_2} - \frac{\partial \varphi_2}{\partial x_1} ~,~~ \nabla^2 \Omega = c^2\Omega \,.
  \end{align}
</math>
 
===Simply supported rectangular plates===
For simply supported plates, the ''Marcus moment'' sum vanishes, i.e.,
:<math>
  \mathcal{M} = \frac{1}{1+\nu}(M_{11}+M_{22}) = D\left(\frac{\partial \varphi_1}{\partial x_2}+\frac{\partial \varphi_2}{\partial x_2}\right) = 0 \,.
</math>
In that case the functions <math>\Phi</math>, <math>\Psi</math>, <math>\Omega</math> vanish, and the Mindlin solution is
related to the corresponding Kirchhoff solution by
:<math>
  w = w^K + \frac{\mathcal{M}^K}{\kappa G h} \,.
</math>
 
== Bending of Reissner-Stein cantilever plates ==
Reissner-Stein theory for cantilever plates<ref name=Reissner51>E. Reissner and M. Stein. Torsion and transverse bending of cantilever plates. Technical Note 2369, National Advisory Committee for Aeronautics,Washington, 1951.</ref> leads to the following coupled ordinary differential equations for a cantilever plate with concentrated end load <math>q_x(y)</math> at <math>x=a</math>.
:<math>
  \begin{align}
    & bD \frac{\mathrm{d}^4w_x}{\mathrm{d}x^4}  = 0 \\
    & \frac{b^3D}{12}\,\frac{\mathrm{d}^4\theta_x}{\mathrm{d}x^4} - 2bD(1-\nu)\cfrac{d^2 \theta_x}{d x^2} = 0
  \end{align}
</math>
and the boundary conditions at <math>x=a</math> are
:<math>
  \begin{align}
  & bD\cfrac{d^3 w_x}{d x^3} + q_{x1} = 0 \quad,\quad
  \frac{b^3D}{12}\cfrac{d^3 \theta_x}{d x^3} -2bD(1-\nu)\cfrac{d \theta_x}{d x} + q_{x2} = 0 \\
  & bD\cfrac{d^2 w_x}{d x^2} = 0 \quad,\quad  \frac{b^3D}{12}\cfrac{d^2 \theta_x}{d x^2} = 0 \,.
  \end{align}
</math>
Solution of this system of two ODEs gives
:<math>
  \begin{align}
    w_x(x) & = \frac{q_{x1}}{6bD}\,(3ax^2 -x^3) \\
    \theta_x(x) & = \frac{q_{x2}}{2bD(1-\nu)}\left[x - \frac{1}{\nu_b}\,
      \left(\frac{\sinh(\nu_b a)}{\cosh[\nu_b (x-a)]} + \tanh[\nu_b(x-a)]\right)\right]
  \end{align}
</math>
where <math>\nu_b = \sqrt{24(1-\nu)}/b</math>.  The bending moments and shear forces corresponding to the displacement
<math>w = w_x + y\theta_x</math> are
:<math>
  \begin{align}
    M_{xx} & = -D\left(\frac{\partial^2 w}{\partial x^2}+\nu\,\frac{\partial^2 w}{\partial y^2}\right) \\
            & = q_{x1}\left(\frac{x-a}{b}\right) - \left[\frac{3yq_{x2}}{b^3\nu_b\cosh^3[\nu_b(x-a)]}\right]
                \times \\
            & \quad \left[6\sinh(\nu_b a) - \sinh[\nu_b(2x-a)] +
                  \sinh[\nu_b(2x-3a)] + 8\sinh[\nu_b(x-a)]\right] \\
    M_{xy} & = (1-\nu)D\frac{\partial^2 w}{\partial x \partial y} \\
            & = \frac{q_{x2}}{2b}\left[1 -
                \frac{2+\cosh[\nu_b(x-2a)] - \cosh[\nu_b x]}{2\cosh^2[\nu_b(x-a)]}\right] \\
    Q_{zx} & = \frac{\partial M_{xx}}{\partial x}-\frac{\partial M_{xy}}{\partial y} \\
            & = \frac{q_{x1}}{b} - \left(\frac{3yq_{x2}}{2b^3\cosh^4[\nu_b(x-a)]}\right)\times
                \left[32 + \cosh[\nu_b(3x-2a)] - \cosh[\nu_b(3x-4a)]\right. \\
            & \qquad \left. - 16\cosh[2\nu_b(x-a)] +
                23\cosh[\nu_b(x-2a)] - 23\cosh(\nu_b x)\right]\,.
  \end{align}
</math>
The stresses are
:<math>
  \sigma_{xx} = \frac{12z}{h^3}\,M_{xx} \quad \text{and} \quad
  \sigma_{zx} = \frac{1}{\kappa h}\,Q_{zx}\left(1 - \frac{4z^2}{h^2}\right)\,.
</math>
If the applied load at the edge is constant, we recover the solutions for a beam under a
concentrated end load.  If the applied load is a linear function of <math>y</math>, then
:<math>
  q_{x1} = \int_{-b/2}^{b/2}q_0\left(\frac{1}{2} - \frac{y}{b}\right)\,\text{d}y = \frac{bq_0}{2} ~;~~
  q_{x2} = \int_{-b/2}^{b/2}yq_0\left(\frac{1}{2} - \frac{y}{b}\right)\,\text{d}y = -\frac{b^2q_0}{12} \,.
</math>
 
== See also ==
*[[Bending]]
*[[Infinitesimal strain theory]]
*[[Kirchhoff–Love plate theory]]
*[[Linear elasticity]]
*[[Mindlin–Reissner plate theory]]
*[[Plate theory]]
*[[Stress (mechanics)]]
*[[Stress resultants]]
*[[Structural acoustics]]
*[[Vibration of plates]]
 
== References ==
{{reflist}}
 
{{DEFAULTSORT:Bending Of Plates}}
[[Category:Continuum mechanics]]

Latest revision as of 11:05, 13 June 2014

Hi there! :) My name is Shellie, I'm a student studying Arts and Sciences from Interlaken, United States.

Feel free to visit my site; Here is your mountain bike sizing.