|
|
Line 1: |
Line 1: |
| This article gives some specific values of the [[Riemann zeta function]], including values at integer arguments, and some series involving them.
| | The author's title is Christy Brookins. Office supervising is where her primary income comes from. What I love doing is soccer but I don't have the time recently. For a while I've been in Mississippi but now I'm contemplating other choices.<br><br>Here is my web blog ... best psychic ([http://165.132.39.93/xe/visitors/372912 http://165.132.39.93]) |
| | |
| ==The Riemann zeta function at 0 and 1==
| |
| At [[Zero (complex analysis)|zero]], one has
| |
| :<math>\zeta(0)= -B_1=-\tfrac{1}{2}.\!</math>
| |
| | |
| At 1 there is a [[Pole (complex analysis)|pole]], so ζ(1) is not defined but the left and right limits are:
| |
| :<math>\lim_{\epsilon\to 0^{\pm}}\zeta(1+\epsilon) = \pm\infty</math>
| |
| and because it is a pole of 1st order its principal value exists and is γ.
| |
| | |
| ==Positive integers==
| |
| ===Even positive integers===
| |
| For the even positive integers, one has the relationship to the [[Bernoulli numbers]]:
| |
| | |
| :<math>\zeta(2n) = (-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!} \!</math>
| |
| | |
| for ''n'' ∈ '''N'''. The first few values are given by:
| |
| | |
| :<math>\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6} = 1.6449\dots\!</math> ({{OEIS2C|A013661}})
| |
| :::(the demonstration of this equality is known as the [[Basel problem]])
| |
| :<math>\zeta(4) = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \cdots = \frac{\pi^4}{90} = 1.0823\dots\!</math> ({{OEIS2C|A013662}})
| |
| :::(the [[Stefan–Boltzmann law]] and [[Wien approximation]] in physics)
| |
| :<math>\zeta(6) = 1 + \frac{1}{2^6} + \frac{1}{3^6} + \cdots = \frac{\pi^6}{945} = 1.0173...\dots\!</math> ({{OEIS2C|A013664}})
| |
| :<math>\zeta(8) = 1 + \frac{1}{2^8} + \frac{1}{3^8} + \cdots = \frac{\pi^8}{9450} = 1.00407... \dots\!</math> ({{OEIS2C|A013666}})
| |
| :<math>\zeta(10) = 1 + \frac{1}{2^{10}} + \frac{1}{3^{10}} + \cdots = \frac{\pi^{10}}{93555} = 1.000994...\dots\!</math> ({{OEIS2C|A013668}})
| |
| :<math>\zeta(12) = 1 + \frac{1}{2^{12}} + \frac{1}{3^{12}} + \cdots = \frac{691\pi^{12}}{638512875} = 1.000246\dots\!</math> ({{OEIS2C|A013670}})
| |
| :<math>\zeta(14) = 1 + \frac{1}{2^{14}} + \frac{1}{3^{14}} + \cdots = \frac{2\pi^{14}}{18243225} = 1.0000612\dots\!</math> ({{OEIS2C|A013672}}).
| |
| | |
| The relationship between zeta at the positive even integers and the Bernoulli numbers may be written as
| |
| | |
| :<math>A_n \zeta(n) = B_n \pi^n\,\!</math>
| |
| | |
| where ''A<sub>n</sub>'' and ''B<sub>n</sub>'' are integers for all even ''n''. These are given by the integer sequences {{OEIS2C|id=A046988}} and {{OEIS2C|id=A002432}} in [[OEIS]]. Some of these values are reproduced below: | |
| | |
| {| class="wikitable"
| |
| |+ coefficients
| |
| |-
| |
| ! n
| |
| ! A
| |
| ! B
| |
| |-
| |
| | 2
| |
| | 6
| |
| | 1
| |
| |-
| |
| | 4
| |
| | 90
| |
| | 1
| |
| |-
| |
| | 6
| |
| | 945
| |
| | 1
| |
| |-
| |
| | 8
| |
| | 9450
| |
| | 1
| |
| |-
| |
| | 10
| |
| | 93555
| |
| | 1
| |
| |-
| |
| | 12
| |
| | 638512875
| |
| | 691
| |
| |-
| |
| | 14
| |
| | 18243225
| |
| | 2
| |
| |-
| |
| | 16
| |
| | 325641566250
| |
| | 3617
| |
| |-
| |
| | 18
| |
| | 38979295480125
| |
| | 43867
| |
| |-
| |
| | 20
| |
| | 1531329465290625
| |
| | 174611
| |
| |-
| |
| | 22
| |
| | 13447856940643125
| |
| | 155366
| |
| |-
| |
| | 24
| |
| | 201919571963756521875
| |
| | 236364091
| |
| |-
| |
| | 26
| |
| | 11094481976030578125
| |
| | 1315862
| |
| |-
| |
| | 28
| |
| | 564653660170076273671875
| |
| | 6785560294
| |
| |-
| |
| | 30
| |
| | 5660878804669082674070015625
| |
| | 6892673020804
| |
| |-
| |
| | 32
| |
| | 62490220571022341207266406250
| |
| | 7709321041217
| |
| |-
| |
| | 34
| |
| | 12130454581433748587292890625
| |
| | 151628697551
| |
| |}
| |
| | |
| If we let η<sub>''n''</sub> be the coefficient ''B''/''A'' as above,
| |
| :<math>\zeta(2n) = \sum_{\ell=1}^{\infty}\frac{1}{\ell^{2n}}=\eta_n\pi^{2n},</math>
| |
| then we find recursively,
| |
| | |
| :<math>\begin{align}
| |
| \eta_1 &= 1/6; \\
| |
| \eta_n &= \sum_{\ell=1}^{n-1}(-1)^{\ell-1}\frac{\eta_{n-\ell}}{(2\ell+1)!}+(-1)^{n+1}\frac{n}{(2n+1)!}.
| |
| \end{align}</math>
| |
| | |
| This recurrence relation may be derived from that for the [[Bernoulli number]]s.
| |
| | |
| The even zeta constants have the [[generating function]]:
| |
| :<math>\sum_{n=0}^\infty \zeta(2n) x^{2n} = -\frac{\pi x}{2} \cot(\pi x) = -\frac{1}{2} + \frac{\pi^2}{6} x^2 + \frac{\pi^4}{90} x^4+\frac{\pi^6}{945}x^6 + \cdots</math>
| |
| Since
| |
| :<math>\lim_{n\rightarrow\infty} \zeta(2n)=1,</math>
| |
| the formula also shows that for <math> n\in\mathbb{N}, n\rightarrow\infty</math>,
| |
| :<math>\left|B_{2n}\right| \sim \frac{2(2n)!}{(2\pi)^{2n}}</math>.
| |
| | |
| ===Odd positive integers===
| |
| For the first few odd natural numbers one has
| |
| | |
| :<math>\zeta(1) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots = \infty\!</math>
| |
| :::(the [[harmonic series (mathematics)|harmonic series]]);
| |
| :<math>\zeta(3) = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \cdots = 1.20205\dots\!</math>
| |
| :::([[Apéry's constant]])
| |
| :<math>\zeta(5) = 1 + \frac{1}{2^5} + \frac{1}{3^5} + \cdots = 1.03692\dots\!</math> {{OEIS2C|A013663}}
| |
| :<math>\zeta(7) = 1 + \frac{1}{2^7} + \frac{1}{3^7} + \cdots = 1.00834\dots\!</math> {{OEIS2C|A013665}}
| |
| :<math>\zeta(9) = 1 + \frac{1}{2^9} + \frac{1}{3^9} + \cdots = 1.002008\dots\!</math> {{OEIS2C|A013667}}
| |
| | |
| It is known that ζ(3) is irrational ([[Apéry's theorem]]) and that infinitely many of the numbers ζ(2''n''+1) (''n'' ∈ '''N''') are irrational.<ref>{{cite journal | last1 = Rivoal | first1 = T. | year = 2000 | title = La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs | url = | journal = Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | volume = 331 | issue = | pages = 267–270 |doi = 10.1016/S0764-4442(00)01624-4 |arxiv=math/0008051}}</ref> There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ(5), ζ(7), ζ(9), or ζ(11) is irrational.<ref>{{cite journal |author=W. Zudilin |title=One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational |journal=Russ. Math. Surv. |year=2001 |volume=56 |issue=4 |pages=774–776}}</ref>
| |
| | |
| They appear in physics, in [[Correlation function (statistical mechanics) |correlation functions]] of antiferromagnetic [[Heisenberg model (quantum) | xxx spin chain]].<ref>{{citation|title=Quantum correlations and number theory|first1=H. E.|last1=Boos|first2=V. E.|last2=Korepin|first3=Y.|last3=Nishiyama|first4=M.|last4=Shiroishi|arxiv=cond-mat/0202346|journal=J. Phys. A|volume=35|pages=4443–4452|year=2002}}.</ref>
| |
| | |
| Most of the identities following below are provided by [[Simon Plouffe]]. They are notable in that they converge quite rapidly, giving almost three digits of precision per iteration, and are thus useful for high-precision calculations.
| |
| | |
| ====''ζ''(5)====
| |
| Plouffe gives the following identities
| |
| | |
| :<math>\begin{align}
| |
| \zeta(5)&=\frac{1}{294}\pi^5 -\frac{72}{35} \sum_{n=1}^\infty \frac{1}{n^5 (e^{2\pi n} -1)}-\frac{2}{35} \sum_{n=1}^\infty \frac{1}{n^5 (e^{2\pi n} +1)}\\
| |
| \zeta(5)&=12 \sum_{n=1}^\infty \frac{1}{n^5 \sinh (\pi n)} -\frac{39}{20} \sum_{n=1}^\infty \frac{1}{n^5 (e^{2\pi n} -1)}-\frac{1}{20} \sum_{n=1}^\infty \frac{1}{n^5 (e^{2\pi n} +1)}
| |
| \end{align}</math>
| |
| | |
| ====''ζ''(7)====
| |
| :<math>\zeta(7)=\frac{19}{56700}\pi^7 -2 \sum_{n=1}^\infty \frac{1}{n^7 (e^{2\pi n} -1)}\!</math>
| |
| | |
| Note that the sum is in the form of the [[Lambert series]].
| |
| | |
| ====''ζ''(2''n'' + 1)====
| |
| By defining the quantities
| |
| | |
| :<math>S_\pm(s) = \sum_{n=1}^\infty \frac{1}{n^s (e^{2\pi n} \pm 1)}</math>
| |
| | |
| a series of relationships can be given in the form | |
| | |
| :<math>0=A_n \zeta(n) - B_n \pi^{n} + C_n S_-(n) + D_n S_+(n)\,</math>
| |
| | |
| where ''A''<sub>''n''</sub>, ''B''<sub>''n''</sub>, ''C''<sub>''n''</sub> and ''D''<sub>''n''</sub> are positive integers. Plouffe gives a table of values:
| |
| | |
| {| class="wikitable"
| |
| |+ coefficients
| |
| |-
| |
| ! n
| |
| ! A
| |
| ! B
| |
| ! C
| |
| ! D
| |
| |-
| |
| | 3
| |
| | 180
| |
| | 7
| |
| | 360
| |
| | 0
| |
| |-
| |
| | 5
| |
| | 1470
| |
| | 5
| |
| | 3024
| |
| | 84
| |
| |-
| |
| | 7
| |
| | 56700
| |
| | 19
| |
| | 113400
| |
| | 0
| |
| |-
| |
| | 9
| |
| | 18523890
| |
| | 625
| |
| | 37122624
| |
| | 74844
| |
| |-
| |
| | 11
| |
| | 425675250
| |
| | 1453
| |
| | 851350500
| |
| | 0
| |
| |-
| |
| | 13
| |
| | 257432175
| |
| | 89
| |
| | 514926720
| |
| | 62370
| |
| |-
| |
| | 15
| |
| | 390769879500
| |
| | 13687
| |
| | 781539759000
| |
| | 0
| |
| |-
| |
| | 17
| |
| | 1904417007743250
| |
| | 6758333
| |
| | 3808863131673600
| |
| | 29116187100
| |
| |-
| |
| | 19
| |
| | 21438612514068750
| |
| | 7708537
| |
| | 42877225028137500
| |
| | 0
| |
| |-
| |
| | 21
| |
| | 1881063815762259253125
| |
| | 68529640373
| |
| | 3762129424572110592000
| |
| | 1793047592085750
| |
| |}
| |
| | |
| These integer constants may be expressed as sums over Bernoulli numbers, as given in (Vepstas, 2006) below.
| |
|
| |
| The only fast algorithm for the calculation of Riemann's zeta function for any integer argument was found by E. A. Karatsuba.<ref>E. A. Karatsuba: Fast computation of the Riemann zeta-function ''ζ''(''s'') for integer values of the argument ''s''. Probl. Inf. Transm. Vol.31, No.4, pp. 353–362 (1995).</ref><ref>E. A. Karatsuba: Fast computation of the Riemann zeta function for integer argument. Dokl. Math. Vol.54, No.1, p. 626 (1996).</ref><ref>E. A. Karatsuba: Fast evaluation of ''ζ''(3). Probl. Inf. Transm. Vol.29, No.1, pp. 58–62 (1993).</ref>
| |
| | |
| ==Negative integers==
| |
| In general, for negative integers, one has
| |
| | |
| :<math>\zeta(-n)=-\frac{B_{n+1}}{n+1}.</math>
| |
| | |
| The so-called "trivial zeros" occur at the negative even integers:
| |
| | |
| :<math>\zeta(-2n)=0.\,</math>
| |
| | |
| The first few values for negative odd integers are
| |
| | |
| :<math>\zeta(-1)=-\frac{1}{12}</math>
| |
| :<math>\zeta(-3)=\frac{1}{120}</math>
| |
| :<math>\zeta(-5)=-\frac{1}{252}</math>
| |
| :<math>\zeta(-7)=\frac{1}{240}.</math>
| |
| | |
| However, just like the [[Bernoulli numbers]], these do not stay small for increasingly negative odd values. For details on the first value, see [[1 + 2 + 3 + 4 + · · ·]].
| |
| | |
| So ζ(''m'') can be used as the definition of all (including those for index 0 and 1) Bernoulli numbers.
| |
| | |
| ==Derivatives==
| |
| The derivative of the zeta function at the negative even integers is given by
| |
| | |
| :<math>\zeta^{\prime}(-2n) = (-1)^n \frac {(2n)!} {2 (2\pi)^{2n}} \zeta (2n+1).</math>
| |
| | |
| The first few values of which are
| |
| | |
| :<math>\zeta^{\prime}(-2) = -\frac{\zeta(3)}{4\pi^2}</math>
| |
| :<math>\zeta^{\prime}(-4) = \frac{3}{4\pi^4} \zeta(5)</math>
| |
| :<math>\zeta^{\prime}(-6) = -\frac{45}{8\pi^6} \zeta(7)</math>
| |
| :<math>\zeta^{\prime}(-8) = \frac{315}{4\pi^8} \zeta(9).</math>
| |
| | |
| One also has
| |
| | |
| :<math>\zeta^{\prime}(0) = -\frac{1}{2}\ln(2\pi)\approx -0.918938533\ldots</math> {{OEIS2C|A075700}}
| |
| | |
| and
| |
| | |
| :<math>\zeta^{\prime}(-1)=\frac{1}{12}-\ln A \approx -0.1654211437\ldots</math> {{OEIS2C|A084448}}
| |
| | |
| where ''A'' is the [[Glaisher–Kinkelin constant]].
| |
| | |
| ==Series involving ''ζ''(''n'')==
| |
| The following sums can be derived from the generating function:
| |
| :<math>\sum_{k=2}^\infty \zeta(k) x^{k-1}=-\psi_0(1-x)-\gamma</math>
| |
| where ''ψ''<sub>0</sub> is the [[digamma function]].
| |
| | |
| :<math>\sum_{k=2}^\infty (\zeta(k) -1) = 1</math>
| |
| :<math>\sum_{k=1}^\infty (\zeta(2k) -1) = \frac{3}{4}</math>
| |
| :<math>\sum_{k=1}^\infty (\zeta(2k+1) -1) = \frac{1}{4}</math>
| |
| :<math>\sum_{k=2}^\infty (-1)^k(\zeta(k) -1) = \frac{1}{2}.</math>
| |
| | |
| Series related to the [[Euler–Mascheroni constant]] (denoted by γ) are
| |
| :<math>\sum_{k=2}^\infty (-1)^k \frac{\zeta(k)}{k} = \gamma</math>
| |
| :<math>\sum_{k=2}^\infty \frac{\zeta(k) - 1}{k} = 1 - \gamma</math>
| |
| :<math>\sum_{k=2}^\infty (-1)^k \frac{\zeta(k)-1}{k} = \ln2 + \gamma - 1</math>
| |
| | |
| and using the principle value
| |
| :<math> \zeta(k) = \lim_{\varepsilon \to 0} \frac{\zeta(k+\varepsilon)+\zeta(k-\varepsilon)}{2},</math>
| |
| which of course affects only the value at 1. These formulae can be stated as
| |
| | |
| :<math>\sum_{k=1}^\infty (-1)^k \frac{\zeta(k)}{k} = 0</math>
| |
| :<math>\sum_{k=1}^\infty \frac{\zeta(k) - 1}{k} = 0</math>
| |
| :<math>\sum_{k=1}^\infty (-1)^k \frac{\zeta(k)-1}{k} = \ln2</math>
| |
| | |
| and show that they depend on the principal value of ''ζ''(1) = ''γ''.
| |
| | |
| == Nontrivial zeros ==
| |
| {{main|Riemann hypothesis}}
| |
| | |
| Zeros of the Riemann zeta except negative integers are called "nontrivial zeros". See [[Andrew Odlyzko]]'s website for their tables and bibliographies.
| |
| | |
| ==References==
| |
| {{reflist}}
| |
| * {{cite journal
| |
| |first1=E. A.
| |
| |last1=Karatsuba
| |
| |title=Fast calculation of the Riemann Zeta function zeta(s) for integer values of the argument s
| |
| |year=1995
| |
| |journal=Probl. Perdachi Inf.
| |
| |volume=31
| |
| |issue=4
| |
| |pages=69–80
| |
| |mr=1367927
| |
| |url=http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=294&option_lang=eng
| |
| }}
| |
| * [[Simon Plouffe]], "[http://www.lacim.uqam.ca/~plouffe/identities.html Identities inspired from Ramanujan Notebooks]", (1998).
| |
| * [[Simon Plouffe]], "[http://www.lacim.uqam.ca/~plouffe/inspired22.html Identities inspired by Ramanujan Notebooks part 2] [http://www.lacim.uqam.ca/~plouffe/inspired2.pdf PDF]" (2006).
| |
| * {{cite arxiv
| |
| |first1=Linas
| |
| |last1=Vepstas
| |
| |url=http://www.linas.org/math/plouffe-ram.pdf
| |
| |title=On Plouffe's Ramanujan Identities
| |
| |eprint=math.NT/0609775
| |
| |year=2006
| |
| }}
| |
| * {{cite journal
| |
| |first1=Wadim
| |
| |last1=Zudilin
| |
| |authorlink=Wadim Zudilin
| |
| |title=One of the Numbers ζ(5), ζ(7), ζ(9), ζ(11) Is Irrational
| |
| |journal=[[Russian Mathematical Surveys]]
| |
| |volume= 56
| |
| |pages=774–776
| |
| |year=2001
| |
| |doi=10.1070/RM2001v056n04ABEH000427
| |
| |mr=1861452
| |
| }} [http://wain.mi.ras.ru/PS/zeta5-11$.pdf PDF] [http://wain.mi.ras.ru/PS/zeta5-11.pdf PDF Russian] [http://wain.mi.ras.ru/PS/zeta5-11.ps.gz PS Russian]
| |
| * Nontrival zeros reference by [[Andrew Odlyzko]]:
| |
| ** [http://www.dtc.umn.edu/~odlyzko/doc/zeta.html Bibliography]
| |
| ** [http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html Tables]
| |
| | |
| [[Category:Mathematical constants]]
| |
| [[Category:Zeta and L-functions]]
| |
| [[Category:Irrational numbers]]
| |