Escape velocity: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>JorisvS
en>Mxlyons
more relevant link
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{expand German|Mehrwertige Logik|date=January 2011}}
== 「ウェン蘭の道、小さな心を引っ張る ==


In [[logic]], a '''many-valued logic''' (also '''multi-''' or '''multiple-valued logic''') is a [[propositional calculus]] in which there are more than two [[truth value]]s. Traditionally, in [[Aristotle]]'s [[Term logic|logical calculus]], there were only two possible values (i.e., "true" and "false") for any [[proposition]]. An obvious extension to classical two-valued logic is an ''n''-valued logic for ''n'' greater than 2. Those most popular in the literature are [[Three-valued logic|three-valued]] (e.g., [[Jan Łukasiewicz|Łukasiewicz's]] and [[Stephen Cole Kleene|Kleene's]], which accept the values "true", "false", and "unknown"), the finite-valued with more than three values, and the infinite-valued, such as [[fuzzy logic]] and [[probabilistic logic|probability logic]].
自分のみ。 「温首相蘭は、前方ささやきをささやく。<br><br>2クラッチはとても優しく、そのような接着剤のような塗料、カイniの午後の日差しのように恋人たちのペアのように、彼は不遜にログインUFAと香り香りを楽しむようだ再び音招待が「ランランを、私たちは誰もが知っている場所を見つけ、その後、戻ってくることはありませんように......アウトここに戻ってする必要があります。 [http://www.dmwai.com/webalizer/kate-spade-9.html ケイトスペード リボン バッグ] '<br><br>「私は私を信じて......一日が去ることを考えると、ここに入院した、日がはい、天宝あなたはしませんでした連絡を、非常に長くなることはありません。」ウェン蘭は尋ねた [http://www.dmwai.com/webalizer/kate-spade-9.html ケイトスペード リボン バッグ]。<br><br>は「あの男は怖がっていたが、直接ブルー神に来ていない、あなたについてどのように確認するために呼び出されました。 '劉ユーミンの道。<br><br>」と彼は問題ではない、青チャムがあまりにも恨みされ、単独で食べたいこれらの事業は、?私たちがやろうとしているか、すぐにスタート公共の敵 [http://www.dmwai.com/webalizer/kate-spade-7.html ケイトスペード バッグ 新作]......ユーミンなるだろう、と私もドアを出ることができないだけでなく、企業アカウントが何を整理しようとする必要があり、東洋では、奇数傷害とともに、主務人手がなくなっています [http://www.dmwai.com/webalizer/kate-spade-2.html ケイトスペード 財布 新作]。「ウェン蘭の道、小さな心を引っ張る [http://www.dmwai.com/webalizer/kate-spade-2.html ケイトスペード 財布 新作]
相关的主题文章:
<ul>
 
  <li>[http://www.ybzyyjy.com/plus/feedback.php?aid=23378 http://www.ybzyyjy.com/plus/feedback.php?aid=23378]</li>
 
  <li>[http://www.ai-gokaku.com/rcs/bbs_general/yybbs.cgi http://www.ai-gokaku.com/rcs/bbs_general/yybbs.cgi]</li>
 
  <li>[http://63-board.ru/cgi-bin/do/read.cgi http://63-board.ru/cgi-bin/do/read.cgi]</li>
 
</ul>


==History==
== '私は庭にあなたを見た車は、私はあなたがそれを言うと思う ==
The first known classical logician who didn't fully accept the [[law of excluded middle]] was [[Aristotle]] (who, ironically, is also generally considered to be the first classical logician and the "father of logic"<ref>Hurley, Patrick. ''A Concise Introduction to Logic'', 9th edition. (2006).</ref>). Aristotle admitted that his laws did not all apply to future events (''De Interpretatione'', ''ch. IX''), but he didn't create a system of multi-valued logic to explain this isolated remark. Until the coming of the 20th century, later logicians followed Aristotelian logic, which includes or assumes the law of the excluded middle.


The 20th century brought back the idea of multi-valued logic. The Polish logician and philosopher, [[Jan Łukasiewicz]], began to create systems of many-valued logic in 1920, using a third value, "possible", to deal with Aristotle's [[Problem of future contingents|paradox of the sea battle]]. Meanwhile, the American mathematician, [[Emil Post|Emil L. Post]] (1921), also introduced the formulation of additional truth degrees with ''n'' ≥ 2, where ''n'' are the truth values. Later, Jan Łukasiewicz and [[Alfred Tarski]] together formulated a logic on ''n'' truth values where ''n'' ≥ 2. In 1932 [[Hans Reichenbach]] formulated a logic of many truth values where ''n''→infinity. [[Kurt Gödel]] in 1932 showed that [[intuitionistic logic]] is not a finitely-many valued logic, and defined a system of [[Gödel logics]] intermediate between [[classical logic|classical]] and intuitionistic logic; such logics are known as [[intermediate logics]].
' [http://www.dmwai.com/webalizer/kate-spade-11.html ケイトスペード 財布 通販]<br><br>'?私は主要な事件の発生に加えて、一般的に、また、私は個人的にはしないでください。、200キロ離れたの州都からそれたべきではない」许平秋ロード、その後少し引きするだけでなく、実際に罪の笑いよりも、その笑った: [http://www.dmwai.com/webalizer/kate-spade-10.html ケイトスペード バッグ ショルダー] '私はあなたがここにいると思います。'<br>「?えっ」<br>许平秋ダウン予期せぬことに、これは劉局長に加えて、一時的な決定であり、ドライバーが知らなかった、実際に彼は非常に予想外の、しかし予想外に罪を超えていたが、再び微笑んで言った: [http://www.dmwai.com/webalizer/kate-spade-0.html ハンドバッグ ケイトスペード] '私は庭にあなたを見た車は、私はあなたがそれを言うと思う? [http://www.dmwai.com/webalizer/kate-spade-8.html マザーズバッグ ケイトスペード] '<br><br>「ああ......ああ、私のランプブラックああ。ちょうど通過、見て途中で、ここであなたの出身地を考える。 [http://www.dmwai.com/webalizer/kate-spade-13.html ケイトスペード ママバッグ] '徐Pingqiuは、微笑んで、この上に奇妙な、穏やかな慎重な犯罪の上に見えた彼の満足度と非常によく似て、より多くの漢字ヤンは、単に物事があることを知って、劉局長の言葉を意図的に、まだ両方の補償を修正するため、まだ準備の人に囲まれ、屋根付き駐車ヒット、Yeliangを暴利いる、されている。あなたは私を知っていますか」だけでなく、この、この生徒の印象に徐Pingqiu目は深く、非常に深い、彼はむしろ突然にblurting、見て
 
相关的主题文章:
== Examples ==
<ul>
{{main|Three-valued logic|Four-valued logic}}
 
 
  <li>[http://www.novaclassicrock.nl/cgi-bin/guestbook/guestbook.cgi http://www.novaclassicrock.nl/cgi-bin/guestbook/guestbook.cgi]</li>
=== Kleene (strong) ''K<sub>3</sub>'' and Priest logic ''P<sub>3</sub>'' ===
 
 
  <li>[http://bbs.52minsu.com/home.php?mod=space&uid=13927 http://bbs.52minsu.com/home.php?mod=space&uid=13927]</li>
Kleene's "(strong) logic of indeterminacy" ''K<sub>3</sub>'' (sometimes <math>K_3^S</math> and Priest's "logic of paradox" add a third "undefined" or "indeterminate" truth value ''I''. The truth functions for [[negation]] (¬), <!--(strong)--> [[logical conjunction|conjunction]] (∧), <!--(strong)--> [[disjunction]] (∨), <!--(strong)--> [[material conditional|implication]] (→<sub>K</sub>), and <!--(strong)--> [[biconditional]] (↔<sub>K</sub>) are given by:<ref>{{harv|Gottwald|2005|p=19}}</ref>
 
{|
  <li>[http://sarasa.coron.jp/bbs/joyful.cgi http://sarasa.coron.jp/bbs/joyful.cgi]</li>
|
 
{| class=wikitable
</ul>
|-
! ¬
!
|-
! T
| F
|-
! I
| I
|-
! F
| T
|}
||
||
||
{| class=wikitable
|-
! ∧
! T
! I
! F
|-
! T
| T || I || F
|-
! I
| I || I || F
|-
! F
| F || F || F
|}
||
||
||
{| class=wikitable
|-
! ∨
! T
! I
! F
|-
! T
| T || T || T
|-
! I
| T || I || I
|-
! F
| T || I || F
|}
||
||
||
{| class=wikitable
|-
! →<sub>K</sub>
! T
! I
! F
|-
! T
| T || I || F
|-
! I
| T || I || I
|-
! F
| T || T || T
|}
||
||
||
{| class=wikitable
|-
! ↔<sub>K</sub>
! T
! I
! F
|-
! T
| T || I || F
|-
! I
| I || I || I
|-
! F
| F || I || T
|}
|}
The difference between the two logics lies in how [[tautology (logic)|tautologies]] are defined. In ''K<sub>3</sub>'' only T is a ''designated truth value'', while in ''P<sub>3</sub>'' both T and I are (a logical formula is considered a tautology if it evaluates to a designated truth value). In Kleene's logic I can be interpreted as being "underdetermined", being neither true not false, while in Priest's logic I can be interpreted as being "overdetermined", being both true and false. ''K<sub>3</sub>'' does not have any tautologies, while ''P<sub>3</sub>'' has the same tautologies as classical two-valued logic.{{Citation needed|date=August 2011}}
 
=== Bochvar's internal three-valued logic (also known as Kleene's weak three-valued logic) ===
 
Another logic is Bochvar's "internal" three-valued logic (<math>B_3^I</math>) also called Kleene's weak three-valued logic. Except for negation, its truth tables are all different from the above.<ref>{{harv|Bergmann|2008|p=80}}</ref>
 
{|
|
{| class=wikitable
|-
! ∧<sub>+</sub>
! T
! I
! F
|-
! T
| T || I || F
|-
! I
| I || I || I
|-
! F
| F || I || F
|}
||
||
||
{| class=wikitable
! ∨<sub>+</sub>
! T
! I
! F
|-
! T
| T || I || T
|-
! I
| I || I || I
|-
! F
| T || I || F
|}
||
||
||
{| class=wikitable
|-
! →<sub>+</sub>
! T
! I
! F
|-
! T
| T || I || F
|-
! I
| I || I || I
|-
! F
| T || I || T
|}
|}
 
The intermediate truth value in Bochvar's "internal" logic can be described as "contagious" because it propagates in a formula regardless of the value of any other variable.<ref>{{harv|Bergmann|2008|p=80}}</ref>
 
=== Belnap logic (''B<sub>4</sub>'') ===
Belnap's logic ''B<sub>4</sub>'' combines ''K<sub>3</sub>'' and ''P<sub>3</sub>''. The overdetermined truth value is here denoted as ''B'' and the underdetermined truth value as ''N''.
 
{|
|
{| class=wikitable
|-
! ''f<sub>&not;</sub>''
!
|-
! T
| F
|-
! B
| B
|-
! N
| N
|-
! F
| T
|}
||
||
||
{| class=wikitable
|-
! ''f<sub><sub>''
! T
! B
! N
! F
|-
! T
| T || B || N || F
|-
! B
| B || B || F || F
|-
! N
| N || F || N || F
|-
! F
| F || F || F || F
|}
||
||
||
{| class=wikitable
|-
! ''f<sub>&or;</sub>''
! T
! B
! N
! F
|-
! T
| T || T || T || T
|-
! B
| T || B || T || B
|-
! N
| T || T || N || N
|-
! F
| T || B || N || F
|}
|}
 
== Semantics ==
 
=== Matrix semantics (logical matrices) ===
{{Empty section|date=April 2011}}
 
== Proof theory ==
{{Empty section|date=April 2011}}
 
==Relation to classical logic==
Logics are usually systems intended to codify rules for preserving some [[semantic]] property of propositions across transformations.  In classical [[logic]], this property is "truth." In a valid argument, the truth of the derived proposition is guaranteed if the premises are jointly true, because the application of valid steps preserves the property.  However, that property doesn't have to be that of "truth"; instead, it can be some other concept.
 
Multi-valued logics are intended to preserve the property of designationhood (or being designated). Since there are more than two truth values, rules of inference may be intended to preserve more than just whichever corresponds (in the relevant sense) to truth. For example, in a three-valued logic, sometimes the two greatest truth-values (when they are represented as e.g. positive integers) are designated and the rules of inference preserve these values. Precisely, a valid argument will be such that the value of the premises taken jointly will always be less than or equal to the conclusion.
 
For example, the preserved property could be ''justification'', the foundational concept of [[intuitionistic logic]].  Thus, a proposition is not true or false; instead, it is justified or flawed.  A key difference between justification and truth, in this case, is that the [[law of excluded middle]] doesn't hold: a proposition that is not flawed is not necessarily justified; instead, it's only not proven that it's flawed. The key difference is the determinacy of the preserved property:  One may prove that ''P'' is justified, that ''P'' is flawed, or be unable to prove either. A valid argument preserves justification across transformations, so a proposition derived from justified propositions is still justified.  However, there are proofs in classical logic that depend upon the law of excluded middle; since that law is not usable under this scheme, there are propositions that cannot be proven that way.
 
=== Suszko's thesis ===
{{Empty section|date=April 2011}}
 
==Relation to fuzzy logic==
 
Multi-valued logic is closely related to [[fuzzy set]] theory and [[fuzzy logic]]. The notion of fuzzy subset was introduced by [[Lotfi Zadeh]] as a formalization of [[vagueness]]; i.e., the phenomenon that a predicate may apply to an object not absolutely, but to a certain degree, and that there may be borderline cases. Indeed, as in multi-valued logic, fuzzy logic admits truth values different from "true" and "false". As an example, usually the set of possible truth values is the whole interval [0,1]. Nevertheless, the main difference between fuzzy logic and multi-valued logic is in the aims. In fact, in spite of its philosophical interest (it can be used to deal with the [[Sorites paradox]]), fuzzy logic is devoted mainly to the applications. More precisely, there are two approaches to fuzzy logic. The first one is very closely linked with multi-valued logic tradition (Hajek school). So a set of designed values is fixed and this enables us to define an [[entailment]] relation. The deduction apparatus is defined by a suitable set of logical axioms and suitable inference rules. Another approach ([[Joseph Goguen|Goguen]], Pavelka and others) is devoted to defining a deduction apparatus in which ''approximate reasonings'' are admitted. Such an apparatus is defined by a suitable fuzzy subset of logical axioms and by a suitable set of fuzzy inference rules. In the first case the [[logical consequence]] operator gives the set of logical consequence of a given set of axioms. In the latter the logical consequence operator gives the fuzzy subset of logical consequence of a given fuzzy subset of hypotheses.
 
== Applications ==
 
Applications of many-valued logic can be roughly classified into two groups.<ref>Dubrova, Elena (2002). [http://dl.acm.org/citation.cfm?id=566849 Multiple-Valued Logic Synthesis and Optimization], in Hassoun S. and Sasao T., editors, ''Logic Synthesis and Verification'', Kluwer Academic Publishers, pp. 89-114</ref> The first group uses many-valued logic domain to solve binary problems more efficiently. For example, a well-known approach to represent a multiple-output Boolean function is to treat its output part as a single many-valued variable and convert it to a single-output characteristic function. Other applications of many-valued logic include design of Programmable Logic Arrays (PLAs) with input decoders, optimization of finite state machines, testing, and verification.
 
The second group targets the design of electronic circuits which employ more than two discrete levels of signals, such as many-valued memories, arithmetic circuits, Field Programmable Gate Arrays (FPGA) etc. Many-valued circuits have a number of theoretical advantages over standard binary circuits. For example, the interconnect on and off chip can be reduced if signals in the circuit assume four or more levels rather than only two. In memory design, storing two instead of one bit of information per memory cell doubles the density of the memory in the same die size. Applications using arithmetic circuits often benefit from using alternatives to binary number systems. For example, residue and redundant number systems can reduce or eliminate the [[ripple-carry adder|ripple-through carries]] which are involved in normal binary addition or subtraction, resulting in high-speed arithmetic operations. These number systems have a natural implementation using many-valued circuits. However, the practicality of these potential advantages heavily depends on the availability of circuit realizations, which must be compatible or competitive with present-day standard technologies.
 
== Research venues ==
An [[IEEE]] [[International Symposium on Multiple-Valued Logic]] (ISMVL) has been held annually since 1970. It mostly caters to applications in digital design and verification.<ref>http://www.informatik.uni-trier.de/~ley/db/conf/ismvl/index.html</ref> There is also a ''[[Journal of Multiple-Valued Logic and Soft Computing]]''.<ref>http://www.oldcitypublishing.com/MVLSC/MVLSC.html</ref>
 
==See also==
{{Portal|Thinking}}
;Mathematical logic
* [[Fuzzy logic]]
* [[Gödel logics]]
* [[Kleene logic]] ([[Kleene algebra]])
* [[Łukasiewicz logic]] ([[MV-algebra]])
* [[Post logic]]
* [[Relevance logic]]
* [[Degrees of truth]]
* [[Principle of bivalence]]
;Philosophical logic
* [[False dilemma]]
* [[Mu (negative)|Mu]]
;Digital logic
* [[MVCML]], multiple-valued current-mode logic
* [[IEEE 1164]] a nine-valued standard for [[VHDL]]
* [[IEEE 1364]] a four-valued standard for [[Verilog]]
* [[Noise-based logic]]
 
==Notes==
{{Reflist|group=note}}
 
==References==
{{Reflist}}
 
== Further reading ==
'''General'''
* [[Béziau]] J.-Y. (1997), What is many-valued logic ? ''Proceedings of the 27th International Symposium on Multiple-Valued Logic'', IEEE Computer Society, Los Alamitos, pp.&nbsp;117–121.
* Malinowski, Gregorz, (2001), ''Many-Valued Logics,'' in Goble, Lou, ed., ''The Blackwell Guide to Philosophical Logic''. Blackwell.
* {{citation|first=Merrie |last=Bergmann|title=An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems|year=2008|publisher=Cambridge University Press|isbn=978-0-521-88128-9|harv=yes}}
* Cignoli, R. L. O., D'Ottaviano, I, M. L., Mundici, D., (2000). ''Algebraic Foundations of Many-valued Reasoning''. Kluwer.
* {{cite book|first1=Grzegorz|last1=Malinowski|title=Many-valued logics|year=1993|publisher=Clarendon Press|isbn=978-0-19-853787-8}}
* [[Siegfried Gottwald|S. Gottwald]], ''A Treatise on Many-Valued Logics.'' Studies in Logic and Computation, vol. 9, Research Studies Press: Baldock, Hertfordshire, England, 2001.
* {{cite journal|first1=Siegfried|last1=Gottwald|title=Many-Valued Logics|url=http://www.uni-leipzig.de/~logik/gottwald/SGforDJ.pdf|year=2005|ref=harv}}
* {{cite book|first1=D. Michael|last1=Miller|first2=Mitchell A.|last2=Thornton|title=Multiple valued logic: concepts and representations|year=2008|publisher=Morgan & Claypool Publishers|isbn=978-1-59829-190-2|series=S{{lc:YNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS}}|volume=12}}
* [[Petr Hájek|Hájek P.]], (1998), ''Metamathematics of fuzzy logic''. Kluwer. (Fuzzy logic understood as many-valued logic [[sui generis]].)
 
'''Specific'''
* [[Alexandre Zinoviev]], ''Philosophical Problems of Many-Valued Logic'', D. Reidel Publishing Company, 169p., 1963.
* Prior A. 1957, ''Time and Modality. Oxford University Press'', based on his 1956 [[John Locke]] lectures
* [[Goguen]] J.A. 1968/69, ''The logic of inexact concepts'', Synthese, 19, 325–373.
* Chang C.C. and Keisler H. J. 1966. ''Continuous Model Theory'', Princeton, Princeton University Press.
* Gerla G. 2001, ''Fuzzy logic: Mathematical Tools for Approximate Reasoning'', Kluwer Academic Publishers, Dordrecht.
* Pavelka J. 1979, ''On fuzzy logic I: Many-valued rules of inference'', Zeitschr. f. math. Logik und Grundlagen d. Math., 25, 45–52.
* {{cite book|first1=George|last1=Metcalfe|first2=Nicola|last2=Olivetti|author3=Dov M. Gabbay|title=Proof Theory for Fuzzy Logics|year=2008|publisher=Springer|isbn=978-1-4020-9408-8}} Covers proof theory of many-valued logics as well, in the tradition of Hájek.
* {{cite book|first1=Reiner|last1=Hähnle|title=Automated deduction in multiple-valued logics|year=1993|publisher=Clarendon Press|isbn=978-0-19-853989-6}}
* {{cite book|first1=Francisco|last1=Azevedo|title=Constraint solving over multi-valued logics: application to digital circuits|year=2003|publisher=IOS Press|isbn=978-1-58603-304-0}}
* {{cite book|first1=Leonard|last1=Bolc|first2=Piotr|last2=Borowik|title=Many-valued Logics 2: Automated reasoning and practical applications|year=2003|publisher=Springer|isbn=978-3-540-64507-8}}
 
==External links==
* {{cite encyclopedia|encyclopedia=[[Stanford Encyclopedia of Philosophy]]|url=http://plato.stanford.edu/entries/logic-manyvalued/|article=Many-Valued Logic|first=Siegfried|last=Gottwald|year=2009|ref=harv}}
*[[Stanford Encyclopedia of Philosophy]]: "[http://plato.stanford.edu/entries/truth-values/ Truth Values]"—by Yaroslav Shramko and Heinrich Wansing.
* [[IEEE Computer Society]]'s [http://www.lcs.info.hiroshima-cu.ac.jp/~s_naga/MVL/ Technical Committee on Multiple-Valued Logic]
* [http://www.cse.chalmers.se/~reiner/mvl-web/ Resources for Many-Valued Logic] by Reiner Hähnle, [[Chalmers University]]
* [http://web.archive.org/web/20050211094618/http://www.upmf-grenoble.fr/mvl/ Many-valued Logics W3 Server] (archived)
 
{{DEFAULTSORT:Multi-Valued Logic}}
[[Category:Many-valued logic| ]]

Latest revision as of 20:56, 4 January 2015

「ウェン蘭の道、小さな心を引っ張る

自分のみ。 「温首相蘭は、前方ささやきをささやく。

2クラッチはとても優しく、そのような接着剤のような塗料、カイniの午後の日差しのように恋人たちのペアのように、彼は不遜にログインUFAと香り香りを楽しむようだ再び音招待が「ランランを、私たちは誰もが知っている場所を見つけ、その後、戻ってくることはありませんように......アウトここに戻ってする必要があります。 ケイトスペード リボン バッグ '

「私は私を信じて......一日が去ることを考えると、ここに入院した、日がはい、天宝あなたはしませんでした連絡を、非常に長くなることはありません。」ウェン蘭は尋ねた ケイトスペード リボン バッグ

は「あの男は怖がっていたが、直接ブルー神に来ていない、あなたについてどのように確認するために呼び出されました。 '劉ユーミンの道。

」と彼は問題ではない、青チャムがあまりにも恨みされ、単独で食べたいこれらの事業は、?私たちがやろうとしているか、すぐにスタート公共の敵 ケイトスペード バッグ 新作......ユーミンなるだろう、と私もドアを出ることができないだけでなく、企業アカウントが何を整理しようとする必要があり、東洋では、奇数傷害とともに、主務人手がなくなっています ケイトスペード 財布 新作。「ウェン蘭の道、小さな心を引っ張る ケイトスペード 財布 新作。 相关的主题文章:

'私は庭にあなたを見た車は、私はあなたがそれを言うと思う

' ケイトスペード 財布 通販

'?私は主要な事件の発生に加えて、一般的に、また、私は個人的にはしないでください。、200キロ離れたの州都からそれたべきではない」许平秋ロード、その後少し引きするだけでなく、実際に罪の笑いよりも、その笑った: ケイトスペード バッグ ショルダー '私はあなたがここにいると思います。'
「?えっ」
许平秋ダウン予期せぬことに、これは劉局長に加えて、一時的な決定であり、ドライバーが知らなかった、実際に彼は非常に予想外の、しかし予想外に罪を超えていたが、再び微笑んで言った: ハンドバッグ ケイトスペード '私は庭にあなたを見た車は、私はあなたがそれを言うと思う? マザーズバッグ ケイトスペード '

「ああ......ああ、私のランプブラックああ。ちょうど通過、見て途中で、ここであなたの出身地を考える。 ケイトスペード ママバッグ '徐Pingqiuは、微笑んで、この上に奇妙な、穏やかな慎重な犯罪の上に見えた彼の満足度と非常によく似て、より多くの漢字ヤンは、単に物事があることを知って、劉局長の言葉を意図的に、まだ両方の補償を修正するため、まだ準備の人に囲まれ、屋根付き駐車ヒット、Yeliangを暴利いる、されている。あなたは私を知っていますか」だけでなく、この、この生徒の印象に徐Pingqiu目は深く、非常に深い、彼はむしろ突然にblurting、見て 相关的主题文章: