|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| '''Local-density approximations''' ('''LDA''') are a class of approximations to the [[Exchange interaction|exchange]]-[[Electron correlation|correlation]] (XC) energy [[Functional (mathematics)|functional]] in [[density functional theory]] (DFT) that depend solely upon the value of the [[electronic density]] at each point in space (and not, for example, derivatives of the density or the [[Kohn-Sham equations|Kohn-Sham orbitals]]). Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the [[homogeneous electron gas]] (HEG) model. In this regard, LDA is generally synonymous with functionals based on the HEG approximation, which are then applied to realistic systems (molecules and solids).
| | The writer's name is Andera and she thinks it seems quite great. To play lacross is something he would never give up. He works as a bookkeeper. Some time ago she selected to reside in Alaska and her parents reside close by.<br><br>my web site - online reader ([http://203.250.78.160/zbxe/?document_srl=1792908 More Information and facts]) |
| | |
| In general, for a spin-unpolarized system, a local-density approximation for the exchange-correlation energy is written as
| |
| | |
| :<math>E_{xc}^{\mathrm{LDA}}[\rho] = \int \rho(\mathbf{r})\epsilon_{xc}(\rho)\ \mathrm{d}\mathbf{r}\ ,</math>
| |
| | |
| where ''ρ'' is the [[electronic density]] and ''ε''<sub>xc</sub>, the exchange-correlation energy density, is a function of the density alone. The exchange-correlation energy is decomposed into exchange and correlation terms linearly,
| |
| | |
| :<math>E_{xc} = E_x + E_c\ ,</math>
| |
| | |
| so that separate expressions for ''E''<sub>x</sub> and ''E''<sub>c</sub> are sought. The exchange term takes on a simple analytic form for the HEG. Only limiting expressions for the correlation density are known exactly, leading to numerous different approximations for ''ε''<sub>c</sub>.
| |
| | |
| Local-density approximations are important in the construction of more sophisticated approximations to the exchange-correlation energy, such as [[generalized gradient approximation]]s or [[hybrid functional]]s, as a desirable property of any approximate exchange-correlation functional is that it reproduce the exact results of the HEG for non-varying densities. As such, LDA's are often an explicit component of such functionals.
| |
| | |
| == Homogeneous electron gas ==
| |
| | |
| Approximation for ''ε''<sub>xc</sub> depending only upon the density can be developed in numerous ways. The most successful approach is based on the homogeneous electron gas. This is constructed by placing ''N'' interacting electrons in to a volume, ''V'', with a positive background charge keeping the system neutral. ''N'' and ''V'' are then taken to infinity in the manner that keeps the density (''ρ'' = ''N'' / ''V'') finite. This is a useful approximation as the total energy consists of contributions only from the kinetic energy and exchange-correlation energy, and that the wavefunction is expressible in terms of planewaves. In particular, for a constant density ''ρ'', the exchange energy density is proportional to ''ρ''<sup>⅓</sup>.
| |
| | |
| == Exchange functional ==
| |
| | |
| The exchange-energy density of a HEG is known analytically. The LDA for exchange employs this expression under the approximation that the exchange-energy in a system where the density in not homogeneous, is obtained by applying the HEG results pointwise, yielding the expression<ref name="parryang">{{cite book|last=Parr|first=Robert G|coauthors=Yang, Weitao|title=Density-Functional Theory of Atoms and Molecules|publisher=Oxford University Press|location=Oxford |year=1994|isbn=978-0-19-509276-9}}</ref><ref>{{cite journal|last=Dirac|first=P. A. M.|year=1930|title=Note on exchange phenomena in the Thomas-Fermi atom|journal=Proc. Cambridge Phil. Roy. Soc.|volume=26|pages=376–385|doi=10.1017/S0305004100016108|issue=3|bibcode = 1930PCPS...26..376D }}</ref>
| |
| | |
| :<math>E_{x}^{\mathrm{LDA}}[\rho] = - \frac{3}{4}\left( \frac{3}{\pi} \right)^{1/3}\int\rho(\mathbf{r})^{4/3}\ \mathrm{d}\mathbf{r}\ .</math>
| |
| | |
| == Correlation functional ==
| |
| | |
| Analytic expressions for the correlation energy of the HEG are not known except in the high- and low-density limits corresponding to infinitely-weak and infinitely-strong correlation. For a HEG with density ''ρ'', the high-density limit of the correlation energy density is<ref name="parryang"/>
| |
| | |
| :<math>\epsilon_{c} = A\ln(r_{s}) + B + r_{s}(C\ln(r_{s}) + D)\ ,</math>
| |
| | |
| and the low limit
| |
| | |
| :<math>\epsilon_{c} = \frac{1}{2}\left(\frac{g_{0}}{r_{s}} + \frac{g_{1}}{r_{s}^{3/2}} + \dots\right)\ ,</math>
| |
| | |
| where the Wigner-Seitz radius is related to the density as
| |
| | |
| :<math>\frac{4}{3}\pi r_{s}^{3} = \frac{1}{\rho}\ .</math>
| |
| | |
| Accurate [[quantum Monte Carlo]] simulations for the energy of the HEG have been performed for several intermediate values of the density, in turn providing accurate values of the correlation energy density.<ref>{{cite journal | title = Ground State of the Electron Gas by a Stochastic Method | author = D. M. Ceperley and B. J. Alder | journal = Phys. Rev. Lett. | volume = 45 | pages = 566–569 | year = 1980 | doi = 10.1103/PhysRevLett.45.566 | bibcode=1980PhRvL..45..566C | issue = 7}}</ref> The most popular LDA's to the correlation energy density interpolate these accurate values obtained from simulation while reproducing the exactly known limiting behavior. Various approaches, using different analytic forms for ''ε''<sub>c</sub>, have generated several LDA's for the correlation functional, including
| |
| | |
| * Vosko-Wilk-Nusair (VWN) <ref name="vwn">{{cite journal | title = Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis | author = S. H. Vosko, L. Wilk and M. Nusair | journal = Can. J. Phys. | volume = 58 | pages = 1200 | year = 1980 | doi = 10.1139/p80-159 |bibcode = 1980CaJPh..58.1200V | issue = 8 }}</ref>
| |
| | |
| * Perdew-Zunger (PZ81) <ref name="pz81">{{cite journal | title = Self-interaction correction to density-functional approximations for many-electron systems | author = J. P. Perdew and A. Zunger | journal = Phys. Rev. B | volume = 23 | pages = 5048 | year = 1981 | doi = 10.1103/PhysRevB.23.5048 |bibcode = 1981PhRvB..23.5048P | issue = 10 }}</ref>
| |
| | |
| * Cole-Perdew (CP) <ref>{{cite journal | title = Calculated electron affinities of the elements | author = L. A. Cole and J. P. Perdew | journal = Phys. Rev. A | volume = 25 | pages = 1265 | year = 1982 | doi = 10.1103/PhysRevA.25.1265 |bibcode = 1982PhRvA..25.1265C | issue = 3 }}</ref>
| |
| | |
| * Perdew-Wang (PW92) <ref name=pw92>{{cite journal | title = Accurate and simple analytic representation of the electron-gas correlation energy | author = John P. Perdew and Yue Wang | journal = Phys. Rev. B | volume = 45 | pages = 13244–13249 | year = 1992 | doi = 10.1103/PhysRevB.45.13244 |bibcode = 1992PhRvB..4513244P | issue = 23 }}</ref>
| |
| | |
| Predating these, and even the formal foundations of DFT itself, is the Wigner correlation functional obtained [[Møller-Plesset_perturbation_theory#Rayleigh-Schr.C3.B6dinger_perturbation_theory|perturbatively]] from the HEG model.<ref name=wigner>{{cite journal | title = On the Interaction of Electrons in Metals | author = E. Wigner | journal = Phys. Rev. | volume = 46 | pages = 1002–1011 | year = 1934 | url = http://link.aps.org/abstract/PR/v46/p1002 | doi = 10.1103/PhysRev.46.1002 | format = abstract |bibcode = 1934PhRv...46.1002W | issue = 11 }}</ref>
| |
| | |
| == Spin polarization ==
| |
| | |
| The extension of density functionals to [[Spin polarization|spin-polarized]] systems is straightforward for exchange, where the exact spin-scaling is known, but for correlation further approximations must be employed. A spin polarized system in DFT employs two spin-densities, ''ρ''<sub>α</sub> and ''ρ''<sub>β</sub> with ''ρ'' = ''ρ''<sub>α</sub> + ''ρ''<sub>β</sub>, and the form of the local-spin-density approximation (LSDA) is
| |
| | |
| :<math>E_{xc}^{\mathrm{LSDA}}[\rho_{\alpha},\rho_{\beta}] = \int\mathrm{d}\mathbf{r}\ \rho(\mathbf{r})\epsilon_{xc}(\rho_{\alpha},\rho_{\beta})\ .</math>
| |
| | |
| For the exchange energy, the exact result (not just for local density approximations) is known in terms of the spin-unpolarized functional:<ref>{{cite journal|last=Oliver|first=G. L.|coauthors=Perdew, J. P. |year=1979|title=Spin-density gradient expansion for the kinetic energy|journal=Phys. Rev. A|volume=20|pages=397–403|doi=10.1103/PhysRevA.20.397|bibcode = 1979PhRvA..20..397O|issue=2 }}</ref>
| |
| | |
| :<math>E_{x}[\rho_{\alpha},\rho_{\beta}] = \frac{1}{2}\bigg( E_{x}[2\rho_{\alpha}] + E_{x}[2\rho_{\beta}] \bigg)\ .</math>
| |
| | |
| The spin-dependence of the correlation energy density is approached by introducing the relative spin-polarization:
| |
| | |
| :<math>\zeta(\mathbf{r}) = \frac{\rho_{\alpha}(\mathbf{r})-\rho_{\beta}(\mathbf{r})}{\rho_{\alpha}(\mathbf{r})+\rho_{\beta}(\mathbf{r})}\ .</math>
| |
| | |
| <math>\zeta = 0\,</math> corresponds to the paramagnetic spin-unpolarized situation with equal
| |
| <math>\alpha\,</math> and <math>\beta\,</math> spin densities whereas <math>\zeta = \pm 1</math> corresponds to the ferromagnetic situation where one spin density vanishes. The spin correlation energy density for a given values of the total density and relative polarization, ''ε''<sub>c</sub>(''ρ'',''ς''), is constructed so to interpolate the extreme values. Several forms have been developed in conjunction with LDA correlation functionals.<ref name="vwn"/><ref>{{cite journal|last=von Barth|first=U.|coauthors=Hedin, L.|year=1972|title=A local exchange-correlation potential for the spin polarized case|journal=J. Phys. C: Solid State Phys.|volume=5|pages=1629–1642|doi=10.1088/0022-3719/5/13/012|bibcode = 1972JPhC....5.1629V|issue=13 }}</ref>
| |
| | |
| == Exchange-correlation potential ==
| |
| | |
| The exchange-correlation potential corresponding to the exchange-correlation energy for a local density approximation is given by<ref name="parryang"/>
| |
| | |
| :<math>v_{xc}^{\mathrm{LDA}}(\mathbf{r}) = \frac{\delta E^{\mathrm{LDA}}}{\delta\rho(\mathbf{r})} = \epsilon_{xc}(\rho(\mathbf{r})) + \rho(\mathbf{r})\frac{\partial \epsilon_{xc}(\rho(\mathbf{r}))}{\partial\rho(\mathbf{r})}\ .</math>
| |
| | |
| In finite systems, the LDA potential decays asymptotically with an exponential form. This is in error; the true exchange-correlation potential decays much slower in a Coulombic manner. The artificially rapid decay manifests itself in the number of Kohn-Sham orbitals the potential can bind (that is, how many orbitals have energy less than zero). The LDA potential can not support a Rydberg series and those states it does bind are too high in energy. This results in the [[HOMO]] energy being too high in energy, so that any predictions for the [[ionization potential]] based on [[Koopman's theorem]] are poor. Further, the LDA provides a poor description of electron-rich species such as [[anion]]s where it is often unable to bind an additional electron, erroneously predicating species to be unstable.<ref>{{cite book|last=Fiolhais|first=Carlos|coauthors=Nogueira, Fernando; Marques Miguel|title=A Primer in Density Functional Theory|publisher=Springer|year=2003|isbn=978-3-540-03083-6|page=60}}</ref><ref name="pz81"/>
| |
| | |
| == References ==
| |
| {{reflist}}
| |
| | |
| [[Category:Density functional theory]]
| |
The writer's name is Andera and she thinks it seems quite great. To play lacross is something he would never give up. He works as a bookkeeper. Some time ago she selected to reside in Alaska and her parents reside close by.
my web site - online reader (More Information and facts)