Invariance mechanics: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Chris the speller
m Supersymmetry: replaced: dimesional → dimensional using AWB
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
'''Realization''', in the [[system theory]] context refers to a [[State space (controls)|state space]] model implementing a given input-output behavior. That is, given an input-output relationship, a realization is a quadruple of ([[time-variant system|time-varying]]) [[Matrix (mathematics)|matrices]] <math>[A(t),B(t),C(t),D(t)]</math> such that
The writer is known as Araceli Gulledge. Her friends say it's not great for her but what she enjoys doing is flower arranging and she is attempting to make it a profession. I am a manufacturing and distribution officer. Delaware is our beginning place.<br><br>My website :: extended car warranty ([http://Glskating.com/groups/great-ideas-about-auto-repair-that-you-can-use/ get redirected here])
: <math>\dot{\mathbf{x}}(t) = A(t) \mathbf{x}(t) + B(t) \mathbf{u}(t)</math>
: <math>\mathbf{y}(t) = C(t) \mathbf{x}(t) + D(t) \mathbf{u}(t)</math>
with <math>(u(t),y(t))</math> describing the input and output of the system at time <math>t</math>.
 
==LTI System==
For a [[linear time-invariant system]] specified by a [[transfer function|transfer matrix]], <math> H(s) </math>, a realization is any quadruple of matrices <math> (A,B,C,D) </math> such that <math> H(s) = C(sI-A)^{-1}B+D</math>.
 
=== Canonical realizations ===
Any given transfer function which is [[strictly proper]] can easily be transferred into state-space by the following approach (this example is for a 4-dimensional, single-input, single-output system)):
 
Given a transfer function, expand it to reveal all coefficients in both the numerator and denominator. This should result in the following form:
:<math> H(s) = \frac{n_{1}s^{3} + n_{2}s^{2} + n_{3}s + n_{4}}{s^{4} + d_{1}s^{3} + d_{2}s^{2} + d_{3}s + d_{4}}</math>.
 
The coefficients can now be inserted directly into the state-space model by the following approach:
:<math>\dot{\textbf{x}}(t) = \begin{bmatrix}
                              -d_{1}& -d_{2}& -d_{3}& -d_{4}\\
                                1&      0&      0&      0\\
                                0&      1&      0&      0\\
                                0&      0&      1&      0
                            \end{bmatrix}\textbf{x}(t) +
                            \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ \end{bmatrix}\textbf{u}(t)</math>
 
:<math> \textbf{y}(t) = \begin{bmatrix} n_{1}& n_{2}& n_{3}& n_{4} \end{bmatrix}\textbf{x}(t)</math>.
 
This state-space realization is called '''controllable canonical form''' (also known as phase variable canonical form) because the resulting model is guaranteed to be [[Controllability|controllable]] (i.e., because the control enters a chain of integrators, it has the ability to move every state).
 
The transfer function coefficients can also be used to construct another type of canonical form
:<math>\dot{\textbf{x}}(t) = \begin{bmatrix}
                              -d_{1}&  1&  0&  0\\
                              -d_{2}&  0&  1&  0\\
                              -d_{3}&  0&  0&  1\\
                              -d_{4}&  0&  0&  0
                            \end{bmatrix}\textbf{x}(t) +
                            \begin{bmatrix} n_{1}\\ n_{2}\\ n_{3}\\ n_{4} \end{bmatrix}\textbf{u}(t)</math>
 
:<math> \textbf{y}(t) = \begin{bmatrix} 1& 0& 0& 0 \end{bmatrix}\textbf{x}(t)</math>.
 
This state-space realization is called '''observable canonical form''' because the resulting model is guaranteed to be [[Observability|observable]] (i.e., because the output exits from a chain of integrators, every state has an effect on the output).
 
==General System==
===<math>D = 0</math>===
If we have an input <math>u(t)</math>, an output <math>y(t)</math>, and a [[weighting pattern]] <math>T(t,\sigma)</math> then a realization is any triple of matrices <math>[A(t),B(t),C(t)]</math> such that <math>T(t,\sigma) = C(t) \phi(t,\sigma) B(\sigma)</math> where <math>\phi</math> is the [[state-transition matrix]] associated with the realization.<ref>{{cite book|first=Roger W.|last=Brockett|title=Finite Dimensional Linear Systems|publisher=John Wiley & Sons|year=1970|isbn=978-0-471-10585-5}}</ref>
 
==System identification==
{{main|System identification}}
System identification techniques take the experimental data from a system and output a realization.  Such techniques can utilize both input and output data (e.g. [[eigensystem realization algorithm]]) or can only include the output data (e.g. [[frequency domain decomposition]]).  Typically an input-output technique would be more accurate, but the input data is not always available.
 
==References==
{{Reflist}}
 
[[Category:Models of computation]]
[[Category:Systems theory]]

Latest revision as of 23:40, 16 November 2014

The writer is known as Araceli Gulledge. Her friends say it's not great for her but what she enjoys doing is flower arranging and she is attempting to make it a profession. I am a manufacturing and distribution officer. Delaware is our beginning place.

My website :: extended car warranty (get redirected here)