Doppler radar: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>JustinTime55
History: Oops; wrong article? Moved last entry to Pulse-Doppler radar
en>Pierre cb
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
This is a list of [[mathematical constant]]s sorted by their representations as [[continued fraction]]s.
I am 23 years old and my name is Velda Rosales. I life in Lofsdalen (Sweden).<br><br>Here is my website :: [http://hemorrhoidtreatmentfix.com/hemorrhoid-relief hemorrhoid relief]
 
Continued fractions with more than 20 known terms have been truncated, with an [[ellipsis]] to show that they continue.  Rational numbers have two continued fractions; the version in this list is the shorter one.  Decimal representations are [[rounding|rounded]] or padded to 10 places if the values are known.
 
{| class="wikitable sortable"
|-
! [[List of letters used in mathematics and science|Symbol]]<ref group="lower-greek">Although some of the symbols in the leftmost column are displayed in black due to math markup peculiarities, all are clickable and link to the respective constant's page.</ref>
! [[set (mathematics)|Member of]]
! [[Decimal representation|decimal]]
! [[Continued fraction]]
! Notes
|-
| [[0 (number)|<math>0</math>]]
|| [[integer|<math>\mathbb{Z}</math>]]
|| 0.00000 00000
|| [0; ]
||
|-
| [[Golden ratio#Golden ratio conjugate|<math>\phi^{-1}</math>]]
|| [[algebraic number|<math>\mathbb{A}\setminus\mathbb{Q}</math>]]
|| 0.61803 39887
|| [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …]
|| irrational
|-
| [[Cahen's constant|<math>C</math>]]
|| [[real number|<math>\mathbb{R}</math>]]
|| 0.64341 05463
|| [0; 1, 1, 1, 4, 9, 169, 16641, 639988804, 177227652025317609, 72589906463585427805281295977816196, …]
|| Continued fraction truncated at 10 terms due to large size.
|-
| [[Twin prime#First Hardy–Littlewood conjecture|<math>C_2</math>]]
|| [[real number|<math>\mathbb{R}</math>]]
|| 0.66016 18158
|| [0; 1, 1, 1, 16, 2, 2, 2, 2, 1, 18, 2, 2, 11, 1, 1, 2, 4, 1, 16, 3, …]
|| Hardy–Littlewood's twin prime constant.  Presumed [[irrational]], but not proved.
|-
| [[Euler–Mascheroni constant|<math>\gamma</math>]]
|| <math>\mathbb{R}</math>
|| 0.57721 56649
|| [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, …]
|| Presumed irrational, but not proved.
|-
| [[Omega constant|<math>\Omega</math>]]
|| [[transcendental number|<math>\mathbb{R}\setminus\mathbb{A}</math>]]
|| 0.56714 32904
|| [0; 1, 1, 3, 4, 2, 10, 4, 1, 1, 1, 1, 2, 7, 306, 1, 5, 1, 2, 1, 5, …]
||
|-
| [[Embree–Trefethen constant|<math>\beta^\star</math>]]
|| <math>\mathbb{R}</math>
|| 0.70258
|| [0; 1, 2, 2, 1, 3, 5, 1, 2, 6, 1, 1, 5, …]
|| Value only known to 5 decimal places.
|-
| [[Landau–Ramanujan constant|<math>K</math>]]
|| <math>\mathbb{R} (\setminus\mathbb{Q}?)</math>
|| 0.76422 36535
|| [0; 1, 3, 4, 6, 1, 15, 1, 2, 2, 3, 1, 23, 3, 1, 1, 3, 1, 1, 7, 2, …]
|| May have been proven irrational.
|-
| [[Gauss's constant|<math>\frac 1{M(1,\sqrt 2)}</math>]]
|| <math>\mathbb{R}\setminus\mathbb{A}</math>
|| 0.83462 68417
|| [0; 1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 8, 36, 1, 2, …]
|| Gauss's constant
|-
| [[Brun's theorem#Brun's constant|<math>B_4</math>]]
|| <math>\mathbb{R}</math>
|| 0.87058 83800
|| [0; 1, 6, 1, 2, 1, 2, 956, 8, 1, 1, 1, 23, …]
|| Brun's prime quadruplet constant.  Estimated value; 99% confidence interval ± 0.00000 00005.
|-
| [[Champernowne constant|<math>C_2</math>]]
|| <math>\mathbb{R}\setminus\mathbb{A}</math>
|| 0.86224 01259
|| [0; 1, 6, 3, 1, 6, 5, 3, 3, 1, 6, 4, 1, 3, 298, 1, 6, 1, 1, 3, 285, …]
|| Base 2 Champernowne constant. The binary expansion is <math>C_2 = 0.1 10 11 100 101 110 111 1000\ldots_2</math>
|-
| [[Catalan's constant|<math>G</math>]]
|| <math>\mathbb{R}</math>
|| 0.91596 55942
|| [0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, …]
|| Presumed irrational, but not proved.
|-
| [[One half|<math>\frac 12</math>]]
|| [[rational number|<math>\mathbb{Q}</math>]]
|| 0.50000 00000
|| [0; 2]
||
|-
| [[Bernstein's constant|<math>\beta</math>]]
|| <math>\mathbb{R}</math>
|| 0.28016 94990
|| [0; 3, 1, 1, 3, 9, 6, 3, 1, 3, 13, 1, 16, 3, 3, 4, …]
|| Presumed irrational, but not proved.
|-
| [[Meissel–Mertens constant|<math>M</math>]]
|| <math>\mathbb{R}</math>
|| 0.26149 72128
|| [0; 3, 1, 4, 1, 2, 5, 2, 1, 1, 1, 1, 13, 4, 2, 4, 2, 1, 33, 296, 2, …]
|| Presumed irrational, but not proved.
|-
| [[MRB constant|<math> C_{{}_{MRB}}</math>]]
|| <math>\mathbb{R}</math>
|| 0.18785 96424
|| [0; 5, 3, 10, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 12, 2, 17, 2, 2, 1, 1, …]
||
|-
| [[Champernowne constant|<math>C_{10}</math>]]
|| <math>\mathbb{R}\setminus\mathbb{A}</math>
|| 0.12345 67891
|| [0; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, <math>4.57540\times 10^{165}</math>, 6, 1, …]
|| Base 10 Champernowne constant.  Champernowne constants in any base exhibit sporadic large numbers; the 40th term in <math>C_{10}</math> has 2504 digits.
|-
| [[1 (number)|<math>1</math>]]
|| [[natural number|<math>\mathbb{N}</math>]]
|| 1.00000 00000
|| [1; ]
||
|-
| [[Golden ratio|<math>\phi</math>]]
|| <math>\mathbb{A}\setminus\mathbb{Q}</math>
|| 1.61803 39887
|| [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …]
||
|-
| [[Erdős–Borwein constant|<math>E</math>]]
|| [[irrational number|<math>\mathbb{R}\setminus\mathbb{Q}</math>]]
|| 1.60669 51524
|| [1; 1, 1, 1, 1, 5, 2, 1, 2, 29, 4, 1, 2, 2, 2, 2, 6, 1, 7, 1, 6, …]
|| Not known whether algebraic or transcendental.
|-
| [[Brun's theorem#Brun's constant|<math>B_2</math>]]
|| <math>\mathbb{R}</math>
|| 1.90216 05823
|| [1; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, …]
|| Brun's twin prime constant. Estimated value; best bounds <math>1.8304<B_2<2.347</math>.
|-
| [[Backhouse's constant|<math>B</math>]]
|| <math>\mathbb{R}</math>
|| 1.45607 49485
|| [1; 2, 5, 5, 4, 1, 1, 18, 1, 1, 1, 1, 1, 2, 13, 3, 1, 2, 4, 16, 4, …]
||
|-
| [[Apéry's constant|<math>\zeta(3)</math>]]
|| <math>\mathbb{R}\setminus\mathbb{Q}</math>
|| 1.20205 69032
|| [1; 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 1, 1, 2, 7, 1, 1, 7, 11, …]
||
|-
| [[Random Fibonacci sequence|<math>V</math>]]
|| <math>\mathbb{R}</math>
|| 1.13198 82488
|| [1; 7, 1, 1, 2, 1, 3, 2, 1, 2, 1, 17, 1, 1, 2, 1, 2, 4, 1, 2, …]
|| Viswanath's constant. Apparently, Eric Weisstein calculated this constant to be approximately 1.13215 06911 with Mathematica.
|-
| [[Square root of 2|<math>\sqrt 2</math>]]
|| <math>\mathbb{A}\setminus\mathbb{Q}</math>
|| 1.41421 35624
|| [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …]
||
|-
| [[Ramanujan-Soldner constant|<math>\mu</math>]]
|| <math>\mathbb{R}</math>
|| 1.45136 92349
|| [1; 2, 4, 1, 1, 1, 3, 1, 1, 1, 2, 47, 2, 4, 1, 12, 1, 1, 2, 2, 1, …]
|| Presumed irrational, but not proved.
|-
| [[Plastic number|<math>\rho</math>]]
|| <math>\mathbb{A}\setminus\mathbb{Q}</math>
|| 1.32471 95724
|| [1; 3, 12, 1, 1, 3, 2, 3, 2, 4, 2, 141, 80, 2, 5, 1, 2, 8, 2, 1, 1, …]
||
|-
| [[2 (number)|<math>2</math>]]
|| <math>\mathbb N</math>
|| 2.00000 00000
|| [2; ]
||
|-
| [[Gelfond–Schneider constant|<math>2^\sqrt 2</math>]]
|| <math>\mathbb{R}\setminus\mathbb{A}</math>
|| 2.66514 41426
|| [2; 1, 1, 1, 72, 3, 4, 1, 3, 2, 1, 1, 1, 14, 1, 2, 1, 1, 3, 1, 3, …]
||
|-
| [[Feigenbaum constants|<math>\alpha</math>]]
|| <math>\mathbb{R}</math>
|| 2.50290 78751
|| [2; 1, 1, 85, 2, 8, 1, 10, 16, 3, 8, 9, 2, 1, 40, 1, 2, 3, 2, 2, 1, …]
||
|-
| [[e (mathematical constant)|<math>e</math>]]
|| <math>\mathbb{R}\setminus\mathbb{A}</math>
|| 2.71828 18285
|| [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, …]
||
|-
| [[Khinchin's constant|<math>K_0</math>]]
|| <math>\mathbb{R}</math>
|| 2.68545 20011
|| [2; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, …]
||
|-
| [[Fransén–Robinson constant|<math>F</math>]]
|| <math>\mathbb{R}</math>
|| 2.80777 02420
|| [2; 1, 4, 4, 1, 18, 5, 1, 3, 4, 1, 5, 3, 6, 1, 1, 1, 5, 1, 1, 1, …]
||
|-
| [[Universal parabolic constant|<math>P_2</math>]]
|| <math>\mathbb{R}\setminus\mathbb{A}</math>
||  2.29558 71494
|| [2; 3, 2, 1, 1, 1, 1, 3, 3, 1, 1, 4, 2, 3, 2, 7, 1, 6, 1, 8, 7, …]
||
|-
| [[3 (number)|<math>3</math>]]
|| <math>\mathbb{N}</math>
|| 3.00000 00000
|| [3; ]
||
|-
| [[Pi|<math>\pi</math>]]
|| <math>\mathbb{R}\setminus\mathbb{A}</math>
|| 3.14159 26536
|| [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, …]
||
|-
| [[Reciprocal Fibonacci constant|<math>\psi</math>]]
|| <math>\mathbb{R}\setminus\mathbb{Q}</math>
|| 3.35988 56662
|| [3; 2, 1, 3, 1, 1, 13, 2, 3, 3, 2, 1, 1, 6, 3, 2, 4, 362, 2, 4, 8, …]
||
|-
| [[4 (number)|<math>4</math>]]
|| <math>\mathbb N</math>
|| 4.00000 00000
|| [4; ]
||
|-
| [[Feigenbaum constants|<math>\delta</math>]]
|| <math>\mathbb R</math>
|| 4.66920 16091
|| [4; 1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, …]
||
|-
| [[Gelfond's constant|<math>e^\pi</math>]]
|| <math>\mathbb R\setminus\mathbb A</math>
|| 23.14069&nbsp;26328
|| [23; 7, 9, 3, 1, 1, 591, 2, 9, 1, 2, 34, 1, 16, 1, 30, 1, 1, 4, 1, 2, …]
|| Gelfond's constant.  Can also be expressed as <math>(-1)^{-i}</math>; from this form, it is transcendental due to the [[Gelfond–Schneider theorem]].
|}
{{Reflist|group=lower-greek}}
 
==See also==
* [[Physical constant]]
* [[Mathematical constants and functions]]
[[Category:Mathematical constants|*]]
[[Category:Continued fractions]]

Latest revision as of 05:36, 17 December 2014

I am 23 years old and my name is Velda Rosales. I life in Lofsdalen (Sweden).

Here is my website :: hemorrhoid relief