Erdős arcsine law: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>David Eppstein
expand from MR
 
en>CBM
Stub tag
 
Line 1: Line 1:
Hello from Italy. I'm glad to came across you. My first name is Stefanie. <br>I live in a small town called Gioi in east Italy.<br>I was also born in Gioi 28 years ago. Married in February 2008. I'm working at the college.<br><br>Also visit my page - [http://site1.plumbingnumbers.com/straightforward-mountain-bike-solutions-basics Choosing the right ride for you mountain bike sizing.]
In [[probability theory]] and [[directional statistics]], a '''wrapped Lévy distribution''' is a [[wrapped distribution|wrapped probability distribution]] that results from the "wrapping" of the [[Lévy distribution]] around the [[unit circle]].
 
== Description ==
 
The pdf of the wrapped [[Lévy distribution]] is
 
:<math>
f_{WL}(\theta;\mu,c)=\sum_{n=-\infty}^\infty \sqrt{\frac{c}{2\pi}}\,\frac{e^{-c/2(\theta+2\pi n-\mu)}}{(\theta+2\pi n-\mu)^{3/2}}
</math>
 
where the value of the summand is taken to be zero when <math>\theta+2\pi n-\mu \le 0</math>, <math>c</math> is the scale factor and <math>\mu</math> is the location parameter. [[Wrapped distribution|Expressing]] the above pdf in terms of the [[characteristic function (probability theory)|characteristic function]] of the Lévy distribution yields:
 
:<math>
f_{WL}(\theta;\mu,c)=\frac{1}{2\pi}\sum_{n=-\infty}^\infty e^{-in(\theta-\mu)-\sqrt{c|n|}\,(1-i\sgn{n})}=\frac{1}{2\pi}\left(1 + 2\sum_{n=1}^\infty e^{-\sqrt{cn}}\cos\left(n(\theta-\mu) - \sqrt{cn}\,\right)\right)
</math>
 
In terms of the circular variable <math>z=e^{i\theta}</math> the circular moments of the wrapped Lévy distribution are the characteristic function of the Lévy distribution evaluated at integer arguments:
 
:<math>\langle z^n\rangle=\int_\Gamma e^{in\theta}\,f_{WL}(\theta;\mu,c)\,d\theta = e^{i n \mu-\sqrt{c|n|}\,(1-i\sgn(n))}.</math>
 
where <math>\Gamma\,</math> is some interval of length <math>2\pi</math>. The first moment is then the expectation value of ''z'', also known as the mean resultant, or mean resultant vector:
 
:<math>
\langle z \rangle=e^{i\mu-\sqrt{c}(1-i)}
</math>
 
The mean angle is
 
:<math>
\theta_\mu=\mathrm{Arg}\langle z \rangle = \mu+\sqrt{c}
</math>
 
and the length of the mean resultant is
:<math>
R=|\langle z \rangle| = e^{-\sqrt{c}}
</math>
 
== See also ==
 
* [[Wrapped distribution]]
* [[Directional statistics]]
 
== References ==
 
* {{cite book |title=Statistical Analysis of Circular Data |last=Fisher |first=N. I. |year=1996 |publisher=Cambridge University Press |location= |isbn=978-0-521-56890-6 |url=http://books.google.com/books?id=IIpeevaNH88C&dq=%22circular+variance%22+fisher&source=gbs_navlinks_s |accessdate=2010-02-09}}
 
{{ProbDistributions|directional}}
 
{{DEFAULTSORT:Wrapped Levy distribution}}
[[Category:Continuous distributions]]
[[Category:Directional statistics]]
[[Category:Probability distributions]]

Latest revision as of 17:11, 23 October 2012

In probability theory and directional statistics, a wrapped Lévy distribution is a wrapped probability distribution that results from the "wrapping" of the Lévy distribution around the unit circle.

Description

The pdf of the wrapped Lévy distribution is

fWL(θ;μ,c)=n=c2πec/2(θ+2πnμ)(θ+2πnμ)3/2

where the value of the summand is taken to be zero when θ+2πnμ0, c is the scale factor and μ is the location parameter. Expressing the above pdf in terms of the characteristic function of the Lévy distribution yields:

fWL(θ;μ,c)=12πn=ein(θμ)c|n|(1isgnn)=12π(1+2n=1ecncos(n(θμ)cn))

In terms of the circular variable z=eiθ the circular moments of the wrapped Lévy distribution are the characteristic function of the Lévy distribution evaluated at integer arguments:

zn=ΓeinθfWL(θ;μ,c)dθ=einμc|n|(1isgn(n)).

where Γ is some interval of length 2π. The first moment is then the expectation value of z, also known as the mean resultant, or mean resultant vector:

z=eiμc(1i)

The mean angle is

θμ=Argz=μ+c

and the length of the mean resultant is

R=|z|=ec

See also

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

55 yrs old Metal Polisher Records from Gypsumville, has interests which include owning an antique car, summoners war hack and spelunkering. Gets immense motivation from life by going to places such as Villa Adriana (Tivoli).

my web site - summoners war hack no survey ios