|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| In [[probability theory]] and [[statistics]], the '''moment-generating function''' of a [[random variable]] is an alternative specification of its [[probability distribution]]. Thus, it provides the basis of an alternative route to analytical results compared with working directly with [[probability density function]]s or [[cumulative distribution function]]s. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. Note, however, that not all random variables have moment-generating functions.
| | Eusebio is the name girls use to call me and I think it sounds quite good when you say it. Idaho is our birth install. I included to be unemployed yet still now I am a major cashier. My visitors say it's not good for me but methods I love doing can be to bake but I am glad for [http://search.Un.org/search?ie=utf8&site=un_org&output=xml_no_dtd&client=UN_Website_en&num=10&lr=lang_en&proxystylesheet=UN_Website_en&oe=utf8&q=thinking&Submit=Go thinking] on starting something mroe challenging. I'm not good at webdesign but you might desire to check my website: http://prometeu.net<br><br> |
|
| |
|
| In addition to univariate distributions, moment-generating functions can be defined for vector- or matrix-valued random variables, and can even be extended to more general cases.
| | Feel free to surf to my page how to hack clash of clans - [http://prometeu.net read what he said], |
| | |
| The moment-generating function does not always exist even for real-valued arguments, unlike the [[Characteristic function (probability theory)|characteristic function]]. There are relations between the behavior of the moment-generating function of a distribution and properties of the distribution, such as the existence of moments.
| |
| | |
| ==Definition==
| |
| In [[probability theory]] and [[statistics]], the '''moment-generating function''' of a [[random variable]] ''X'' is
| |
| | |
| :<math> M_X(t) := \mathbb{E}\!\left[e^{tX}\right], \quad t \in \mathbb{R}, </math>
| |
| | |
| wherever this [[expected value|expectation]] exists.
| |
| | |
| <math> M_X(0) </math> always exists and is equal to 1.
| |
| | |
| A key problem with moment-generating functions is that moments and the moment-generating function may not exist, as the integrals need not converge absolutely. By contrast, the [[Characteristic function (probability theory)|characteristic function]] always exists (because it is the integral of a bounded function on a space of finite [[measure (mathematics)|measure]]), and thus may be used instead.
| |
| | |
| More generally, where <math>\mathbf X = ( X_1, \ldots, X_n)</math><sup>T</sup>, an ''n''-dimensional [[random vector]], one uses <math>\mathbf t \cdot \mathbf X = \mathbf t^\mathrm T\mathbf X</math> instead of ''tX'':
| |
| | |
| :<math> M_{\mathbf X}(\mathbf t) := \mathbb{E}\!\left(e^{\mathbf t^\mathrm T\mathbf X}\right).</math>
| |
| | |
| The reason for defining this function is that it can be used to find all the moments of the distribution.<ref>Bulmer, M.G., Principles of Statistics, Dover, 1979, pp. 75–79</ref> The series expansion of ''e''<sup>''tX''</sup> is:
| |
| | |
| : <math>
| |
| e^{t\,X} = 1 + t\,X + \frac{t^2\,X^2}{2!} + \frac{t^3\,X^3}{3!} + \cdots +\frac{t^n\,X^n}{n!} + \cdots.
| |
| </math>
| |
| | |
| Hence:
| |
| | |
| : <math>
| |
| \begin{align}
| |
| M_X(t) = \mathbb{E}(e^{t\,X}) &= 1 + t \,\mathbb{E}(X) + \frac{t^2 \,\mathbb{E}(X^2)}{2!} + \frac{t^3\,\mathbb{E}(X^3)}{3!}+\cdots + \frac{t^n\,\mathbb{E}(X^n)}{n!}+\cdots \\
| |
| & = 1 + tm_1 + \frac{t^2m_2}{2!} + \frac{t^3m_3}{3!}+\cdots + \frac{t^nm_n}{n!}+\cdots,
| |
| \end{align}
| |
| </math>
| |
| | |
| where ''m''<sub>''n''</sub> is the ''n''th [[moment (mathematics)|moment]].
| |
| | |
| Differentiating ''M''<sub>''X''</sub>(t) ''i'' times with respect to ''t'' and setting ''t'' = 0 we hence obtain the ''i''th moment about the origin, ''m''<sub>''i''</sub>,
| |
| see [[Moment-generating_function#Calculations_of_moments|Calculations of moments]] below.
| |
| | |
| ==Examples==
| |
| Here are some examples of the moment generating function and the characteristic function for comparison. It can be seen that the characteristic function is a [[Wick rotation]] of the moment generating function Mx(t) when the latter exists.
| |
| {|class="wikitable"
| |
| |-
| |
| ! Distribution
| |
| ! Moment-generating function ''M''<sub>''X''</sub>(''t'')
| |
| ! Characteristic function ''φ(t)''
| |
| |-
| |
| | [[Bernoulli distribution|Bernoulli]] <math>\, P(X=1)=p</math>
| |
| | <math>\, 1-p+pe^t</math>
| |
| | <math>\, 1-p+pe^{it}</math>
| |
| |-
| |
| | [[Geometric distribution|Geometric]] <math>(1 - p)^{k-1}\,p\!</math>
| |
| | <math>\frac{p}{1-(1-p) e^t}\!</math>, <br> for <math>t<-\ln(1-p)\!</math>
| |
| | <math>\frac{p}{1-(1-p)\,e^{it}}\!</math>
| |
| |-
| |
| | [[Binomial distribution|Binomial]] B(''n, p'')
| |
| | <math>\, (1-p+pe^t)^n</math>
| |
| | <math>\, (1-p+pe^{it})^n</math>
| |
| |-
| |
| | [[Poisson distribution|Poisson]] Pois(''λ'')
| |
| | <math>\, e^{\lambda(e^t-1)}</math>
| |
| | <math>\, e^{\lambda(e^{it}-1)}</math>
| |
| |-
| |
| | [[Uniform distribution (continuous)|Uniform (continuous)]] U(''a, b'')
| |
| | <math>\, \frac{e^{tb} - e^{ta}}{t(b-a)}</math>
| |
| | <math>\, \frac{e^{itb} - e^{ita}}{it(b-a)}</math>
| |
| |-
| |
| | [[Discrete uniform distribution|Uniform (discrete)]] U(''a, b'')
| |
| | <math>\, \frac{e^{at} - e^{(b+1)t}}{(b-a+1)(1-e^{t})}</math>
| |
| | <math>\, \frac{e^{ait} - e^{(b+1)it}}{(b-a+1)(1-e^{it})}</math>
| |
| |-
| |
| | [[Normal distribution|Normal]] ''N''(''μ, σ<sup>2</sup>'')
| |
| | <math>\, e^{t\mu + \frac{1}{2}\sigma^2t^2}</math>
| |
| | <math>\, e^{it\mu - \frac{1}{2}\sigma^2t^2}</math>
| |
| |-
| |
| | [[Chi-squared distribution|Chi-squared]] χ<sup>2</sup><sub style="position:relative;left:-5pt;top:2pt">k</sub>
| |
| | <math>\, (1 - 2t)^{-k/2}</math>
| |
| | <math>\, (1 - 2it)^{-k/2}</math>
| |
| |-
| |
| | [[Gamma distribution|Gamma]] Γ(''k, θ'')
| |
| | <math>\, (1 - t\theta)^{-k}</math>
| |
| | <math>\, (1 - it\theta)^{-k}</math>
| |
| |-
| |
| | [[Exponential distribution|Exponential]] Exp(''λ'')
| |
| | <math>\, (1-t\lambda^{-1})^{-1}</math>
| |
| | <math>\, (1 - it\lambda^{-1})^{-1}</math>
| |
| |-
| |
| | [[Multivariate normal distribution|Multivariate normal]] ''N''(''μ'', ''Σ'')
| |
| | <math>\, e^{t^\mathrm{T} \mu + \frac{1}{2} t^\mathrm{T} \Sigma t}</math>
| |
| | <math>\, e^{i t^\mathrm{T} \mu - \frac{1}{2} t^\mathrm{T} \Sigma t}</math>
| |
| |-
| |
| | [[Degenerate distribution|Degenerate]] ''δ<sub>a</sub>''
| |
| | <math>\, e^{ta}</math>
| |
| | <math>\, e^{ita}</math>
| |
| |-
| |
| | [[Laplace distribution|Laplace]] L(''μ, b'')
| |
| | <math>\, \frac{e^{t\mu}}{1 - b^2t^2}</math>
| |
| | <math>\, \frac{e^{it\mu}}{1 + b^2t^2}</math>
| |
| |-
| |
| | [[Negative binomial distribution|Negative Binomial]] NB(''r, p'')
| |
| | <math>\, \frac{(1-p)^r}{(1-pe^t)^r}</math>
| |
| | <math>\, \frac{(1-p)^r}{(1-pe^{it})^r}</math>
| |
| |-
| |
| | [[Cauchy distribution|Cauchy]] Cauchy(''μ, θ'')
| |
| | does not exist
| |
| | <math>\, e^{it\mu -\theta|t|}</math>
| |
| |-
| |
| |}
| |
| | |
| ==Calculation==
| |
| The moment-generating function is given by the [[Riemann–Stieltjes integral]]
| |
| | |
| : <math>M_X(t) = \int_{-\infty}^\infty e^{tx}\,dF(x)</math>
| |
| | |
| where ''F'' is the [[cumulative distribution function]].
| |
| | |
| If ''X'' has a continuous [[probability density function]] ''ƒ''(''x''), then ''M''<sub>''X''</sub>(−''t'') is the [[two-sided Laplace transform]] of ''ƒ''(''x'').
| |
| | |
| : <math>
| |
| \begin{align}
| |
| M_X(t) & = \int_{-\infty}^\infty e^{tx} f(x)\,dx \\
| |
| & = \int_{-\infty}^\infty \left( 1+ tx + \frac{t^2x^2}{2!} + \cdots + \frac{t^nx^n}{n!} + \cdots\right) f(x)\,dx \\
| |
| & = 1 + tm_1 + \frac{t^2m_2}{2!} +\cdots + \frac{t^nm_n}{n!} +\cdots,
| |
| \end{align}
| |
| </math>
| |
| | |
| where ''m''<sub>''n''</sub> is the ''n''th [[moment (mathematics)|moment]].
| |
| | |
| ===Sum of independent random variables===
| |
| If ''X''<sub>1</sub>, ''X''<sub>2</sub>, ..., ''X''<sub>''n''</sub> is a sequence of independent (and not necessarily identically distributed) random variables, and
| |
| | |
| : <math>S_n = \sum_{i=1}^n a_i X_i,</math>
| |
| | |
| where the ''a''<sub>''i''</sub> are constants, then the probability density function for ''S''<sub>''n''</sub> is the [[convolution]] of the probability density functions of each of the ''X''<sub>''i''</sub>, and the moment-generating function for ''S''<sub>''n''</sub> is given by
| |
| | |
| : <math>
| |
| M_{S_n}(t)=M_{X_1}(a_1t)M_{X_2}(a_2t)\cdots M_{X_n}(a_nt) \, .
| |
| </math>
| |
| <!----------
| |
| Below was lifted from [[generating function]] ... there should be an
| |
| analog for the moment-generating function
| |
| | |
| *Suppose that ''N'' is also an independent, discrete random variable taking values on the non-negative integers, with probability-generating function ''G''<sub>''N''</sub>. If the ''X''<sub>1</sub>, ''X''<sub>2</sub>, ..., ''X''<sub>''N''</sub> are independent ''and'' identically distributed with common probability-generating function ''G''<sub>X</sub>, then
| |
| | |
| ::<math>G_{S_N}(z) = G_N(G_X(z)).</math>
| |
| -------->
| |
| | |
| ===Vector-valued random variables===
| |
| For [[random vector|vector-valued random variables]] ''X'' with [[real number|real]] components, the moment-generating function is given by
| |
| | |
| :<math> M_X(t) = E\left( e^{\langle t, X \rangle}\right) </math>
| |
| | |
| where ''t'' is a vector and <math>\langle \cdot, \cdot \rangle</math> is the [[dot product]].
| |
| | |
| ==Important properties==
| |
| An important property of the moment-generating function is that if two distributions have the same moment-generating function, then they are identical at [[almost all]] points.<ref name="Gentle">{{cite book| author = Grimmett, Geoffrey| title = Probability - An Introduction| publisher = [[Oxford University Press]]| isbn = 978-0-19-853264-4 }}{{Page 101 ff|date=1986}}</ref> That is, if for all values of ''t'',
| |
| | |
| :<math>M_X(t) = M_Y(t),\, </math>
| |
| | |
| then
| |
| | |
| :<math>F_X(x) = F_Y(x) \, </math>
| |
| | |
| for all values of ''x'' (or equivalently ''X'' and ''Y'' have the same distribution). This statement is not equivalent to ``if two distributions have the same moments, then they are identical at all points", because in some cases the moments exist and yet the moment-generating function does not, because in some cases the limit
| |
| | |
| :<math>\lim_{n \rightarrow \infty} \sum_{i=0}^n \frac{t^im_i}{i!}</math>
| |
| | |
| does not exist. This happens for the [[lognormal distribution]].
| |
| <!--
| |
| If the moment generating function is defined on such an interval, then it uniquely determines a probability distribution. -->
| |
| | |
| ===Calculations of moments===
| |
| The moment-generating function is so called because if it exists on an open interval around ''t'' = 0, then it is the [[exponential generating function]] of the [[moment (mathematics)|moments]] of the [[probability distribution]]:
| |
| | |
| :<math>m_n = E \left( X^n \right) = M_X^{(n)}(0) = \frac{d^n M_X}{dt^n}(0).</math>
| |
| | |
| Here ''n'' should be a nonnegative integer.
| |
| | |
| ==Other properties==
| |
| [[Hoeffding's lemma]] provides a bound on the moment-generating function in the case of a zero-mean, bounded random variable.
| |
| | |
| ==Relation to other functions==
| |
| Related to the moment-generating function are a number of other [[integral transform|transforms]] that are common in probability theory:
| |
| | |
| ;[[characteristic function (probability theory)|characteristic function]]: The [[characteristic function (probability theory)|characteristic function]] <math>\varphi_X(t)</math> is related to the moment-generating function via <math>\varphi_X(t) = M_{iX}(t) = M_X(it):</math> the characteristic function is the moment-generating function of ''iX'' or the moment generating function of ''X'' evaluated on the imaginary axis. This function can also be viewed as the [[Fourier transform]] of the [[probability density function]], which can therefore be deduced from it by inverse Fourier transform.
| |
| | |
| ;[[cumulant-generating function]]: The [[cumulant-generating function]] is defined as the logarithm of the moment-generating function; some instead define the cumulant-generating function as the logarithm of the [[Characteristic function (probability theory)|characteristic function]], while others call this latter the ''second'' cumulant-generating function.
| |
| | |
| ;[[probability-generating function]]: The [[probability-generating function]] is defined as <math>G(z) = E[z^X].\,</math> This immediately implies that <math>G(e^t) = E[e^{tX}] = M_X(t).\,</math>
| |
| | |
| ==See also==
| |
| * [[Factorial moment generating function]]
| |
| * [[Rate function]]
| |
| * [[Hamburger moment problem]]
| |
| | |
| {{More footnotes|date=February 2010}}
| |
| | |
| == References ==
| |
| {{reflist}}
| |
| * {{cite book |last1=Casella |first1=George |last2=Berger |first2=Roger |title=Statistical Inference |edition=2nd |isbn=978-0-534-24312-8 |pages=59–68 }}
| |
| | |
| * {{cite book |last1=Grimmett|first1=Geoffrey |last2=Welsh |first2=Dominic |title=Probability - An Introduction |edition=1st |isbn=978-0-19-853264-4 |pages=101 ff}}
| |
| | |
| {{Theory of probability distributions}}
| |
| | |
| {{DEFAULTSORT:Moment-Generating Function}}
| |
| [[Category:Theory of probability distributions]]
| |
| [[Category:Generating functions]]
| |