Stoneham number: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Addbot
m Bot: Migrating 3 interwiki links, now provided by Wikidata on d:q643965
en>Yobot
m References: WP:CHECKWIKI error fixes using AWB (10093)
 
Line 1: Line 1:
In [[mathematics]], an [[outer measure]] ''μ'' on ''n''-[[dimension]]al [[Euclidean space]] '''R'''<sup>''n''</sup> is called '''Borel regular''' if the following two conditions hold:
My name is Sabrina Birdsong. I life in Millbounds (Great Britain).<br><br>Also visit my website; milicainthehat.com ([http://www.milicainthehat.com/ForumRetrieve.aspx?ForumID=2825&TopicID=193044&NoTemplate=False Going in www.milicainthehat.com])
 
* Every [[Borel set]] ''B''&nbsp;⊆&nbsp;'''R'''<sup>''n''</sup> is ''μ''-measurable in the sense of [[Carathéodory's criterion]]: for every ''A''&nbsp;⊆&nbsp;'''R'''<sup>''n''</sup>,
::<math>\mu (A) = \mu (A \cap B) + \mu (A \setminus B).</math>
* For every set ''A''&nbsp;⊆&nbsp;'''R'''<sup>''n''</sup> (which need not be ''μ''-measurable) there exists a Borel set ''B''&nbsp;⊆&nbsp;'''R'''<sup>''n''</sup>  such that ''A''&nbsp;⊆&nbsp;''B'' and ''μ''(''A'')&nbsp;=&nbsp;''μ''(''B'').
 
An outer measure satisfying only the first of these two requirements is called a ''[[Borel measure]]'', while an outer measure satisfying only the second requirement is called a ''[[regular measure]]''.
 
The [[Lebesgue outer measure]] on '''R'''<sup>''n''</sup> is an example of a Borel regular measure.
 
It can be proved that a Borel regular measure, although introduced here as an ''outer'' measure (only [[outer measure|countably ''sub''additive]]), becomes a full [[measure (mathematics)|measure]] ([[countably additive]]) if restricted to the [[Borel set]]s.
 
==References==
*{{cite book
| last      = Evans
| first      = Lawrence C.
| coauthors  = Gariepy, Ronald F.  
| title      = Measure theory and fine properties of functions
| publisher  = CRC Press
| year      = 1992
| pages      =
| isbn      = 0-8493-7157-0
}}
*{{cite book
| last      = [[Angus E. Taylor|Taylor]]
| first      = Angus E.
| title      = General theory of functions and integration
| publisher  = Dover Publications
| year      = 1985
| pages      =
| isbn      = 0-486-64988-1
}}
*{{cite book
| last      = Fonseca
| first      = Irene | authorlink = Irene Fonseca
| coauthors  = Gangbo, Wilfrid
| title      = Degree theory in analysis and applications
| publisher  = Oxford University Press
| year      = 1995
| pages      =
| isbn      = 0-19-851196-5
}}
 
[[Category:Measures (measure theory)]]

Latest revision as of 14:10, 5 May 2014

My name is Sabrina Birdsong. I life in Millbounds (Great Britain).

Also visit my website; milicainthehat.com (Going in www.milicainthehat.com)