Bessel filter: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Hypersonic09
m Linked to "Bessel functions" page in introduction section.
en>Dicklyon
dash fix
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[mathematics]], '''Riemann's differential equation''', named after [[Bernhard Riemann]], is a generalization of the [[hypergeometric differential equation]], allowing the [[regular singular points]] to occur anywhere on the [[Riemann sphere]], rather than merely at 0, 1, and ∞.
Eartha precisely what you can call me and I feel comfortable as well as use the full name. My wife need not live in Vermont. I am really fond of to draw 3d graphics but I'm thinking on starting new stuff. For years I've been being employed as a human resources officer. Check out the latest news on his website: http://Www.[http://Www.google.co.uk/search?hl=en&gl=us&tbm=nws&q=Archive&gs_l=news Archive].org/details/miley_cyrus_maxim<br><br>My blog post :: miley cyrus maxim ([http://Www.Archive.org/details/miley_cyrus_maxim Www.Archive.org])
 
==Definition==
The differential equation is given by
:<math>\frac{d^2w}{dz^2} + \left[
\frac{1-\alpha-\alpha'}{z-a} +
\frac{1-\beta-\beta'}{z-b} +
\frac{1-\gamma-\gamma'}{z-c} \right] \frac{dw}{dz} </math>
::<math>+\left[
\frac{\alpha\alpha' (a-b)(a-c)} {z-a}
+\frac{\beta\beta' (b-c)(b-a)} {z-b}
+\frac{\gamma\gamma' (c-a)(c-b)} {z-c}
\right]
\frac{w}{(z-a)(z-b)(z-c)}=0.</math>
 
The regular singular points are {{mvar|a}}, {{mvar|b}}, and {{mvar|c}}. The pairs of exponents{{clarification needed|date=November 2013|reason=There is no exponentiation yet, and you may not call it “exponents”}} for each are respectively {{math|''α''; ''α′''}}, {{math|''β''; ''β′''}}, and {{math|''γ''; ''γ′''}}. The exponents are subject to the condition
 
:<math>\alpha+\alpha'+\beta+\beta'+\gamma+\gamma'=1.</math>
 
==Solutions==
The solutions are denoted by the ''Riemann P-symbol''
 
:<math>w(z)=P  \left\{ \begin{matrix} a & b & c & \; \\
\alpha & \beta & \gamma & z \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\}</math>
 
The standard [[hypergeometric function]] may be expressed as
 
:<math>\;_2F_1(a,b;c;z) =
P  \left\{ \begin{matrix} 0 & \infty & 1 & \; \\
0 & a & 0 & z \\
1-c & b & c-a-b & \;
\end{matrix} \right\}</math>
 
The P-functions obey a number of identities; one of them allows a general P-function to be expressed in terms of the hypergeometric function.  It is
 
:<math>P  \left\{ \begin{matrix} a & b & c & \; \\
\alpha & \beta & \gamma & z \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\} =  
\left(\frac{z-a}{z-b}\right)^\alpha
\left(\frac{z-c}{z-b}\right)^\gamma
P \left\{ \begin{matrix} 0 & \infty & 1 & \; \\
0 & \alpha+\beta+\gamma & 0 & \;\frac{(z-a)(c-b)}{(z-b)(c-a)} \\
\alpha'-\alpha & \alpha+\beta'+\gamma & \gamma'-\gamma & \;
\end{matrix} \right\}
</math>
 
In other words, one may write the solutions in terms of the hypergeometric function as
 
:<math>w(z)=
\left(\frac{z-a}{z-b}\right)^\alpha
\left(\frac{z-c}{z-b}\right)^\gamma
\;_2F_1 \left(
\alpha+\beta +\gamma,
\alpha+\beta'+\gamma;
1+\alpha-\alpha';
\frac{(z-a)(c-b)}{(z-b)(c-a)} \right)
</math>
 
The full complement of [[Ernst Kummer|Kummer]]'s 24 solutions may be obtained in this way; see the article [[hypergeometric differential equation]] for a treatment of Kummer's solutions.
 
==Fractional linear transformations==
The P-function possesses a simple symmetry under the action of [[fractional linear transformation]]s known as [[Möbius transformation]]s (that are the [[conformal map|conformal remappings]] of the Riemann sphere), or equivalently, under the action of the group {{math|[[general linear group|GL]](2, '''C''')}}. Given arbitrary [[complex number]]s {{mvar|A}}, {{mvar|B}}, {{mvar|C}}, {{mvar|D}} such that {{math|''AD'' − ''BC'' ≠ 0}}, define the quantities
 
:<math>u=\frac{Az+B}{Cz+D}
\quad \text{ and } \quad
\eta=\frac{Aa+B}{Ca+D}</math>
 
and
 
:<math>\zeta=\frac{Ab+B}{Cb+D}
\quad \text{ and } \quad
\theta=\frac{Ac+B}{Cc+D}</math>
 
then one has the simple relation
 
:<math>P  \left\{ \begin{matrix} a & b & c & \; \\
\alpha & \beta & \gamma & z \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\}
=P  \left\{ \begin{matrix}
\eta & \zeta & \theta & \; \\
\alpha & \beta & \gamma & u \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\}</math>
 
expressing the symmetry.
 
==See also==
*[[Complex differential equation]]
 
==References==
* Milton Abramowitz and Irene A. Stegun, eds., ''[[Abramowitz and Stegun|Handbook of Mathematical Functions]] with Formulas, Graphs, and Mathematical Tables'' (Dover: New York, 1972)
** [http://www.math.sfu.ca/~cbm/aands/page_556.htm Chapter 15] Hypergeometric Functions
***[http://www.math.sfu.ca/~cbm/aands/page_564.htm Section 15.6] Riemann's Differential Equation
 
[[Category:Hypergeometric functions]]
[[Category:Ordinary differential equations]]

Latest revision as of 20:08, 24 August 2014

Eartha precisely what you can call me and I feel comfortable as well as use the full name. My wife need not live in Vermont. I am really fond of to draw 3d graphics but I'm thinking on starting new stuff. For years I've been being employed as a human resources officer. Check out the latest news on his website: http://Www.Archive.org/details/miley_cyrus_maxim

My blog post :: miley cyrus maxim (Www.Archive.org)