|
|
Line 1: |
Line 1: |
| This is a list of [[mathematical constant]]s sorted by their representations as [[continued fraction]]s.
| |
|
| |
|
| Continued fractions with more than 20 known terms have been truncated, with an [[ellipsis]] to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations are [[rounding|rounded]] or padded to 10 places if the values are known.
| |
|
| |
|
| {| class="wikitable sortable"
| | [http://Www.zavodpm.ru/blogs/derganceescottpdt/22308-how-gain-garmin-gps-tracking-systems zavodpm.ru]The fourth and id [http://support.kliktoday.com/entries/31746295-Garmin-Nuvi-Voices-Free-Downloads-Custom-Garmin-Nuvi-Voices hiking gps Reviews] say most annoying thing was how the antenna is created into the automobile charger instead with the actual GPS unit. But, a male GPS voice may possibly be widely used if he spoke in [http://Chaps98.iconceptsgh.com/members/greighobart/activity/70304/ additional conversational] tone such as Hey pal, make a right turn at the corner nearby the sports bar. <br><br>However, we hear from users that there certainly are a few problems that do come up, specifically frequent users. Installing a GPS system in a very car might help with finding specific businesses or another locations.<br><br>Copy-and-paste it in a word processing [http://Www.Rolamoymultimedia.com/groups/six-things-a-child-knows-about-timex-ironman-run-trainer-gps-review-that-you-dont/ program] garmin gps tracking collars and manage a spell-check into it. In some ways an ongoing contest, The Blacklist now allows writers to submit their how to [http://Www.Rolamoymultimedia.com/groups/six-things-a-child-knows-about-timex-ironman-run-trainer-gps-review-that-you-dont/ read gps] coordinates work to the site when they want. Online mobile gps navigation system [http://foros.cinvestav.mx/UserProfile/tabid/60/userId/4796/language/en-US/Default.aspx magellan gps Navigation system] A good story writing tool should be so intuitive that it almost works alone and allows one to [http://biuro-ngo.pl/believing-these-nine-myths-about-gps-navigation-for-dummies-fd-220-update-keeps-you-from-growing/ spend additional] time on writing and less on wanting to master the software program program. You're almost there, just a matter of your time before you get to make content for the blog. |
| |-
| |
| ! [[List of letters used in mathematics and science|Symbol]]<ref group="lower-greek">Although some of the symbols in the leftmost column are displayed in black due to math markup peculiarities, all are clickable and link to the respective constant's page.</ref>
| |
| ! [[set (mathematics)|Member of]]
| |
| ! [[Decimal representation|decimal]]
| |
| ! [[Continued fraction]]
| |
| ! Notes
| |
| |-
| |
| | [[0 (number)|<math>0</math>]]
| |
| || [[integer|<math>\mathbb{Z}</math>]]
| |
| || 0.00000 00000
| |
| || [0; ]
| |
| ||
| |
| |-
| |
| | [[Golden ratio#Golden ratio conjugate|<math>\phi^{-1}</math>]]
| |
| || [[algebraic number|<math>\mathbb{A}\setminus\mathbb{Q}</math>]]
| |
| || 0.61803 39887
| |
| || [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …]
| |
| || irrational
| |
| |-
| |
| | [[Cahen's constant|<math>C</math>]]
| |
| || [[real number|<math>\mathbb{R}</math>]]
| |
| || 0.64341 05463
| |
| || [0; 1, 1, 1, 4, 9, 169, 16641, 639988804, 177227652025317609, 72589906463585427805281295977816196, …]
| |
| || Continued fraction truncated at 10 terms due to large size.
| |
| |-
| |
| | [[Twin prime#First Hardy–Littlewood conjecture|<math>C_2</math>]]
| |
| || [[real number|<math>\mathbb{R}</math>]]
| |
| || 0.66016 18158
| |
| || [0; 1, 1, 1, 16, 2, 2, 2, 2, 1, 18, 2, 2, 11, 1, 1, 2, 4, 1, 16, 3, …]
| |
| || Hardy–Littlewood's twin prime constant. Presumed [[irrational]], but not proved.
| |
| |-
| |
| | [[Euler–Mascheroni constant|<math>\gamma</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 0.57721 56649
| |
| || [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, …]
| |
| || Presumed irrational, but not proved.
| |
| |-
| |
| | [[Omega constant|<math>\Omega</math>]]
| |
| || [[transcendental number|<math>\mathbb{R}\setminus\mathbb{A}</math>]]
| |
| || 0.56714 32904
| |
| || [0; 1, 1, 3, 4, 2, 10, 4, 1, 1, 1, 1, 2, 7, 306, 1, 5, 1, 2, 1, 5, …]
| |
| ||
| |
| |-
| |
| | [[Embree–Trefethen constant|<math>\beta^\star</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 0.70258
| |
| || [0; 1, 2, 2, 1, 3, 5, 1, 2, 6, 1, 1, 5, …]
| |
| || Value only known to 5 decimal places.
| |
| |-
| |
| | [[Landau–Ramanujan constant|<math>K</math>]]
| |
| || <math>\mathbb{R} (\setminus\mathbb{Q}?)</math>
| |
| || 0.76422 36535
| |
| || [0; 1, 3, 4, 6, 1, 15, 1, 2, 2, 3, 1, 23, 3, 1, 1, 3, 1, 1, 7, 2, …]
| |
| || May have been proven irrational.
| |
| |-
| |
| | [[Gauss's constant|<math>\frac 1{M(1,\sqrt 2)}</math>]]
| |
| || <math>\mathbb{R}\setminus\mathbb{A}</math>
| |
| || 0.83462 68417
| |
| || [0; 1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 8, 36, 1, 2, …]
| |
| || Gauss's constant
| |
| |-
| |
| | [[Brun's theorem#Brun's constant|<math>B_4</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 0.87058 83800
| |
| || [0; 1, 6, 1, 2, 1, 2, 956, 8, 1, 1, 1, 23, …]
| |
| || Brun's prime quadruplet constant. Estimated value; 99% confidence interval ± 0.00000 00005.
| |
| |-
| |
| | [[Champernowne constant|<math>C_2</math>]]
| |
| || <math>\mathbb{R}\setminus\mathbb{A}</math>
| |
| || 0.86224 01259
| |
| || [0; 1, 6, 3, 1, 6, 5, 3, 3, 1, 6, 4, 1, 3, 298, 1, 6, 1, 1, 3, 285, …]
| |
| || Base 2 Champernowne constant. The binary expansion is <math>C_2 = 0.1 10 11 100 101 110 111 1000\ldots_2</math>
| |
| |-
| |
| | [[Catalan's constant|<math>G</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 0.91596 55942
| |
| || [0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, …]
| |
| || Presumed irrational, but not proved.
| |
| |-
| |
| | [[One half|<math>\frac 12</math>]]
| |
| || [[rational number|<math>\mathbb{Q}</math>]]
| |
| || 0.50000 00000
| |
| || [0; 2]
| |
| ||
| |
| |-
| |
| | [[Bernstein's constant|<math>\beta</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 0.28016 94990
| |
| || [0; 3, 1, 1, 3, 9, 6, 3, 1, 3, 13, 1, 16, 3, 3, 4, …]
| |
| || Presumed irrational, but not proved.
| |
| |-
| |
| | [[Meissel–Mertens constant|<math>M</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 0.26149 72128
| |
| || [0; 3, 1, 4, 1, 2, 5, 2, 1, 1, 1, 1, 13, 4, 2, 4, 2, 1, 33, 296, 2, …]
| |
| || Presumed irrational, but not proved.
| |
| |-
| |
| | [[MRB constant|<math> C_{{}_{MRB}}</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 0.18785 96424
| |
| || [0; 5, 3, 10, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 12, 2, 17, 2, 2, 1, 1, …]
| |
| ||
| |
| |-
| |
| | [[Champernowne constant|<math>C_{10}</math>]]
| |
| || <math>\mathbb{R}\setminus\mathbb{A}</math>
| |
| || 0.12345 67891
| |
| || [0; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, <math>4.57540\times 10^{165}</math>, 6, 1, …]
| |
| || Base 10 Champernowne constant. Champernowne constants in any base exhibit sporadic large numbers; the 40th term in <math>C_{10}</math> has 2504 digits.
| |
| |-
| |
| | [[1 (number)|<math>1</math>]]
| |
| || [[natural number|<math>\mathbb{N}</math>]]
| |
| || 1.00000 00000
| |
| || [1; ]
| |
| ||
| |
| |-
| |
| | [[Golden ratio|<math>\phi</math>]]
| |
| || <math>\mathbb{A}\setminus\mathbb{Q}</math>
| |
| || 1.61803 39887
| |
| || [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …]
| |
| ||
| |
| |-
| |
| | [[Erdős–Borwein constant|<math>E</math>]]
| |
| || [[irrational number|<math>\mathbb{R}\setminus\mathbb{Q}</math>]]
| |
| || 1.60669 51524
| |
| || [1; 1, 1, 1, 1, 5, 2, 1, 2, 29, 4, 1, 2, 2, 2, 2, 6, 1, 7, 1, 6, …]
| |
| || Not known whether algebraic or transcendental.
| |
| |-
| |
| | [[Brun's theorem#Brun's constant|<math>B_2</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 1.90216 05823
| |
| || [1; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, …]
| |
| || Brun's twin prime constant. Estimated value; best bounds <math>1.8304<B_2<2.347</math>.
| |
| |-
| |
| | [[Backhouse's constant|<math>B</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 1.45607 49485
| |
| || [1; 2, 5, 5, 4, 1, 1, 18, 1, 1, 1, 1, 1, 2, 13, 3, 1, 2, 4, 16, 4, …]
| |
| ||
| |
| |-
| |
| | [[Apéry's constant|<math>\zeta(3)</math>]]
| |
| || <math>\mathbb{R}\setminus\mathbb{Q}</math>
| |
| || 1.20205 69032
| |
| || [1; 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 1, 1, 2, 7, 1, 1, 7, 11, …]
| |
| ||
| |
| |-
| |
| | [[Random Fibonacci sequence|<math>V</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 1.13198 82488
| |
| || [1; 7, 1, 1, 2, 1, 3, 2, 1, 2, 1, 17, 1, 1, 2, 1, 2, 4, 1, 2, …]
| |
| || Viswanath's constant. Apparently, Eric Weisstein calculated this constant to be approximately 1.13215 06911 with Mathematica.
| |
| |-
| |
| | [[Square root of 2|<math>\sqrt 2</math>]]
| |
| || <math>\mathbb{A}\setminus\mathbb{Q}</math>
| |
| || 1.41421 35624
| |
| || [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …]
| |
| ||
| |
| |-
| |
| | [[Ramanujan-Soldner constant|<math>\mu</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 1.45136 92349
| |
| || [1; 2, 4, 1, 1, 1, 3, 1, 1, 1, 2, 47, 2, 4, 1, 12, 1, 1, 2, 2, 1, …]
| |
| || Presumed irrational, but not proved.
| |
| |-
| |
| | [[Plastic number|<math>\rho</math>]]
| |
| || <math>\mathbb{A}\setminus\mathbb{Q}</math>
| |
| || 1.32471 95724
| |
| || [1; 3, 12, 1, 1, 3, 2, 3, 2, 4, 2, 141, 80, 2, 5, 1, 2, 8, 2, 1, 1, …]
| |
| ||
| |
| |-
| |
| | [[2 (number)|<math>2</math>]]
| |
| || <math>\mathbb N</math>
| |
| || 2.00000 00000
| |
| || [2; ]
| |
| ||
| |
| |-
| |
| | [[Gelfond–Schneider constant|<math>2^\sqrt 2</math>]]
| |
| || <math>\mathbb{R}\setminus\mathbb{A}</math>
| |
| || 2.66514 41426
| |
| || [2; 1, 1, 1, 72, 3, 4, 1, 3, 2, 1, 1, 1, 14, 1, 2, 1, 1, 3, 1, 3, …]
| |
| ||
| |
| |-
| |
| | [[Feigenbaum constants|<math>\alpha</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 2.50290 78751
| |
| || [2; 1, 1, 85, 2, 8, 1, 10, 16, 3, 8, 9, 2, 1, 40, 1, 2, 3, 2, 2, 1, …]
| |
| ||
| |
| |-
| |
| | [[e (mathematical constant)|<math>e</math>]]
| |
| || <math>\mathbb{R}\setminus\mathbb{A}</math>
| |
| || 2.71828 18285
| |
| || [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, …]
| |
| ||
| |
| |-
| |
| | [[Khinchin's constant|<math>K_0</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 2.68545 20011
| |
| || [2; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, …]
| |
| ||
| |
| |-
| |
| | [[Fransén–Robinson constant|<math>F</math>]]
| |
| || <math>\mathbb{R}</math>
| |
| || 2.80777 02420
| |
| || [2; 1, 4, 4, 1, 18, 5, 1, 3, 4, 1, 5, 3, 6, 1, 1, 1, 5, 1, 1, 1, …]
| |
| ||
| |
| |-
| |
| | [[Universal parabolic constant|<math>P_2</math>]]
| |
| || <math>\mathbb{R}\setminus\mathbb{A}</math>
| |
| || 2.29558 71494
| |
| || [2; 3, 2, 1, 1, 1, 1, 3, 3, 1, 1, 4, 2, 3, 2, 7, 1, 6, 1, 8, 7, …]
| |
| ||
| |
| |-
| |
| | [[3 (number)|<math>3</math>]]
| |
| || <math>\mathbb{N}</math>
| |
| || 3.00000 00000
| |
| || [3; ]
| |
| ||
| |
| |-
| |
| | [[Pi|<math>\pi</math>]]
| |
| || <math>\mathbb{R}\setminus\mathbb{A}</math>
| |
| || 3.14159 26536
| |
| || [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, …]
| |
| ||
| |
| |-
| |
| | [[Reciprocal Fibonacci constant|<math>\psi</math>]]
| |
| || <math>\mathbb{R}\setminus\mathbb{Q}</math>
| |
| || 3.35988 56662
| |
| || [3; 2, 1, 3, 1, 1, 13, 2, 3, 3, 2, 1, 1, 6, 3, 2, 4, 362, 2, 4, 8, …]
| |
| ||
| |
| |-
| |
| | [[4 (number)|<math>4</math>]]
| |
| || <math>\mathbb N</math>
| |
| || 4.00000 00000
| |
| || [4; ]
| |
| ||
| |
| |-
| |
| | [[Feigenbaum constants|<math>\delta</math>]]
| |
| || <math>\mathbb R</math>
| |
| || 4.66920 16091
| |
| || [4; 1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, …]
| |
| ||
| |
| |-
| |
| | [[Gelfond's constant|<math>e^\pi</math>]]
| |
| || <math>\mathbb R\setminus\mathbb A</math>
| |
| || 23.14069 26328
| |
| || [23; 7, 9, 3, 1, 1, 591, 2, 9, 1, 2, 34, 1, 16, 1, 30, 1, 1, 4, 1, 2, …]
| |
| || Gelfond's constant. Can also be expressed as <math>(-1)^{-i}</math>; from this form, it is transcendental due to the [[Gelfond–Schneider theorem]].
| |
| |}
| |
| {{Reflist|group=lower-greek}}
| |
| | |
| ==See also==
| |
| * [[Physical constant]]
| |
| * [[Mathematical constants and functions]]
| |
| [[Category:Mathematical constants|*]]
| |
| [[Category:Continued fractions]]
| |