Slave boson: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Addbot
m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q2383244
en>Logical1004
 
Line 1: Line 1:
In [[mathematics]] — specifically, in [[measure theory]] — '''Fernique's theorem''' is a result about [[Gaussian measure]]s on [[Banach space]]s.  It extends the finite-dimensional result that a Gaussian [[random variable]] has [[Exponential function|exponential]] tails.  The result was proved in 1970 by the [[mathematician]] [[Xavier Fernique]].
25 yr old Aircraft Maintenance Manufacture (Avionics) Augustine from Thorold, usually spends time with interests for example lasers, [http://gamsolutions.edublogs.org/2014/10/15/134/ Dungeon Hunter 4 Hack] and windsurfing. Finds inspiration through travel and just spent 4 weeks at Simien National Park.
 
==Statement of the theorem==
Let (''X'',&nbsp;||&nbsp;||) be a [[separable space|separable]] Banach space.  Let ''&mu;'' be a centered Gaussian measure on ''X'', i.e. a [[probability measure]] defined on the [[Borel set]]s of ''X'' such that, for every [[bounded linear functional]] ''ℓ''&nbsp;:&nbsp;''X''&nbsp;→&nbsp;'''R''', the [[push-forward measure]] ''ℓ''<sub>∗</sub>''&mu;'' defined on the [[Borel sets]] of '''R''' by
 
:<math>( \ell_{\ast} \mu ) (A) = \mu ( \ell^{-1} (A) ), </math>
 
is a Gaussian measure (a [[normal distribution]]) with zero [[expected value|mean]]. Then there exists ''&alpha;''&nbsp;&gt;&nbsp;0 such that
 
:<math>\int_{X} \exp ( \alpha \| x \|^{2} ) \, \mathrm{d} \mu (x) < + \infty.</math>
 
''[[A fortiori]]'', ''&mu;'' (equivalently, any ''X''-valued random variable ''G'' whose [[probability distribution|law]] is ''&mu;'') has [[moment (mathematics)|moments]] of all orders: for all ''k''&nbsp;≥&nbsp;0,
 
:<math>\mathbb{E} [ \| G \|^{k} ] = \int_{X} \| x \|^{k} \, \mathrm{d} \mu (x) < + \infty.</math>
 
==References==
* {{cite journal
| last = Fernique
| first = Xavier
| title = Intégrabilité des vecteurs gaussiens
| journal = C. R. Acad. Sci. Paris Sér. A-B
| volume = 270
| year = 1970
| pages = A1698&ndash;A1699
}} {{MathSciNet|id=0266263}}
 
* [[Giuseppe Da Prato]] and [[Jerzy Zabczyk]], Stochastic equations in infinite dimension, Cambridge University Press, 1992. Theorem 2.6
 
[[Category:Probability theorems]]
[[Category:Theorems in measure theory]]
 
 
{{mathanalysis-stub}}

Latest revision as of 12:49, 12 November 2014

25 yr old Aircraft Maintenance Manufacture (Avionics) Augustine from Thorold, usually spends time with interests for example lasers, Dungeon Hunter 4 Hack and windsurfing. Finds inspiration through travel and just spent 4 weeks at Simien National Park.