PH indicator: Difference between revisions
en>East718 m Reverted edits by 76.189.211.143 (talk) to last version by 203.109.108.249 |
en>Drlectin |
||
Line 1: | Line 1: | ||
In [[mathematics]], '''Lah numbers''', discovered by [[Ivo Lah]] in 1955,<ref>[http://books.google.com/books?id=zWgIPlds29UC ''Introduction to Combinatorial Analysis''] Princeton University Press (1958, reissue 1980) ISBN 978-0-691-02365-6 (reprinted again in 2002, by Courier Dover Publications).</ref> are [[coefficient]]s expressing [[rising factorial]]s in terms of [[falling factorial]]s. | |||
'''Unsigned Lah numbers''' have an interesting meaning in [[combinatorics]]: they count the number of ways a [[Set (mathematics)|set]] of ''n'' elements can be [[Partition of a set|partition]]ed into ''k'' nonempty linearly ordered [[subset]]s. Lah numbers are related to [[Stirling number]]s. | |||
Unsigned Lah numbers: | |||
:<math> L(n,k) = {n-1 \choose k-1} \frac{n!}{k!}.</math> | |||
Signed Lah numbers: | |||
:<math> L'(n,k) = (-1)^n {n-1 \choose k-1} \frac{n!}{k!}.</math> | |||
''L''(''n'', 1) is always ''n''!; using the interpretation above, the only partition of {1, 2, 3} into 1 set can have its set ordered in 6 ways: | |||
:{(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)} or {(3, 2, 1)} | |||
''L''(3, 2) corresponds to the 6 partitions with two ordered parts: | |||
:{(1), (2, 3)}, {(1), (3, 2)}, {(2), (1, 3)}, {(2), (3, 1)}, {(3), (1, 2)} or {(3), (2, 1)} | |||
''L''(''n'', ''n'') is always 1; e.g., partitioning {1, 2, 3} into 3 non-empty subsets results in subsets of length 1. | |||
:{(1), (2), (3)} | |||
Paraphrasing Karamata-Knuth notation for [[Stirling numbers]], it was | |||
proposed to use the following alternative notation for Lah numbers: | |||
:<math>L(n,k)=\left\lfloor\begin{matrix} n \\ k \end{matrix}\right\rfloor.</math> | |||
==Rising and falling factorials== | |||
Let <math>x^{(n)}</math> represent the rising factorial <math>x(x+1)(x+2) \cdots (x+n-1)</math> and let <math>(x)_n</math> represent the falling factorial <math>x(x-1)(x-2) \cdots (x-n+1)</math>. | |||
Then <math>x^{(n)} = \sum_{k=1}^n L(n,k) (x)_k</math> and <math>(x)_n = \sum_{k=1}^n (-1)^{n-k} L(n,k)x^{(k)}.</math> | |||
For example, <math>x(x+1)(x+2) = {\color{Red}6}x + {\color{Red}6}x(x-1) + {\color{Red}1}x(x-1)(x-2).</math> | |||
Compare the third row of the table of values. | |||
==Identities and relations== | |||
:<math> L(n,k) = {n-1 \choose k-1} \frac{n!}{k!} = {n \choose k} \frac{(n-1)!}{(k-1)!}</math> | |||
:<math> L(n,k) = \frac{n!(n-1)!}{k!(k-1)!}\cdot\frac{1}{(n-k)!} = \left (\frac{n!}{k!} \right )^2\frac{k}{n(n-k)!}</math> | |||
:<math> L(n,k+1) = \frac{n-k}{k(k+1)} L(n,k).</math> | |||
:<math> L(n,k) = \sum_{j} \left[{n\atop j}\right] \left\{{j\atop k}\right\},</math> with <math>\left[{n\atop j}\right]</math> the Stirling numbers of the first kind, <math>\left\{{j\atop k}\right\}</math> the Stirling numbers of the second kind and with the conventions <math>L(0,0)=1</math> and <math>L(n , k )=0</math> if <math>k>n</math>. | |||
:<math> L(n,1) = n!</math> | |||
:<math> L(n,2) = (n-1)n!/2</math> | |||
:<math> L(n,3) = (n-2)(n-1)n!/12</math> | |||
:<math> L(n,n-1) = n(n-1)</math> | |||
:<math> L(n,n) = 1</math> | |||
==Table of values== | |||
Below is a table of values for the Lah numbers: | |||
{| class="wikitable" style="text-align:right;" | |||
|- | |||
! <math>_n\!\!\diagdown\!\!^k</math> !! 1 !! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 !! 10 !! 11 !! 12 | |||
|- | |||
! 1 | |||
| 1 | |||
|- | |||
! 2 | |||
| 2 | |||
| 1 | |||
|- | |||
! 3 | |||
| 6 | |||
| 6 | |||
| 1 | |||
|- | |||
! 4 | |||
| 24 | |||
| 36 | |||
| 12 | |||
| 1 | |||
|- | |||
! 5 | |||
| 120 | |||
| 240 | |||
| 120 | |||
| 20 | |||
| 1 | |||
|- | |||
! 6 | |||
| 720 | |||
| 1800 | |||
| 1200 | |||
| 300 | |||
| 30 | |||
| 1 | |||
|- | |||
! 7 | |||
| 5040 | |||
| 15120 | |||
| 12600 | |||
| 4200 | |||
| 630 | |||
| 42 | |||
| 1 | |||
|- | |||
! 8 | |||
| 40320 | |||
| 141120 | |||
| 141120 | |||
| 58800 | |||
| 11760 | |||
| 1176 | |||
| 56 | |||
| 1 | |||
|- | |||
! 9 | |||
| 362880 | |||
| 1451520 | |||
| 1693440 | |||
| 846720 | |||
| 211680 | |||
| 28224 | |||
| 2016 | |||
| 72 | |||
| 1 | |||
|- | |||
! 10 | |||
|3628800 | |||
|16329600 | |||
|21772800 | |||
|12700800 | |||
|3810240 | |||
|635040 | |||
|60480 | |||
|3240 | |||
|90 | |||
|1 | |||
|- | |||
! 11 | |||
|39916800 | |||
|199584000 | |||
|299376000 | |||
|199584000 | |||
|69854400 | |||
|13970880 | |||
|1663200 | |||
|11880 | |||
|4950 | |||
|110 | |||
|1 | |||
|- | |||
! 12 | |||
|479001600 | |||
|2634508800 | |||
|4390848000 | |||
|3293136000 | |||
|1317254400 | |||
|307359360 | |||
|43908480 | |||
|3920400 | |||
|217800 | |||
|7260 | |||
|132 | |||
|1 | |||
|} | |||
== See also == | |||
* [[Stirling number]]s | |||
* [[Pascal matrix]] | |||
==References== | |||
<references /> | |||
{{DEFAULTSORT:Lah Number}} | |||
[[Category:Factorial and binomial topics]] | |||
[[Category:Integer sequences]] | |||
[[Category:Triangles of numbers]] |
Revision as of 14:24, 17 January 2014
In mathematics, Lah numbers, discovered by Ivo Lah in 1955,[1] are coefficients expressing rising factorials in terms of falling factorials.
Unsigned Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets. Lah numbers are related to Stirling numbers.
Unsigned Lah numbers:
Signed Lah numbers:
L(n, 1) is always n!; using the interpretation above, the only partition of {1, 2, 3} into 1 set can have its set ordered in 6 ways:
- {(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)} or {(3, 2, 1)}
L(3, 2) corresponds to the 6 partitions with two ordered parts:
- {(1), (2, 3)}, {(1), (3, 2)}, {(2), (1, 3)}, {(2), (3, 1)}, {(3), (1, 2)} or {(3), (2, 1)}
L(n, n) is always 1; e.g., partitioning {1, 2, 3} into 3 non-empty subsets results in subsets of length 1.
- {(1), (2), (3)}
Paraphrasing Karamata-Knuth notation for Stirling numbers, it was proposed to use the following alternative notation for Lah numbers:
Rising and falling factorials
Let represent the rising factorial and let represent the falling factorial .
Compare the third row of the table of values.
Identities and relations
- with the Stirling numbers of the first kind, the Stirling numbers of the second kind and with the conventions and if .
Table of values
Below is a table of values for the Lah numbers:
See also
References
- ↑ Introduction to Combinatorial Analysis Princeton University Press (1958, reissue 1980) ISBN 978-0-691-02365-6 (reprinted again in 2002, by Courier Dover Publications).