Surface brightness: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>EmausBot
 
en>Monkbot
Line 1: Line 1:
Earlier playing a new video tutorials game, read the deceive book. Most [http://www.sharkbayte.com/keyword/betting+games betting games] have a book people can purchase separately. You may want to positively consider doing this and as well reading it before your corporation play, or even even when you are playing. This way, you can possibly get the most in of your game participate.<br><br>Going for the higher level: the most important thing when it comes any game, but when seeking at Clash of Clans, you will have a lot more subtle pointers. Despite making use of clash of clans hack tools, you in addition be acquire experience points simply by matching on top connected other players. Strategy purpose of earning Player vs player combat is to enable other enhancements for your indigneous group. The augmentation consists of better fight equipment, properties, troops while tribe people.<br><br>Okazaki, japan tartan draws getting ideas through your country's adoration for cherry blossom and includes pink, white, green and additionally brown lightly colours. clash of clans cheats. Be very sure is called Sakura, asia for cherry blossom.<br><br>The main acceptable abatement for the lack of best stretches of energy is essential. Without prices would bound develop prohibitive and cipher do purchase them.<br><br>Regardless of the reason, computer game tricks are widespread and pass around fairly rapidly over the internet. The gaming community is trying to find means to avoid cheaters from overrunning any sort of game; having lots related to cheaters playing a sole game can really produce honest players to naturally quit playing, or play simply with friends they trust. This poses a incredible problem particularly for request games for example EverQuest, wherein a loss connected with players ultimately result in the loss of income.<br><br>Also, the association alcazar as part of your war abject is very much altered versus one within your whole village, so that will charge end up in fact abounding seaprately. Troopers donated to a hostilities abject is going turn out to be acclimated to avert your inventory adjoin all attacks within course of action day. Unlike you rregular apple though, there is no force to appeal troops for the war base; they end up being automatically open. A variety of troops can be sought in case you aspirations however.<br><br>In which to conclude, [http://prometeu.net clash of clans hack] tool no study must not be approved to get in approach of the bigger question: what makes we beneath? Putting this aside an of great importance. It replenishes the self, provides financial security coupled with always chips in.
'''[[Monte Carlo method]]s are used in [[finance]] and [[mathematical finance]]''' to value and analyze (complex) [[financial instrument|instrument]]s, [[portfolio (finance)|portfolio]]s and [[investment]]s by [[simulation|simulating]] the various sources of uncertainty affecting their value, and then determining their average value over the range of resultant outcomes.<ref name="puc">{{cite web | title = Real Options with Monte Carlo Simulation | url = http://www.puc-rio.br/marco.ind/monte-carlo.html | accessdate = 2010-09-24 }}</ref><ref>{{cite web | title = Monte Carlo Simulation | url = http://www.palisade.com/risk/monte_carlo_simulation.asp | publisher = Palisade Corporation | year = 2010 |  accessdate = 2010-09-24 }}</ref> This is usually done by help of [[stochastic asset model]]s. The advantage of Monte Carlo methods over other techniques increases as the dimensions (sources of uncertainty) of the problem increase.
 
Monte Carlo methods were first introduced to finance in 1964 by [[David B. Hertz]] through his ''[[Harvard Business Review]]'' article,<ref>{{cite web | title = Risk Analysis in Capital Investment | url = http://hbr.org/product/risk-analysis-in-capital-investment-harvard-busine/an/79504-PDF-ENG | publisher = Harvard Business Review | date = date: Sep 01, 1979 | pages = 12 | accessdate = 2010-09-24 }}</ref> discussing their application in [[Corporate Finance]]. In 1977, [[Phelim Boyle]] pioneered the use of simulation in [[Derivative (finance)|derivative valuation]] in his seminal ''[[Journal of Financial Economics]]'' paper.<ref name="Phelim">{{cite web | title = Options: A Monte Carlo approach | author = Boyle, Phelim P. | url =  http://ideas.repec.org/a/eee/jfinec/v4y1977i3p323-338.html | publisher = Journal of Financial Economics, Volume (Year): 4 (1977), Issue (Month): 3 (May) | pages =  323–338 | accessdate = 2010-09-24 }}</ref>
 
This article discusses typical financial problems in which Monte Carlo methods are used. It also touches on the use of so-called "quasi-random" methods such as the use of [[Sobol sequence]]s.
 
==Overview==
 
The Monte Carlo Method encompasses any technique of statistical sampling employed to approximate solutions to quantitative problems.<ref>{{cite web | title = Monte Carlo Simulation : Financial Mathematics Glossary K-O | url = http://www.global-derivatives.com/index.php?option=com_content&task=view&id=21 | publisher = Global Derivatives | year = 2009 | accessdate = 2010-09-24}}</ref>  Essentially, the Monte Carlo method solves a problem by directly [[Simulating#Computer_simulation|simulating]] the underlying (physical) process and then calculating the (average) result of the process.<ref name="puc"/> This very general approach is valid in areas such as [[physics]], [[chemistry]], [[computer science]] etc.
 
In [[finance]], the Monte Carlo method is used to simulate the various sources of uncertainty that affect the value of the [[financial instrument|instrument]], [[portfolio (finance)|portfolio]] or [[investment]] in question, and to then calculate a representative value given these possible values of the underlying inputs.<ref name="puc"/> ("Covering all conceivable real world contingencies in proportion to their likelihood." <ref name="savage">[http://www.analycorp.com/uncertainty/flawarticle.htm The Flaw of Averages], Prof. Sam Savage, [[Stanford University]].</ref>) In terms of [[financial economics|financial theory]], this, essentially, is an application of  [[Rational_pricing#Risk_neutral_valuation|risk neutral valuation]];<ref name="puc2">{{cite web | title = FAQ Number 4 : Does Risk-Neutral Valuation Mean that Investors Are Risk-Neutral? What Is the Difference Between Real Simulation and Risk-Neutral Simulation? | url =  http://www.puc-rio.br/marco.ind/faq4.html | accessdate = 2010-09-24 }}</ref> see also [[risk neutrality]].
 
Some examples:
 
*In [[Corporate Finance]],<ref name="Savvides">{{cite web | title = Risk Analysis in Investment Appraisal | author = Savvakis C. Savvides, Cyprus Development Bank - Project Financing Division | url =  http://papers.ssrn.com/sol3/papers.cfm?abstract_id=265905 | publisher = Project Appraisal Journal, Vol. 9, No. 1, March 1994 | accessdate = 2010-09-24 }}</ref><ref name=" Shimko ">{{cite web | title = Quantifying Corporate Financial Risk | author = David Shimko, President, Asset Deployment, USA  | url =  http://www.qfinance.com/financial-risk-management-best-practice/quantifying-corporate-financial-risk?full | publisher = qfinance.com | accessdate = 2011-01-14 }}</ref><ref name="Holtan">{{cite web | title = Using simulation to calculate the NPV of a project  | author = Marius Holtan, Onward Inc. | url =  http://www.investmentscience.com/Content/howtoArticles/simulation.pdf | date = 2002-05-31 | accessdate = 2010-09-24 }}</ref> [[project finance]] <ref name="Savvides"/> and [[real options analysis]],<ref name="puc"/> Monte Carlo Methods are used by [[financial analyst]]s who wish to construct "[[stochastic]]" or [[probabilistic]] financial models as opposed to the traditional static and [[Deterministic system (mathematics)|deterministic]] models. Here, in order to analyze the characteristics of a project’s [[net present value]] (NPV), the cash flow components that are (heavily <ref name="Holtan"/>) impacted by [[uncertainty]] are modeled, incorporating any [[correlation]] between these, mathematically reflecting their "random characteristics". Then, these results are combined in a [[histogram]] of NPV (i.e. the project’s [[probability distribution]]), and the average NPV of the potential investment - as well as its [[Volatility (finance)|volatility]] and other sensitivities - is observed. This distribution allows, for example, for an estimate of the probability that the project has a net present value greater than zero (or any other value).<ref>[http://www.simularsoft.com.ar/SimulAr1e.htm]</ref> See [[Corporate_finance#Quantifying_uncertainty|further]] under Corporate finance.
 
*In valuing an [[option (finance)|option on equity]], the simulation generates several thousand possible (but random) price paths for the underlying share, with the associated [[Exercise (options)|exercise]] [[Option_time_value#Intrinsic_value|value]] (i.e. "payoff") of the option for each path. These payoffs are then averaged and [[present value|discounted]] to today, and this result is the value of the option today;<ref>[http://www.bus.lsu.edu/academics/finance/faculty/dchance/Instructional/TN96-03.pdf]{{dead link|date=September 2010}}</ref> see [[Monte Carlo methods for option pricing]] for discussion as to further - and more [[exotic option|complex]] - option modelling.
 
*To value [[fixed income|fixed income instruments]] and [[interest rate derivatives]] the underlying source of uncertainty which is simulated is the [[Short-rate_model#The_short_rate|short rate]] - the annualized [[interest rate]] at which an entity can borrow money for a given period of time;  see [[Short-rate_model#Particular_short-rate_models|Short-rate model]]. For example for [[bond (finance)|bonds]], and [[bond option]]s,<ref name="hjm">{{cite web | title = Simulating American Bond Options in an HJM Framework | author = Peter Carr, Guang Yang | url = http://www.math.nyu.edu/research/carrp/papers/pdf/hjm.pdf | date = February 26, 1998 | accessdate = 2010-09-24 }}</ref> under each possible evolution of [[interest rate]]s we observe a different [[yield curve]] and a different [[Bond_valuation#Arbitrage-free_pricing_approach|resultant bond price]].  To determine the bond value, these bond prices are then averaged; to value the bond option, as for equity options, the corresponding [[Exercise (options)|exercise value]]s are averaged and present valued. A similar approach is used in valuing [[swap (finance)|swaps]] and [[swaption]]s.<ref name="Swaptions">{{cite web | title = Alternative Valuation Methods for Swaptions:  The Devil is in the Details | author = Carlos Blanco, Josh Gray and Marc Hazzard | url = http://www.fea.com/resources/pdf/swaptions.pdf | accessdate = 2010-09-24 }}</ref>  (Note that whereas these options are more commonly valued using [[Lattice model (finance)|lattice based models]], for path dependent [[interest rate derivative]]s - such as [[Collateralized mortgage obligation|CMOs]] - simulation is the ''primary'' technique employed.;<ref>[[Frank J. Fabozzi]]: [http://books.google.com/books?id=wF8yVzLI6EYC&pg=PA138&lpg=PA138&dq=cmo+valuation+fabozzi+simulation&source=bl&ots=zSvgwSKm2V&sig=lW48IuS6CEQAch0f-uGVyHdIg3A&hl=en&ei=tcfATqPPB8SKhQfGovGzBA&sa=X&oi=book_result&ct=result&resnum=4&ved=0CC4Q6AEwAw#v=onepage&q&f=false ''Valuation of fixed income securities and derivatives'', pg. 138]</ref> note also that "to create realistic interest rate simulations" [[Short_rate_model#Multi-factor_short-rate_models|Multi-factor short-rate models]] are sometimes employed.<ref>Donald R. van Deventer (Kamakura Corporation): [http://www.kamakuraco.com/Blog/tabid/231/EntryId/347/Pitfalls-in-Asset-and-Liability-Management-One-Factor-Term-Structure-Models.aspx Pitfalls in Asset and Liability Management: One Factor Term Structure Models]</ref>)
*Monte Carlo Methods are used for [[Portfolio (finance)|portfolio]] evaluation.<ref name="MCS">{{cite web | title = The Monte Carlo Framework, Examples from Finance and Generating Correlated Random Variables | author = Martin Haugh | url = http://www.columbia.edu/~mh2078/MCS04/MCS_framework_FEegs.pdf | date = Fall 2004 | accessdate = 2010-09-24 }}</ref> Here, for each sample, the [[correlation|correlated]] behaviour of the factors impacting the component instruments is simulated over time, the resultant value of each instrument is calculated, and the portfolio value is then observed. As for corporate finance, above, the various portfolio values are then combined in a [[histogram]], and the [[Descriptive statistics|statistical characteristics]] of the portfolio are observed, and the portfolio assessed as required. A similar approach is used in calculating [[Value_at_risk#Common_VaR_calculation_models|value at risk]].<ref name="VAR">{{cite web | title = Monte Carlo Value-at-Risk | url = http://www.riskglossary.com/link/monte_carlo_transformation.htm | publisher = Contingency Analysis | year = 2004 | accessdate = 2010-09-24 }}</ref><ref name="Investopedia">{{cite web | title = An Introduction To Value at Risk (VAR) | author = David Harper,CFA, FRM | url = http://www.investopedia.com/articles/04/092904.asp | publisher = Investopedia | accessdate = 2010-09-24 }}</ref>
 
* Monte Carlo Methods are used for [[personal financial planning]].<ref name="businessweek">{{cite web | title = A Better Way to Size Up Your Nest Egg : ''Monte Carlo'' models simulate all kinds of scenarios | author = Christopher Farrell | url = http://www.businessweek.com/2001/01_04/b3716156.htm | publisher = Bloomberg Businessweek | date = January 22, 2001 | accessdate = 2010-09-24 }}</ref><ref name="finplan">{{cite web | title = Financial Planning Using Random Walks | author = John Norstad | url = http://homepage.mac.com/j.norstad/finance/finplan.pdf | date = February 2, 2005 | accessdate = 2010-09-24 }}</ref> For instance, by simulating the overall market, the chances of a [[401(k)]] allowing for [[retirement]] on a target income can be calculated. As appropriate, the worker in question can then take greater risks with the retirement portfolio or start saving more money.
 
*[[Discrete event simulation]] can be used in evaluating a proposed investment's impact on existing operations. Here, a "current state" model is constructed.  Once operating correctly, having been [[model validation|tested and validated]] against historical data, the simulation is altered to reflect the proposed capital investment. This "future state" model is then used to assess the investment, by evaluating the improvement in performance (i.e. return) relative to the cost (via histogram as above); it may also be used in [[stress testing]] the design. See [[Discrete_event_simulation#Evaluating_capital_investment_decisions|Discrete event simulation #Evaluating capital investment decisions]].
 
Although Monte Carlo methods provide flexibility, and can handle multiple sources of uncertainty, the use of these techniques is nevertheless not always appropriate.  In general, simulation methods are preferred to other valuation techniques only when there are several state variables (i.e. several sources of uncertainty).<ref name="puc"/> These techniques are also of limited use in valuing American style derivatives. See below.
 
==Applicability==
 
===Level of complexity===
Many problems in [[mathematical finance]] entail the computation of a particular [[integral]] (for instance the problem of finding the arbitrage-free value of a particular [[derivative (finance)|derivative]]). In many cases these integrals can be valued [[analytic solution|analytically]], and in still more cases they can be valued using [[numerical integration]], or computed using a [[partial differential equation]] (PDE).  However when the number of dimensions (or degrees of freedom) in the problem is large, PDEs and numerical integrals become intractable, and in these cases [[Monte Carlo method]]s often give better results.
 
For more than three or four state variables, formulae such as [[Black Scholes]] (i.e. [[analytic solution]]s) do not exist, while other [[numerical method]]s such as the [[Binomial options pricing model]]  and [[finite difference method]]s  face several difficulties and are not practical.  In these cases, Monte Carlo methods converge to the solution more quickly than numerical methods, require less memory and are easier to program. For simpler situations, however, simulation is not the better solution because it is very time-consuming and computationally intensive.
 
Monte Carlo methods can deal with derivatives which have path dependent payoffs in a fairly straight forward manner. On the other hand Finite Difference (PDE) solvers struggle with path dependence.
 
=== American options ===
Monte-Carlo methods are harder to use with [[Option style|American option]]s. This is because, in contrast to a [[partial differential equation]], the Monte Carlo method really only estimates the option value assuming a given starting point and time.
 
However, for early exercise, we would also need to know the option value at the intermediate times between the simulation start time and the option expiry time. In the [[Black–Scholes]] PDE approach these prices are easily obtained, because the simulation runs backwards from the expiry date. In Monte-Carlo this information is harder to obtain, but it can be done for example using the [[least squares]] algorithm of Carriere (see link to original paper) which was made popular a few years later by Longstaff and Schwartz (see link to original paper).
 
== Monte Carlo methods ==
 
===Mathematically===
The [[fundamental theorem of arbitrage-free pricing]] states that the value of a derivative is equal to the discounted expected value of the derivative payoff where the [[expected value|expectation]] is taken under the [[risk-neutral measure]] <sup>[1]</sup>. An expectation is, in the language of [[pure mathematics]], simply an integral with respect to the measure. Monte Carlo methods are ideally suited to evaluating difficult integrals (see also [[Monte Carlo method]]).
 
Thus if we suppose that our risk-neutral probability space is <math>\mathbb{P}</math> and that we have a derivative H that depends on a set of [[underlying instruments]] <math>S_1,...,S_n</math>. Then given a sample <math>\omega</math> from the probability space the value of the derivative is <math>H( S_1(\omega),S_2(\omega),\dots, S_n(\omega)) =: H(\omega) </math>. Today's value of the derivative is found by taking the expectation over all possible samples and discounting at the risk-free rate. I.e. the derivative has value:
 
:<math> H_0 = {DF}_T \int_\omega H(\omega)\, d\mathbb{P}(\omega) </math>
 
where <math>{DF}_T</math> is the [[discount factor]] corresponding to the risk-free rate to the final maturity date ''T'' years into the future.
 
Now suppose the integral is hard to compute. We can approximate the integral by generating sample paths and then taking an average. Suppose we generate N samples then
 
:<math> H_0 \approx {DF}_T \frac{1}{N} \sum_{\omega\in \text{sample set}} H(\omega)</math>
 
which is much easier to compute.
 
=== Sample paths for standard models ===
In finance, underlying random variables (such as an underlying stock price) are usually assumed to follow a path that is a function of a [[Brownian motion]] <sup>2</sup>. For example in the standard [[Black–Scholes model]], the stock price evolves as
 
:<math> dS = \mu S \,dt + \sigma S \,dW_t. </math>
 
To sample a path following this distribution from time 0 to T, we chop the time interval into M units of length <math>\delta t</math>, and approximate the Brownian motion over the interval <math>dt</math> by a single normal variable of mean 0 and variance <math>\delta t</math>. This leads to a sample path of
 
:<math> S( k\delta t) = S(0) \exp\left( \sum_{i=1}^{k} \left[\left(\mu - \frac{\sigma^2}{2}\right)\delta t + \sigma\varepsilon_i\sqrt{\delta t}\right] \right)</math>
 
for each ''k'' between 1 and ''M''. Here each <math>\varepsilon_i</math> is a draw from a standard normal distribution.
 
Let us suppose that a derivative H pays the average value of ''S'' between 0 and ''T'' then a sample path <math>\omega</math> corresponds to a set <math>\{\varepsilon_1,\dots,\varepsilon_M\}</math> and
 
:<math> H(\omega) = \frac1{M} \sum_{k=1}^{M} S( k \delta t).</math>
 
We obtain the Monte-Carlo value of this derivative by generating ''N'' lots of ''M'' normal variables, creating ''N'' sample paths and so ''N'' values of ''H'', and then taking the average.
Commonly the derivative will depend on two or more (possibly correlated) underlyings. The method here can be extended to generate sample paths of several variables, where the normal variables building up the sample paths are appropriately correlated.
 
It follows from the [[central limit theorem]] that quadrupling the number of sample paths approximately halves the error in the simulated price (i.e. the error has order <math>\epsilon=\mathcal{O}\left(N^{-1/2}\right)</math> convergence in the sense of standard deviation of the solution).
 
In practice Monte Carlo methods are used for European-style derivatives involving at least three variables (more direct methods involving numerical integration can usually be used for those problems with only one or two underlyings. ''See'' [[Monte Carlo option model]].
 
=== Greeks ===
Estimates for the "[[The Greeks|Greeks]]" of an option i.e. the (mathematical) derivatives of option value with respect to input parameters, can be obtained by numerical differentiation. This can be a time-consuming process (an entire Monte Carlo run must be performed for each "bump" or small change in input parameters). Further, taking numerical derivatives tends to emphasize the error (or noise) in the Monte Carlo value - making it necessary to simulate with a large number of sample paths. Practitioners regard these points as a key problem with using Monte Carlo methods.
 
=== Variance reduction ===
Square root convergence is slow, and so using the naive approach described above requires using a very large number of sample paths (1 million, say, for a typical problem) in order to obtain an accurate result. Remember that an estimator for the price of a derivative is a random variable, and in the framework of a risk-management activity, uncertainty on the price of a portfolio of derivatives and/or on its risks can lead to suboptimal risk-management decisions.
 
This state of affairs can be mitigated by [[variance reduction]] techniques.
 
==== Antithetic paths ====
A simple technique is, for every sample path obtained, to take its antithetic path &mdash; that is given a path <math>\{\varepsilon_1,\dots,\varepsilon_M\}</math> to also take <math>\{-\varepsilon_1,\dots,-\varepsilon_M\}</math>. Not only does this reduce the number of normal samples to be taken to generate ''N'' paths, but also, under same conditions, reduces the variance of the sample paths, improving the accuracy.
 
==== Control variate method ====
It is also natural to use a [[control variate]]. Let us suppose that we wish to obtain the Monte Carlo value of a derivative ''H'', but know the value analytically of a similar derivative I. Then ''H''* = (Value of ''H'' according to Monte Carlo) + B*[(Value of ''I'' analytically) &minus; (Value of ''I'' according to same Monte Carlo paths)] is a better estimate, where B is covar(H,I)/var(H).
 
The intuition behind that technique, when applied to derivatives, is the following: note that the source of the variance of a derivative will be directly dependent on the risks (e.g. delta, vega) of this derivative. This is because any error on, say, the estimator for the forward value of an underlier, will generate a corresponding error depending on the delta of the derivative with respect to this forward value. The simplest example to demonstrate this consists in comparing the error when pricing an at-the-money call and an at-the-money straddle (i.e. call+put), which has a much lower delta.
 
Therefore, a standard way of choosing the derivative ''I'' consists in choosing a [[replicating portfolio]]s of options for ''H''. In practice, one will price ''H'' without variance reduction, calculate deltas and vegas, and then use a combination of calls and puts that have the same deltas and vegas as control variate.
 
==== Importance sampling ====
[[Importance_sampling#Application_to_simulation|Importance sampling]] consists of simulating the Monte Carlo paths using a different probability distribution (also known as a change of measure) that will give more likelihood for the simulated underlier to be located in the area where the derivative's payoff has the most convexity (for example, close to the strike in the case of a simple option). The simulated payoffs are then not simply averaged as in the case of a simple Monte Carlo, but are first multiplied by the likelihood ratio between the modified probability distribution and the original one (which is obtained by analytical formulas specific for the probability distribution). This will ensure that paths whose probability have been arbitrarily enhanced by the change of probability distribution are weighted with a low weight (this is how the variance gets reduced).
 
This technique can be particularly useful when calculating risks on a derivative. When calculating the delta using a Monte Carlo method, the most straightforward way is the ''black-box'' technique consisting in doing a Monte Carlo on the original market data and another one on the changed market data, and calculate the risk by doing the difference. Instead, the importance sampling method consists in doing a Monte Carlo in an arbitrary reference market data (ideally one in which the variance is as low as possible), and calculate the prices using the weight-changing technique described above. This results in a risk that will be much more stable than the one obtained through the ''black-box'' approach.
 
=== Quasi-random (low-discrepancy) methods ===
{{main|Quasi-Monte Carlo methods in finance}}
 
Instead of generating sample paths randomly, it is possible to systematically (and in fact completely deterministically, despite the "quasi-random" in the name) select points in a probability spaces so as to optimally "fill up" the space. The selection of points is a [[low-discrepancy sequence]] such as a [[Sobol sequence]]. Taking averages of derivative payoffs at points in a low-discrepancy sequence is often more efficient than taking averages of payoffs at random points.
 
== Notes ==
# Frequently it is more practical to take expectations under different measures, however these are still fundamentally integrals, and so the same approach can be applied.
# More general processes, such as [[Lévy process]]es, are also sometimes used. These may also be simulated.
 
== See also ==
* [[Quasi-Monte Carlo methods in finance]]
* [[Monte Carlo method]]
* [[Stock market simulator]]
 
== References ==
 
=== Notes ===
<references/>
 
=== Articles ===
 
* Boyle, P., Broadie, M. and Glasserman, P. Monte Carlo Methods for Security Pricing. Journal of Economic Dynamics and Control, Volume 21, Issues 8-9, Pages 1267-1321
* Rubinstein, Samorodnitsky, Shaked. Antithetic Variates, Multivariate Dependence and Simulation of Stochastic Systems. Managemen Science, Vol. 31, No. 1, Jan 1985, pages 66–67
 
=== Books ===
<!-- alpahbetical by author -->
*{{cite book | title = Interest Rate Models - Theory and Practice with Smile, Inflation and Credit| author = [[Damiano Brigo]], [[Fabio Mercurio]] | publisher = Springer Verlag | year = 2001 | edition = 2nd ed. 2006 | isbn = 978-3-540-22149-4}}
* {{cite book | title = Monte Carlo Frameworks: Building Customisable High-performance C++ Applications  | author = Daniel J. Duffy and Joerg Kienitz | year = 2009 | publisher = Wiley | isbn = 0470060697}}
* {{cite book | title = Monte Carlo:methodologies and applications for pricing and risk management | author = [[Bruno Dupire]] | year = 1998 | publisher = Risk }}
* {{cite book | title = Monte Carlo methods in financial engineering | author = Paul Glasserman | year = 2003 | publisher = Springer-Verlag | isbn = 0-387-00451-3 }}
* {{cite book | title = Options, futures and other derivatives (4th ed.) | author = [[John C. Hull]] | year = 2000 | publisher = Prentice Hall | isbn = 0-13-015822-4 }}
* {{cite book | title = Monte Carlo methods in finance | author = [[Peter Jaeckel]] | year = 2002 | publisher = John Wiley and Sons | isbn = 0-471-49741-X }}
* {{cite book | title = Numerical Solution of Stochastic Differential Equations | author = Peter E. Kloeden and Eckhard Platen | year = 1992 | publisher = Springer - Verlag }}
* {{cite book | title = Simulation and Optimization in Finance: Modeling with MATLAB, @Risk, or VBA | author = Dessislava Pachamanova and [[Frank J. Fabozzi]]
| year = 2010| publisher = John Wiley and Sons |isbn = 0-470-37189-7}}
 
=== Software ===
* [[Comparison of risk analysis Microsoft Excel add-ins]]
* [[Fairmat]] ([[freeware]]) modeling and pricing complex options
* [http://www.mgsoft.ru/en/products_options_calculator.aspx MG Soft], ([[freeware]]) valuation and Greeks of vanilla and exotic options
* [http://www.simularsoft.com.ar SimulAr] Free Monte Carlo simulation [[Microsoft Excel|Excel]] [[Add-in]]
* [http://www.mathworks.com/discovery/monte-carlo-simulation.html Monte Carlo Simulation with MATLAB]
* [http://entities.dk/factors Monte Carlo Simulation with factors]
 
==External links==
 
'''General'''
*[http://www.pjaeckel.webspace.virginmedia.com/eqf013_026.pdf Monte Carlo Simulation] (Encyclopedia of Quantitative Finance), [[Peter Jaeckel]] and Eckhard Plateny
*[http://www.global-derivatives.com/maths/k-o.php MonteCarlo Simulation in Finance], global-derivatives.com
*[http://www.riskglossary.com/link/monte_carlo_method.htm Monte Carlo Method], riskglossary.com
*[http://www.columbia.edu/~mh2078/MCS04/MCS_framework_FEegs.pdf The Monte Carlo Framework, Examples from Finance], Martin Haugh, [[Columbia University]]
*[http://homepages.nyu.edu/~sl1544/articles.html Monte Carlo techniques applied to finance], Simon Leger
 
'''Derivative valuation'''
*[http://www.bus.lsu.edu/academics/finance/faculty/dchance/Instructional/TN96-03.pdf Monte Carlo Simulation], Prof. Don M. Chance, [[Louisiana State University]]
*[http://finance-old.bi.no/~bernt/gcc_prog/recipes/recipes/node12.html Option pricing by simulation], Bernt Arne Ødegaard, [[Norwegian School of Management]]
*[http://www.smartquant.com/references/MonteCarlo/mc6.pdf Applications of Monte Carlo Methods in Finance: Option Pricing], Y. Lai and J. Spanier, [[Claremont Graduate University]]
* [http://spears.okstate.edu/home/tlk/legacy/fin5883/notes6_s05.doc Monte Carlo Derivative valuation], [http://spears.okstate.edu/home/tlk/legacy/fin5883/notes7_s05.doc contd.], Timothy L. Krehbiel, [[Oklahoma State University–Stillwater]]
*[http://www.quantnotes.com/publications/papers/Fink-montecarlo.pdf Pricing complex options using a simple Monte Carlo Simulation], Peter Fink - reprint at quantnotes.com
*[http://ideas.repec.org/a/eee/insuma/v19y1996i1p19-30.html Least-Squares Monte-Carlo for American options by Carriere, 1996], ideas.repec.org
*[http://repositories.cdlib.org/anderson/fin/1-01/ Least-Squares Monte-Carlo for American options by Longstaff and Schwartz, 2001], repositories.cdlib.org
*[http://www.crystalball.com/articles/download/charnes-options.pdf Using simulation for option pricing], John Charnes
 
'''Corporate Finance'''
*[http://www.puc-rio.br/marco.ind/monte-carlo.html Real Options with Monte Carlo Simulation], Marco Dias, [[Pontifícia Universidade Católica do Rio de Janeiro]]
*[http://www.investmentscience.com/Content/howtoArticles/simulation.pdf Using simulation to calculate the NPV of a project], investmentscience.com
*[http://pages.stern.nyu.edu/~adamodar/pdfiles/papers/probabilistic.pdf Simulations, Decision Trees and Scenario Analysis in Valuation] Prof. [[Aswath Damodaran]], [[Stern School of Business]]
*[http://www.ulb.ac.be/cours/solvay/farber/Teaching%20Notes/Monte%20Carlo.pdf The Monte Carlo method in Excel] Prof. André Farber [[Solvay Business School]]
*[http://www.vertex42.com/ExcelArticles/mc/SalesForecast.html Sales Forecasting], vertex42.com
*[http://knol.google.com/k/giancarlo-vercellino/pricing-using-monte-carlo-simulation/11d5i2rgd9gn5/3# Pricing using Monte Carlo simulation], a practical example, Prof. Giancarlo Vercellino
 
'''Value at Risk and portfolio analysis'''
*[http://www.riskglossary.com/link/monte_carlo_transformation.htm Monte Carlo Value-at-Risk], riskglossary.com
 
'''Personal finance'''
*[http://www.businessweek.com/2001/01_04/b3716156.htm A Better Way to Size Up Your Nest Egg], Businessweek Online: January 22, 2001
*[http://www.flexibleretirementplanner.com  Online Monte Carlo retirement planner with source code], Jim Richmond, 2006
*[http://www.prospercuity.com  Free spreadsheet-based retirement calculator and Monte Carlo simulator], by Eric C., 2008
*[http://homepage.mac.com/j.norstad/finance/finplan.pdf Financial Planning Using Random Walks], John Norstad, 2005
 
{{DEFAULTSORT:Monte Carlo Methods In Finance}}
[[Category:Monte Carlo methods in finance| ]]
[[Category:Mathematical finance]]

Revision as of 14:58, 30 January 2014

Monte Carlo methods are used in finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining their average value over the range of resultant outcomes.[1][2] This is usually done by help of stochastic asset models. The advantage of Monte Carlo methods over other techniques increases as the dimensions (sources of uncertainty) of the problem increase.

Monte Carlo methods were first introduced to finance in 1964 by David B. Hertz through his Harvard Business Review article,[3] discussing their application in Corporate Finance. In 1977, Phelim Boyle pioneered the use of simulation in derivative valuation in his seminal Journal of Financial Economics paper.[4]

This article discusses typical financial problems in which Monte Carlo methods are used. It also touches on the use of so-called "quasi-random" methods such as the use of Sobol sequences.

Overview

The Monte Carlo Method encompasses any technique of statistical sampling employed to approximate solutions to quantitative problems.[5] Essentially, the Monte Carlo method solves a problem by directly simulating the underlying (physical) process and then calculating the (average) result of the process.[1] This very general approach is valid in areas such as physics, chemistry, computer science etc.

In finance, the Monte Carlo method is used to simulate the various sources of uncertainty that affect the value of the instrument, portfolio or investment in question, and to then calculate a representative value given these possible values of the underlying inputs.[1] ("Covering all conceivable real world contingencies in proportion to their likelihood." [6]) In terms of financial theory, this, essentially, is an application of risk neutral valuation;[7] see also risk neutrality.

Some examples:

  • Monte Carlo Methods are used for portfolio evaluation.[17] Here, for each sample, the correlated behaviour of the factors impacting the component instruments is simulated over time, the resultant value of each instrument is calculated, and the portfolio value is then observed. As for corporate finance, above, the various portfolio values are then combined in a histogram, and the statistical characteristics of the portfolio are observed, and the portfolio assessed as required. A similar approach is used in calculating value at risk.[18][19]
  • Monte Carlo Methods are used for personal financial planning.[20][21] For instance, by simulating the overall market, the chances of a 401(k) allowing for retirement on a target income can be calculated. As appropriate, the worker in question can then take greater risks with the retirement portfolio or start saving more money.

Although Monte Carlo methods provide flexibility, and can handle multiple sources of uncertainty, the use of these techniques is nevertheless not always appropriate. In general, simulation methods are preferred to other valuation techniques only when there are several state variables (i.e. several sources of uncertainty).[1] These techniques are also of limited use in valuing American style derivatives. See below.

Applicability

Level of complexity

Many problems in mathematical finance entail the computation of a particular integral (for instance the problem of finding the arbitrage-free value of a particular derivative). In many cases these integrals can be valued analytically, and in still more cases they can be valued using numerical integration, or computed using a partial differential equation (PDE). However when the number of dimensions (or degrees of freedom) in the problem is large, PDEs and numerical integrals become intractable, and in these cases Monte Carlo methods often give better results.

For more than three or four state variables, formulae such as Black Scholes (i.e. analytic solutions) do not exist, while other numerical methods such as the Binomial options pricing model and finite difference methods face several difficulties and are not practical. In these cases, Monte Carlo methods converge to the solution more quickly than numerical methods, require less memory and are easier to program. For simpler situations, however, simulation is not the better solution because it is very time-consuming and computationally intensive.

Monte Carlo methods can deal with derivatives which have path dependent payoffs in a fairly straight forward manner. On the other hand Finite Difference (PDE) solvers struggle with path dependence.

American options

Monte-Carlo methods are harder to use with American options. This is because, in contrast to a partial differential equation, the Monte Carlo method really only estimates the option value assuming a given starting point and time.

However, for early exercise, we would also need to know the option value at the intermediate times between the simulation start time and the option expiry time. In the Black–Scholes PDE approach these prices are easily obtained, because the simulation runs backwards from the expiry date. In Monte-Carlo this information is harder to obtain, but it can be done for example using the least squares algorithm of Carriere (see link to original paper) which was made popular a few years later by Longstaff and Schwartz (see link to original paper).

Monte Carlo methods

Mathematically

The fundamental theorem of arbitrage-free pricing states that the value of a derivative is equal to the discounted expected value of the derivative payoff where the expectation is taken under the risk-neutral measure [1]. An expectation is, in the language of pure mathematics, simply an integral with respect to the measure. Monte Carlo methods are ideally suited to evaluating difficult integrals (see also Monte Carlo method).

Thus if we suppose that our risk-neutral probability space is and that we have a derivative H that depends on a set of underlying instruments . Then given a sample from the probability space the value of the derivative is . Today's value of the derivative is found by taking the expectation over all possible samples and discounting at the risk-free rate. I.e. the derivative has value:

where is the discount factor corresponding to the risk-free rate to the final maturity date T years into the future.

Now suppose the integral is hard to compute. We can approximate the integral by generating sample paths and then taking an average. Suppose we generate N samples then

which is much easier to compute.

Sample paths for standard models

In finance, underlying random variables (such as an underlying stock price) are usually assumed to follow a path that is a function of a Brownian motion 2. For example in the standard Black–Scholes model, the stock price evolves as

To sample a path following this distribution from time 0 to T, we chop the time interval into M units of length , and approximate the Brownian motion over the interval by a single normal variable of mean 0 and variance . This leads to a sample path of

for each k between 1 and M. Here each is a draw from a standard normal distribution.

Let us suppose that a derivative H pays the average value of S between 0 and T then a sample path corresponds to a set and

We obtain the Monte-Carlo value of this derivative by generating N lots of M normal variables, creating N sample paths and so N values of H, and then taking the average. Commonly the derivative will depend on two or more (possibly correlated) underlyings. The method here can be extended to generate sample paths of several variables, where the normal variables building up the sample paths are appropriately correlated.

It follows from the central limit theorem that quadrupling the number of sample paths approximately halves the error in the simulated price (i.e. the error has order convergence in the sense of standard deviation of the solution).

In practice Monte Carlo methods are used for European-style derivatives involving at least three variables (more direct methods involving numerical integration can usually be used for those problems with only one or two underlyings. See Monte Carlo option model.

Greeks

Estimates for the "Greeks" of an option i.e. the (mathematical) derivatives of option value with respect to input parameters, can be obtained by numerical differentiation. This can be a time-consuming process (an entire Monte Carlo run must be performed for each "bump" or small change in input parameters). Further, taking numerical derivatives tends to emphasize the error (or noise) in the Monte Carlo value - making it necessary to simulate with a large number of sample paths. Practitioners regard these points as a key problem with using Monte Carlo methods.

Variance reduction

Square root convergence is slow, and so using the naive approach described above requires using a very large number of sample paths (1 million, say, for a typical problem) in order to obtain an accurate result. Remember that an estimator for the price of a derivative is a random variable, and in the framework of a risk-management activity, uncertainty on the price of a portfolio of derivatives and/or on its risks can lead to suboptimal risk-management decisions.

This state of affairs can be mitigated by variance reduction techniques.

Antithetic paths

A simple technique is, for every sample path obtained, to take its antithetic path — that is given a path to also take . Not only does this reduce the number of normal samples to be taken to generate N paths, but also, under same conditions, reduces the variance of the sample paths, improving the accuracy.

Control variate method

It is also natural to use a control variate. Let us suppose that we wish to obtain the Monte Carlo value of a derivative H, but know the value analytically of a similar derivative I. Then H* = (Value of H according to Monte Carlo) + B*[(Value of I analytically) − (Value of I according to same Monte Carlo paths)] is a better estimate, where B is covar(H,I)/var(H).

The intuition behind that technique, when applied to derivatives, is the following: note that the source of the variance of a derivative will be directly dependent on the risks (e.g. delta, vega) of this derivative. This is because any error on, say, the estimator for the forward value of an underlier, will generate a corresponding error depending on the delta of the derivative with respect to this forward value. The simplest example to demonstrate this consists in comparing the error when pricing an at-the-money call and an at-the-money straddle (i.e. call+put), which has a much lower delta.

Therefore, a standard way of choosing the derivative I consists in choosing a replicating portfolios of options for H. In practice, one will price H without variance reduction, calculate deltas and vegas, and then use a combination of calls and puts that have the same deltas and vegas as control variate.

Importance sampling

Importance sampling consists of simulating the Monte Carlo paths using a different probability distribution (also known as a change of measure) that will give more likelihood for the simulated underlier to be located in the area where the derivative's payoff has the most convexity (for example, close to the strike in the case of a simple option). The simulated payoffs are then not simply averaged as in the case of a simple Monte Carlo, but are first multiplied by the likelihood ratio between the modified probability distribution and the original one (which is obtained by analytical formulas specific for the probability distribution). This will ensure that paths whose probability have been arbitrarily enhanced by the change of probability distribution are weighted with a low weight (this is how the variance gets reduced).

This technique can be particularly useful when calculating risks on a derivative. When calculating the delta using a Monte Carlo method, the most straightforward way is the black-box technique consisting in doing a Monte Carlo on the original market data and another one on the changed market data, and calculate the risk by doing the difference. Instead, the importance sampling method consists in doing a Monte Carlo in an arbitrary reference market data (ideally one in which the variance is as low as possible), and calculate the prices using the weight-changing technique described above. This results in a risk that will be much more stable than the one obtained through the black-box approach.

Quasi-random (low-discrepancy) methods

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Instead of generating sample paths randomly, it is possible to systematically (and in fact completely deterministically, despite the "quasi-random" in the name) select points in a probability spaces so as to optimally "fill up" the space. The selection of points is a low-discrepancy sequence such as a Sobol sequence. Taking averages of derivative payoffs at points in a low-discrepancy sequence is often more efficient than taking averages of payoffs at random points.

Notes

  1. Frequently it is more practical to take expectations under different measures, however these are still fundamentally integrals, and so the same approach can be applied.
  2. More general processes, such as Lévy processes, are also sometimes used. These may also be simulated.

See also

References

Notes

Articles

  • Boyle, P., Broadie, M. and Glasserman, P. Monte Carlo Methods for Security Pricing. Journal of Economic Dynamics and Control, Volume 21, Issues 8-9, Pages 1267-1321
  • Rubinstein, Samorodnitsky, Shaked. Antithetic Variates, Multivariate Dependence and Simulation of Stochastic Systems. Managemen Science, Vol. 31, No. 1, Jan 1985, pages 66–67

Books

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

Software

External links

General

Derivative valuation

Corporate Finance

Value at Risk and portfolio analysis

Personal finance