Crosswordese: Difference between revisions
en>CombatWombat42 →Titles of books, plays, movies, etc.: no need for honorific "holy", is not neutral, WP:PBUH |
|||
Line 1: | Line 1: | ||
The | The '''Schur–Zassenhaus theorem''' is a [[theorem]] in [[group theory]] which states that if <math>G</math> is a finite [[group (mathematics)|group]], and <math>N</math> is a [[normal subgroup]] whose [[order (group theory)|order]] is [[coprime]] to the order of the [[quotient group]] <math>G/N</math>, then <math>G</math> is a [[semidirect product]] of <math>N</math> and <math>G/N</math>. | ||
An alternative statement of the theorem is that any normal [[Hall subgroup]] of a finite group <math>G</math> has a [[complement (group theory)|complement]] in <math>G</math>. | |||
It is clear that if we do not impose the coprime condition, the theorem is not [[truth|true]]: consider for example the [[cyclic group]] <math>C_4</math> and its normal subgroup <math>C_2</math>. Then if <math>C_4</math> were a semidirect product of <math>C_2</math> and <math>C_4 / C_2 \cong C_2</math> then <math>C_4</math> would have to contain two [[element (mathematics)|element]]s of order 2, but it only contains one. | |||
The Schur–Zassenhaus theorem at least partially answers the question: "In a [[composition series]], how can we classify groups with a certain set of composition factors?" The other part, which is where the composition factors do not have coprime orders, is tackled in [[extension problem|extension theory]]. | |||
==References== | |||
*{{cite book | author=Rotman, Joseph J. | title=An Introduction to the Theory of Groups | location=New York | publisher=Springer–Verlag | year=1995 | isbn=978-0-387-94285-8}} | |||
*{{cite book | author=David S. Dummit & Richard M. Foote | title=Abstract Algebra | publisher=Wiley | year=2003 | isbn=978-0-471-43334-7}} | |||
{{DEFAULTSORT:Schur-Zassenhaus theorem}} | |||
[[Category:Theorems in group theory]] |
Revision as of 18:36, 24 January 2014
The Schur–Zassenhaus theorem is a theorem in group theory which states that if is a finite group, and is a normal subgroup whose order is coprime to the order of the quotient group , then is a semidirect product of and .
An alternative statement of the theorem is that any normal Hall subgroup of a finite group has a complement in .
It is clear that if we do not impose the coprime condition, the theorem is not true: consider for example the cyclic group and its normal subgroup . Then if were a semidirect product of and then would have to contain two elements of order 2, but it only contains one.
The Schur–Zassenhaus theorem at least partially answers the question: "In a composition series, how can we classify groups with a certain set of composition factors?" The other part, which is where the composition factors do not have coprime orders, is tackled in extension theory.
References
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534