Summation of Grandi's series: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Melchoir
turn parentheticals into sentences
 
en>Monkbot
Line 1: Line 1:
Greetings. Let me start by telling you the author's title - Phebe. I am a meter reader. To gather badges is what her family members and her appreciate. Puerto Rico is exactly where he's been living for many years and he will by no means transfer.<br><br>my page; [http://Www.Animecontent.com/blog/349119 http://Www.Animecontent.com/blog/349119]
In [[mathematical analysis]], the '''Russo–Vallois integral''' is an extension to [[stochastic process]]es of the classical [[Riemann–Stieltjes integral]]
 
:<math>\int f \, dg=\int fg' \, ds</math>
 
for suitable functions <math>f</math> and <math>g</math>. The idea is to replace the [[derivative]] <math>g'</math> by the difference quotient
 
:<math>g(s+\varepsilon)-g(s)\over\varepsilon</math> and to pull the limit out of the integral. In addition one changes the type of convergence.
 
==Definitions==
'''Definition:''' A sequence <math>H_n</math> of [[stochastic process]]es [[Convergence of random variables|converges]] uniformly on [[compact set]]s in probability to a process <math>H,</math>
 
:<math>H=\text{ucp-}\lim_{n\rightarrow\infty}H_n,</math>
 
if, for every <math>\varepsilon>0</math> and <math>T>0,</math>
 
:<math>\lim_{n\rightarrow\infty}\mathbb{P}(\sup_{0\leq t\leq T}|H_n(t)-H(t)|>\varepsilon)=0.</math>
 
On sets:
:<math>I^-(\varepsilon,t,f,dg)={1\over\varepsilon}\int_0^tf(s)(g(s+\varepsilon)-g(s))\,ds</math>
:<math>I^+(\varepsilon,t,f,dg)={1\over\varepsilon}\int_0^t f(s)(g(s)-g(s-\varepsilon)) \, ds</math>
 
and
 
:<math>[f,g]_\varepsilon (t)={1\over \varepsilon}\int_0^t(f(s+\varepsilon)-f(s))(g(s+\varepsilon)-g(s))\,ds.</math>
 
'''Definition:''' The forward integral is defined as the ucp-limit of
 
:<math>I^-</math>: <math>\int_0^t fd^-g=\text{ucp-}\lim_{\varepsilon\rightarrow\infty}I^-(\varepsilon,t,f,dg).</math>
 
'''Definition:''' The backward integral is defined as the ucp-limit of
 
:<math>I^+</math>: <math>\int_0^t f \, d^+g = \text{ucp-}\lim_{\varepsilon\rightarrow\infty}I^+(\varepsilon,t,f,dg).</math>
 
'''Definition:''' The generalized bracket is defined as the ucp-limit of
 
:<math>[f,g]_\varepsilon</math>: <math>[f,g]_\varepsilon=\text{ucp-}\lim_{\varepsilon\rightarrow\infty}[f,g]_\varepsilon (t).</math>
 
For continuous [[semimartingale]]s <math>X,Y</math> and a [[cadlag function]] H, the Russo–Vallois integral coincidences with the usual [[Ito integral]]:
 
:<math>\int_0^t H_s \, dX_s=\int_0^t H \, d^-X.</math>
 
In this case the generalised bracket is equal to the classical covariation. In the special case, this means that the process
 
:<math>[X]:=[X,X] \, </math>
 
is equal to the [[quadratic variation process]].
 
Also for the Russo-Vallios-Integral an [[Ito formula]] holds: If <math>X</math> is a continuous semimartingale and
 
:<math>f\in C_2(\mathbb{R}),</math>
 
then
 
:<math>f(X_t)=f(X_0)+\int_0^t f'(X_s) \, dX_s + {1\over 2}\int_0^t f''(X_s) \, d[X]_s.</math>
 
By a duality result of [[Triebel]] one can provide optimal classes of [[Besov space]]s, where the Russo–Vallois integral can be defined. The norm in the Besov space
 
:<math>B_{p,q}^\lambda(\mathbb{R}^N)</math>
 
is given by
 
:<math>||f||_{p,q}^\lambda=||f||_{L_p} + \left(\int_0^\infty {1\over |h|^{1+\lambda q}}(||f(x+h)-f(x)||_{L_p})^q \, dh\right)^{1/q}</math>
 
with the well known modification for <math>q=\infty</math>. Then the following theorem holds:
 
'''Theorem:''' Suppose
 
:<math>f\in B_{p,q}^\lambda,</math>
:<math>g\in B_{p',q'}^{1-\lambda},</math>
:<math>1/p+1/p'=1\text{ and }1/q+1/q'=1.</math>
 
Then the Russo–Vallois integral
 
:<math>\int f \, dg</math>
 
exists and for some constant <math>c</math> one has
 
:<math>\left| \int f \, dg \right| \leq c ||f||_{p,q}^\alpha ||g||_{p',q'}^{1-\alpha}.</math>
 
Notice that in this case the Russo–Vallois integral coincides with the [[Riemann–Stieltjes integral]] and with the [[Young integra]]l for functions with [[finite p-variation]].
 
{{no footnotes|date=January 2012}}
 
==References==
*Russo, Vallois: Forward, backward and symmetric integrals, Prob. Th. and rel. fields 97 (1993)
*Russo, Vallois: The generalized covariation process and Ito-formula, Stoch. Proc. and Appl. 59 (1995)
*Zähle; Forward Integrals and SDE, Progress in Prob. Vol. 52 (2002)
*Fournier, Adams: Sobolev Spaces, Elsevier, second edition (2003)
 
{{DEFAULTSORT:Russo-Vallois integral}}
[[Category:Definitions of mathematical integration]]
[[Category:Stochastic processes]]

Revision as of 13:23, 30 January 2014

In mathematical analysis, the Russo–Vallois integral is an extension to stochastic processes of the classical Riemann–Stieltjes integral

fdg=fgds

for suitable functions f and g. The idea is to replace the derivative g by the difference quotient

g(s+ε)g(s)ε and to pull the limit out of the integral. In addition one changes the type of convergence.

Definitions

Definition: A sequence Hn of stochastic processes converges uniformly on compact sets in probability to a process H,

H=ucp-limnHn,

if, for every ε>0 and T>0,

limn(sup0tT|Hn(t)H(t)|>ε)=0.

On sets:

I(ε,t,f,dg)=1ε0tf(s)(g(s+ε)g(s))ds
I+(ε,t,f,dg)=1ε0tf(s)(g(s)g(sε))ds

and

[f,g]ε(t)=1ε0t(f(s+ε)f(s))(g(s+ε)g(s))ds.

Definition: The forward integral is defined as the ucp-limit of

I: 0tfdg=ucp-limεI(ε,t,f,dg).

Definition: The backward integral is defined as the ucp-limit of

I+: 0tfd+g=ucp-limεI+(ε,t,f,dg).

Definition: The generalized bracket is defined as the ucp-limit of

[f,g]ε: [f,g]ε=ucp-limε[f,g]ε(t).

For continuous semimartingales X,Y and a cadlag function H, the Russo–Vallois integral coincidences with the usual Ito integral:

0tHsdXs=0tHdX.

In this case the generalised bracket is equal to the classical covariation. In the special case, this means that the process

[X]:=[X,X]

is equal to the quadratic variation process.

Also for the Russo-Vallios-Integral an Ito formula holds: If X is a continuous semimartingale and

fC2(),

then

f(Xt)=f(X0)+0tf(Xs)dXs+120tf(Xs)d[X]s.

By a duality result of Triebel one can provide optimal classes of Besov spaces, where the Russo–Vallois integral can be defined. The norm in the Besov space

Bp,qλ(N)

is given by

||f||p,qλ=||f||Lp+(01|h|1+λq(||f(x+h)f(x)||Lp)qdh)1/q

with the well known modification for q=. Then the following theorem holds:

Theorem: Suppose

fBp,qλ,
gBp,q1λ,
1/p+1/p=1 and 1/q+1/q=1.

Then the Russo–Vallois integral

fdg

exists and for some constant c one has

|fdg|c||f||p,qα||g||p,q1α.

Notice that in this case the Russo–Vallois integral coincides with the Riemann–Stieltjes integral and with the Young integral for functions with finite p-variation.

Template:No footnotes

References

  • Russo, Vallois: Forward, backward and symmetric integrals, Prob. Th. and rel. fields 97 (1993)
  • Russo, Vallois: The generalized covariation process and Ito-formula, Stoch. Proc. and Appl. 59 (1995)
  • Zähle; Forward Integrals and SDE, Progress in Prob. Vol. 52 (2002)
  • Fournier, Adams: Sobolev Spaces, Elsevier, second edition (2003)