Lie point symmetry: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Rjwilmsi
m References: Journal cites (journal naming):, added 1 DOI, using AWB (7856)
 
en>Monkbot
Line 1: Line 1:
My name is Concepcion (32 years old) and my hobbies are Skydiving and Aircraft spotting.<br><br>Also visit my web page; [http://www.lvlywallpapers.com/profile/emoua need buy essay]
In applied mathematics, a '''nonlinear complementarity problem (NCP)''' with respect to a mapping ''&fnof;''&nbsp;:&nbsp;'''R'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''R'''<sup>''n''</sup>, denoted by NCP''&fnof;'', is to find a vector ''x''&nbsp;&isin;&nbsp;'''R'''<sup>''n''</sup> such that
 
: <math>x \geq 0,\ f(x) \geq 0 \text{ and } x^{T}f(x)=0 \,</math>
 
where ''&fnof;''(''x'') is a smooth mapping.
 
== References ==
 
* {{cite paper|author=Stephen C. Billups|title=A new homotopy method for solving non-linear complementarity problems|date=2008|
url=http://www.informaworld.com/smpp/content~db=all~content=a905306577|accessdate=2010-03-13}}
* {{cite book|last1=Cottle|first1=Richard W.|last2=Pang|first2=Jong-Shi|last3=Stone|first3=Richard E.|title=The linear complementarity problem | series=Computer Science and Scientific Computing|publisher=Academic Press, Inc.|location=Boston, MA|year=1992|pages=xxiv+762 pp.|isbn=0-12-192350-9}} {{MR|1150683}}
 
 
{{Mathematical programming}}
 
[[Category:Mathematical optimization]]

Revision as of 17:08, 24 January 2014

In applied mathematics, a nonlinear complementarity problem (NCP) with respect to a mapping ƒ : Rn → Rn, denoted by NCPƒ, is to find a vector x ∈ Rn such that

x0,f(x)0 and xTf(x)=0

where ƒ(x) is a smooth mapping.

References


Template:Mathematical programming