|
|
Line 1: |
Line 1: |
| {{Probability distribution |
| | Nurse Educator Toney from Holland Landing, enjoys to spend time saltwater aquariums, ganhando dinheiro na internet and wood working. Finds travel an amazing experience after making a trip to Ancient City of Damascus.<br><br>Look into my site; [http://comoconseguirdinheiro.comoganhardinheiro101.com ganhe dinheiro] |
| name =normal-inverse-Wishart|
| |
| type =density|
| |
| pdf_image =|
| |
| cdf_image =|
| |
| notation =<math>(\boldsymbol\mu,\boldsymbol\Sigma) \sim \mathrm{NIW}(\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu)</math>|
| |
| parameters =<math>\boldsymbol\mu_0\in\mathbb{R}^D\,</math> [[location parameter|location]] (vector of [[real number|real]])<br /><math>\lambda > 0\,</math> (real)<br /><math>\boldsymbol\Psi \in\mathbb{R}^{D\times D}</math> inverse scale matrix ([[positive-definite matrix|pos. def.]])<br /><math>\nu > D-1\,</math> (real)|
| |
| support =<math>\boldsymbol\mu\in\mathbb{R}^D ; \boldsymbol\Sigma \in\mathbb{R}^{D\times D}</math> [[covariance matrix]] ([[positive-definite matrix|pos. def.]])|
| |
| pdf =<math>f(\boldsymbol\mu,\boldsymbol\Sigma|\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu) = \mathcal{N}(\boldsymbol\mu|\boldsymbol\mu_0,\tfrac{1}{\lambda}\boldsymbol\Sigma)\ \mathcal{W}^{-1}(\boldsymbol\Sigma|\boldsymbol\Psi,\nu)</math>|
| |
| cdf =|
| |
| mean =|
| |
| median =|
| |
| mode =|
| |
| variance =|
| |
| skewness =|
| |
| kurtosis =|
| |
| entropy =|
| |
| mgf =|
| |
| char =|
| |
| }}
| |
| In [[probability theory]] and [[statistics]], the '''normal-inverse-Wishart distribution''' (or '''Gaussian-inverse-Wishart distribution''') is a multivariate four-parameter family of continuous [[probability distribution]]s. It is the [[conjugate prior]] of a [[multivariate normal distribution]] with unknown [[mean]] and [[covariance matrix]] (the inverse of the [[precision matrix]]).<ref name="murphy">Murphy, Kevin P. (2007). "Conjugate Bayesian analysis of the Gaussian distribution." [http://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf]</ref>
| |
| | |
| ==Definition==
| |
| Suppose
| |
| | |
| :<math> \boldsymbol\mu|\boldsymbol\mu_0,\lambda,\boldsymbol\Sigma \sim \mathcal{N}\left(\boldsymbol\mu\Big|\boldsymbol\mu_0,\frac{1}{\lambda}\boldsymbol\Sigma\right)</math>
| |
| has a [[multivariate normal distribution]] with [[mean]] <math>\boldsymbol\mu_0</math> and [[covariance matrix]] <math>\tfrac{1}{\lambda}\boldsymbol\Sigma</math>, where
| |
| | |
| :<math>\boldsymbol\Sigma|\boldsymbol\Psi,\nu \sim \mathcal{W}^{-1}(\boldsymbol\Sigma|\boldsymbol\Psi,\nu)</math>
| |
| has an [[inverse Wishart distribution]]. Then <math>(\boldsymbol\mu,\boldsymbol\Sigma) </math>
| |
| has a normal-inverse-Wishart distribution, denoted as
| |
| :<math> (\boldsymbol\mu,\boldsymbol\Sigma) \sim \mathrm{NIW}(\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu) .
| |
| </math>
| |
| | |
| ==Characterization==
| |
| | |
| ===Probability density function===
| |
| | |
| : <math>f(\boldsymbol\mu,\boldsymbol\Sigma|\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu) = \mathcal{N}\left(\boldsymbol\mu\Big|\boldsymbol\mu_0,\frac{1}{\lambda}\boldsymbol\Sigma\right) \mathcal{W}^{-1}(\boldsymbol\Sigma|\boldsymbol\Psi,\nu)</math>
| |
| | |
| ==Properties==
| |
| | |
| ===Scaling===
| |
| | |
| ===Marginal distributions===
| |
| By construction, the [[marginal distribution]] over <math>\boldsymbol\Sigma</math> is an [[inverse Wishart distribution]], and the [[conditional distribution]] over <math>\boldsymbol\mu</math> given <math>\boldsymbol\Sigma</math> is a [[multivariate normal distribution]]. The [[marginal distribution]] over <math>\boldsymbol\mu</math> is a [[multivariate t-distribution]].
| |
| | |
| == Posterior distribution of the parameters ==
| |
| | |
| {{Empty section|date=March 2013}}
| |
| | |
| == Generating normal-inverse-Wishart random variates ==
| |
| Generation of random variates is straightforward:
| |
| # Sample <math>\boldsymbol\Sigma</math> from an [[inverse Wishart distribution]] with parameters <math>\boldsymbol\Psi</math> and <math>\nu</math>
| |
| # Sample <math>\boldsymbol\mu</math> from a [[multivariate normal distribution]] with mean <math>\boldsymbol\mu_0</math> and variance <math>\boldsymbol \tfrac{1}{\lambda} \boldsymbol\Sigma</math>
| |
| | |
| == Related distributions ==
| |
| * The [[normal-Wishart distribution]] is essentially the same distribution parameterized by precision rather than variance. If <math> (\boldsymbol\mu,\boldsymbol\Sigma) \sim \mathrm{NIW}(\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu)</math> then <math>(\boldsymbol\mu,\boldsymbol\Sigma^{-1}) \sim \mathrm{NW}(\boldsymbol\mu_0,\lambda,\boldsymbol\Psi^{-1},\nu)</math> .
| |
| * The [[normal-inverse-gamma distribution]] is the one-dimensional equivalent.
| |
| * The [[multivariate normal distribution]] and [[inverse Wishart distribution]] are the component distributions out of which this distribution is made.
| |
| | |
| ==Notes==
| |
| {{reflist}}
| |
| | |
| == References ==
| |
| * Bishop, Christopher M. (2006). ''Pattern Recognition and Machine Learning.'' Springer Science+Business Media.
| |
| * Murphy, Kevin P. (2007). "Conjugate Bayesian analysis of the Gaussian distribution." [http://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf]
| |
| | |
| {{ProbDistributions|multivariate}}
| |
| | |
| [[Category:Multivariate continuous distributions]]
| |
| [[Category:Conjugate prior distributions]]
| |
| [[Category:Normal distribution]]
| |
| [[Category:Probability distributions]]
| |
Nurse Educator Toney from Holland Landing, enjoys to spend time saltwater aquariums, ganhando dinheiro na internet and wood working. Finds travel an amazing experience after making a trip to Ancient City of Damascus.
Look into my site; ganhe dinheiro