Integer square root: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Vectornaut
Clarified statement implying that all computer calculations involve roundoff errors
Line 1: Line 1:
In [[complex analysis]], the '''Blaschke product''' is a bounded [[analytic function]] in the open unit disc constructed to have zeros at a (finite or infinite) sequence of prescribed [[complex number]]s
28 yr old Clothing Patternmaker Sandy Gohr from Iqaluit, loves to spend some time magic, diet and antiques. Felt particulary stimulated after touring Historic Centre of Sighisoara.
 
:''a''<sub>0</sub>, ''a''<sub>1</sub>, ...
 
inside the [[unit disc]].
 
Blaschke products were introduced by {{harvs|txt|authorlink=Wilhelm Blaschke|first=Wilhelm |last=Blaschke|year=1915}}. They are related to  [[Hardy space]]s.
 
==Definition==
 
A sequence of points <math>(a_n)</math> inside the unit disk is said to satisfy the '''Blaschke condition''' when
 
<!--
:&Sigma; (1 &minus; |''a''<sub>''n''</sub>|)
-->
:<math>\sum_n (1-|a_n|) <\infty.</math>
 
Given a sequence obeying the Blaschke condition, the Blaschke product is defined as
 
<!--
:''B''(''z'') = &Pi; ''B''(''a''<sub>''n''</sub>, ''z'')
-->
:<math>B(z)=\prod_n B(a_n,z)</math>
 
with factors
 
<!--
:''B''(''a'',''z'') = |''a''|/''a''&middot;(''z'' &minus; ''a'')/(1 &minus; ''a''<sup>*</sup>''z'')
-->
:<math>B(a,z)=\frac{|a|}{a}\;\frac{a-z}{1 - \overline{a}z}</math>
 
provided ''a'' ≠ 0. Here <math>\overline{a}</math> is the [[complex conjugate]] of ''a''. When ''a'' = 0 take ''B''(''0'',''z'') = ''z''.
 
The Blaschke product ''B''(''z'') defines a function analytic in the open unit disc, and zero exactly at the ''a''<sub>''n''</sub> (with [[Multiplicity (mathematics)|multiplicity]] counted): furthermore it is in the Hardy class <math>H^\infty</math>.<ref>Conway (1996) 274</ref>
 
The sequence of ''a''<sub>''n''</sub> satisfying the convergence criterion above is sometimes called a '''Blaschke sequence'''.
 
==Szegő theorem==
 
A theorem of [[Gábor Szegő]] states that if ''f'' is in <math>H^1</math>, the [[Hardy space]] with integrable norm, and if ''f'' is not identically zero, then the zeroes of ''f'' (certainly countable in number) satisfy the Blaschke condition.
 
==Finite Blaschke products==
 
Finite Blaschke products can be characterized (as analytic functions on the unit disc) in the following way: Assume that ''f'' is an analytic function on the open unit disc such that
''f'' can be extended to a continuous function on the closed unit disc
 
: <math>\overline{\Delta}= \{z \in \mathbb{C}\,|\, |z|\le 1\} </math>
 
which maps the unit circle to itself.  Then ƒ is equal to a finite Blaschke product
 
:<math> B(z)=\zeta\prod_{i=1}^n\left({{z-a_i}\over {1-\overline{a_i}z}}\right)^{m_i}
</math>
 
where ''&zeta;'' lies on the unit circle and ''m<sub>i</sub>'' is the [[Multiplicity (mathematics)|multiplicity]] of the zero ''a<sub>i</sub>'', |''a''<sub>''i''</sub>|&nbsp;<&nbsp;1. In particular, if ''&fnof;'' satisfies the  condition above and has no zeros inside the unit circle then ''&fnof;'' is constant (this fact is also a consequence of the [[maximum principle]] for [[harmonic function]]s, applied to the harmonic function log(|''&fnof;''(''z'')|)).
 
==See also==
* [[Hardy space]]
* [[Weierstrass product]]
 
==References==
{{reflist}}
* W. Blaschke,  ''Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen''  Berichte Math.-Phys. Kl., Sächs. Gesell. der Wiss. Leipzig, 67  (1915)  pp.&nbsp;194–200
* Peter Colwell, ''Blaschke Products &mdash; Bounded Analytic Functions'' (1985), University of Michigan Press, Ann Arbor. ISBN 0-472-10065-3
* {{cite book | title=Functions of a Complex Variable II | volume=159 | series=[[Graduate Texts in Mathematics]] | publisher=[[Springer-Verlag]] | isbn=0-387-94460-5 | first=John B. | last=Conway | authorlink=John B. Conway | pages=273–274 }}
*{{springer|id=b/b016630|first=P.M.|last= Tamrazov}}
 
[[Category:Complex analysis]]

Revision as of 16:44, 12 February 2014

28 yr old Clothing Patternmaker Sandy Gohr from Iqaluit, loves to spend some time magic, diet and antiques. Felt particulary stimulated after touring Historic Centre of Sighisoara.