Minkowski functional: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ZéroBot
m r2.7.1) (Robot: Adding ja:ミンコフスキー汎関数
 
en>Aetheling
m →‎Example 2: Remove contraction, add link
Line 1: Line 1:
The name of the author is Numbers but it's not the most masucline name out there. Hiring has been my profession for some time but I've currently applied for another one. Body developing is what my family and I enjoy. My family members lives in Minnesota and my family enjoys it.<br><br>Feel free to visit my site :: std home test ([http://www.buzzbit.net/user/AFilson please click the up coming post])
[[Image:Gummel-Poon1.png|thumb|450px|Schematic of Spice Gummel-Poon Model NPN]]
The '''Gummel–Poon model''' is a [[Transistor models|model]] of the [[bipolar junction transistor]]. It was first described in a paper published by [[Hermann Gummel]] and [[H. C. Poon]] at [[Bell Labs]] in 1970.<ref name=gummel>H. K. Gummel and H. C. Poon, "An integral charge control model of bipolar transistors", ''Bell Syst. Tech. J.'', vol. 49, pp. 827–852, May–June 1970</ref>
 
The Gummel–Poon model and modern variants of it are widely used via incorporation in the popular circuit simulators known as [[SPICE]].  A significant effect included in the Gummel–Poon model is the [[direct current]] variation of the transistor <math> \beta_\mathrm{F}</math> and <math> \beta_\mathrm{R}</math>. When certain parameters are omitted, the Gummel–Poon model reduces to the simpler [[Bipolar junction transistor#Ebers–Moll_model|Ebers–Moll model]].<ref name=gummel/>
 
==Model parameters==
 
Spice Gummel–Poon model parameters
 
{| class="wikitable sortable"
|-
!#!!Name!!Property<br />Modeled!!Parameter!!Units!!Default<br />Value
|-
|1||IS||current||transport saturation current||A||1.00E-016
|-
|2||BF||current||ideal max forward beta||-||100
|-
|3||NF||current||forward current emission coefficient||-||1
|-
|4||VAF||current||forward Early voltage||V||inf
|-
|5||IKF||current||corner for forward beta high current roll-off||A||inf
|-
|6||ISE||current||B-E leakage saturation current||A||0
|-
|7||NE||current||B-E leakage emission coefficient||-||1.5
|-
|8||BR||current||ideal max reverse beta||-||1
|-
|9||NR||current||reverse current emission coefficient||-||1
|-
|10||VAR||current||reverse Early voltage||V||inf
|-
|11||IKR||current||corner for reverse beta high current roll-off||A||inf
|-
|12||ISC||current||B-C leakage saturation current||A||0
|-
|13||NC||current||B-C leakage emission coefficient||-||2
|-
|14||RB||resistance||zero-bias base resistance||ohms||0
|-
|15||IRB||resistance||current where base resistance falls half-way to its minimum||A||inf
|-
|16||RBM||resistance||minimum base resistance at high currents||ohms||RB
|-
|17||RE||resistance||emitter resistance||ohms||0
|-
|18||RC||resistance||collector resistance||ohms||0
|-
|19||CJE||capacitance||B-E zero-bias depletion capacitance||F||0
|-
|20||VJE||capacitance||B-E built-in potential||V||0.75
|-
|21||MJE||capacitance||B-E junction exponential factor||-||0.33
|-
|22||TF||capacitance||ideal forward transit time||s||0
|-
|23||XTF||capacitance||coefficient for bias dependence of TF||-||0
|-
|24||VTF||capacitance||voltage describing VBC dependence of TF||V||inf
|-
|25||ITF||capacitance||high-current parameter for effect on  TF||A||0
|-
|26||PTF||||excess phase at freq=1.0/(TF*2PI) Hz||deg||0
|-
|27||CJC||capacitance||B-C zero-bias depletion capacitance||F||0
|-
|28||VJC||capacitance||B-C built-in potential||V||0.75
|-
|29||MJC||capacitance||B-C junction exponential factor||-||0.33
|-
|30||XCJC||capacitance||fraction of B-C depletion capacitance connected to internal base node||-||1
|-
|31||TR||capacitance||ideal reverse transit time||s||0
|-
|32||CJS||capacitance||zero-bias collector-substrate capacitance||F||0
|-
|33||VJS||capacitance||substrate junction built-in potential||V||0.75
|-
|34||MJS||capacitance||substrate junction exponential factor||-||0
|-
|35||XTB||||forward and reverse beta temperature exponent||-||0
|-
|36||EG||||energy gap for temperature effect of IS||eV||1.1
|-
|37||XTI||||temperature exponent for effect of IS||-||3
|-
|38||KF||||flicker-noise coefficient||-||0
|-
|39||AF||||flicker-noise exponent||-||1
|-
|40||FC||||coefficient for forward-bias depletion capacitance formula||-||0.5
|-
|41||TNOM||||parameter measurement temperature||deg.C||27
|} <ref>http://virtual.cvut.cz/dynlabmodules/ihtml/dynlabmodules/semicond/node48.html Summary of model with schematics and equations</ref>
 
==References==
 
{{reflist}}
 
==External links==
* [http://www.alcatel-lucent.com/bstj/vol49-1970/articles/bstj49-5-827.pdf An Integral Charge Control Model of Bipolar Transistors] manuscript
* [http://www.alcatel-lucent.com/bstj/vol49-1970/bstj-vol49-issue05.html Bell System Technical Journal, v49: i5 May-June 1970]
* [http://virtual.cvut.cz/dynlabmodules/ihtml/dynlabmodules/semicond/node48.html Summary of model with schematics and equations]
* [http://www.electronics.oulu.fi/Opetus/ELJK/JUTUT/GP_DOCU.pdf Agilent manual: The Gummel–Poon Bipolar Model] as implemented in the simulator SPICE
* [http://www.designers-guide.org/VBIC/documents/ted00.pdf Designers-Guide.org comparison paper] Xiaochong Cao, J. McMacken, K. Stiles, P. Layman, Juin J. Liou, Adelmo Ortiz-Conde, and S. Moinian, "Comparison of the New VBIC and Conventional Gummel–Poon Bipolar Transistor Models," IEEE Trans-ED 47 #2, Feb. 2000.
* [http://virtual.cvut.cz/dynlabmodules/ihtml/dynlabmodules/semicond/node48.html The spice Gummel-Poon model] online Course on modeling and simulation.
 
{{DEFAULTSORT:Gummel-Poon model}}
[[Category:Transistor modeling]]
 
[[de:Ersatzschaltungen des Bipolartransistors#Gummel-Poon-Modell]]

Revision as of 05:09, 28 April 2013

Schematic of Spice Gummel-Poon Model NPN

The Gummel–Poon model is a model of the bipolar junction transistor. It was first described in a paper published by Hermann Gummel and H. C. Poon at Bell Labs in 1970.[1]

The Gummel–Poon model and modern variants of it are widely used via incorporation in the popular circuit simulators known as SPICE. A significant effect included in the Gummel–Poon model is the direct current variation of the transistor and . When certain parameters are omitted, the Gummel–Poon model reduces to the simpler Ebers–Moll model.[1]

Model parameters

Spice Gummel–Poon model parameters

# Name Property
Modeled
Parameter Units Default
Value
1 IS current transport saturation current A 1.00E-016
2 BF current ideal max forward beta - 100
3 NF current forward current emission coefficient - 1
4 VAF current forward Early voltage V inf
5 IKF current corner for forward beta high current roll-off A inf
6 ISE current B-E leakage saturation current A 0
7 NE current B-E leakage emission coefficient - 1.5
8 BR current ideal max reverse beta - 1
9 NR current reverse current emission coefficient - 1
10 VAR current reverse Early voltage V inf
11 IKR current corner for reverse beta high current roll-off A inf
12 ISC current B-C leakage saturation current A 0
13 NC current B-C leakage emission coefficient - 2
14 RB resistance zero-bias base resistance ohms 0
15 IRB resistance current where base resistance falls half-way to its minimum A inf
16 RBM resistance minimum base resistance at high currents ohms RB
17 RE resistance emitter resistance ohms 0
18 RC resistance collector resistance ohms 0
19 CJE capacitance B-E zero-bias depletion capacitance F 0
20 VJE capacitance B-E built-in potential V 0.75
21 MJE capacitance B-E junction exponential factor - 0.33
22 TF capacitance ideal forward transit time s 0
23 XTF capacitance coefficient for bias dependence of TF - 0
24 VTF capacitance voltage describing VBC dependence of TF V inf
25 ITF capacitance high-current parameter for effect on TF A 0
26 PTF excess phase at freq=1.0/(TF*2PI) Hz deg 0
27 CJC capacitance B-C zero-bias depletion capacitance F 0
28 VJC capacitance B-C built-in potential V 0.75
29 MJC capacitance B-C junction exponential factor - 0.33
30 XCJC capacitance fraction of B-C depletion capacitance connected to internal base node - 1
31 TR capacitance ideal reverse transit time s 0
32 CJS capacitance zero-bias collector-substrate capacitance F 0
33 VJS capacitance substrate junction built-in potential V 0.75
34 MJS capacitance substrate junction exponential factor - 0
35 XTB forward and reverse beta temperature exponent - 0
36 EG energy gap for temperature effect of IS eV 1.1
37 XTI temperature exponent for effect of IS - 3
38 KF flicker-noise coefficient - 0
39 AF flicker-noise exponent - 1
40 FC coefficient for forward-bias depletion capacitance formula - 0.5
41 TNOM parameter measurement temperature deg.C 27

[2]

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

de:Ersatzschaltungen des Bipolartransistors#Gummel-Poon-Modell

  1. 1.0 1.1 H. K. Gummel and H. C. Poon, "An integral charge control model of bipolar transistors", Bell Syst. Tech. J., vol. 49, pp. 827–852, May–June 1970
  2. http://virtual.cvut.cz/dynlabmodules/ihtml/dynlabmodules/semicond/node48.html Summary of model with schematics and equations