Newton fractal: Difference between revisions
Jump to navigation
Jump to search
en>Addbot m Bot: Migrating 7 interwiki links, now provided by Wikidata on d:q1151001 (Report Errors) |
|||
Line 1: | Line 1: | ||
In the [[theory of computation]], the '''Sudan function''' is an example of a [[function (mathematics)|function]] that is [[recursion#Functional recursion|recursive]], but not [[primitive recursive function|primitive recursive]]. This is also true of the better-known [[Ackermann function]]. The Sudan function was the first function having this property to be published. | |||
It was discovered (and published<ref>Bull. Math. Soc. Roumaine Sci. 30 (1927), 11 - 30; Jbuch 53, 171</ref>) in 1927 by [[Gabriel Sudan]], a [[Romania]]n [[mathematician]] who was a student of [[David Hilbert]]. | |||
==Definition== | |||
:<math>F _0 (x, y) = x+y,\,</math> | |||
:<math>F _{n+1} (x, 0) = x, \ n \ge 0\,</math> | |||
:<math>F _{n+1} (x, y+1) = F _n (F_{n+1} (x, y), F_{n+1} (x, y) + y + 1), \ n\ge 0.\,</math> | |||
==Value Tables== | |||
{| class="wikitable" | |||
|+ Values of ''F''<sub>1</sub>(''x'', ''y'') | |||
|- | |||
! ''y''\''x'' | |||
! 0 | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
|- | |||
! 0 | |||
| 0 || 1 || 2 || 3 || 4 || 5 | |||
|- | |||
! 1 | |||
| 1 || 3 || 5 || 7 || 9 || 11 | |||
|- | |||
! 2 | |||
| 4 || 8 || 12 || 16 || 20 || 24 | |||
|- | |||
! 3 | |||
| 11 || 19 || 27 || 35 || 43 || 51 | |||
|- | |||
! 4 | |||
| 26 || 42 || 58 || 74 || 90 || 106 | |||
|- | |||
! 5 | |||
| 57 || 89 || 121 || 153 || 185 || 217 | |||
|- | |||
! 6 | |||
| 120 || 184 || 248 || 312 || 376 || 440 | |||
|} | |||
In general, ''F''<sub>1</sub>(''x'', ''y'') is equal to ''F''<sub>1</sub>(0, ''y'') + 2<sup>''y''</sup> ''x''. | |||
{| class="wikitable" | |||
|+ Values of ''F''<sub>2</sub>(''x'', ''y'') | |||
|- | |||
! ''y''\''x'' | |||
! 0 | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
|- | |||
! 0 | |||
| 0 || 1 || 2 || 3 || 4 || 5 | |||
|- | |||
! 1 | |||
| 1 || 8 || 27 || 74 || 185 || 440 | |||
|- | |||
! 2 | |||
| 19 || F<sub>1</sub>(8, 10) = 10228 || F<sub>1</sub>(27, 29) ≈ 1.55 {{e|10}} | |||
| F<sub>1</sub>(74, 76) ≈ 5.74 {{e|24}} | |||
| F<sub>1</sub>(185, 187) ≈ 3.67 {{e|58}} | |||
| F<sub>1</sub>(440, 442) ≈ 5.02 {{e|135}} | |||
|} | |||
==References== | |||
*Cristian Calude, [[Solomon Marcus]], Ionel Tevy, ''The first example of a recursive function which is not primitive recursive'', Historia Mathematica 6 (1979), no. 4, 380–384 {{doi|10.1016/0315-0860(79)90024-7}} | |||
<references/> | |||
{{DEFAULTSORT:Sudan Function}} | |||
[[Category:Arithmetic]] | |||
[[Category:Large integers]] | |||
[[Category:Special functions]] | |||
[[Category:Theory of computation]] | |||
{{mathlogic-stub}} |
Revision as of 15:03, 26 February 2013
In the theory of computation, the Sudan function is an example of a function that is recursive, but not primitive recursive. This is also true of the better-known Ackermann function. The Sudan function was the first function having this property to be published.
It was discovered (and published[1]) in 1927 by Gabriel Sudan, a Romanian mathematician who was a student of David Hilbert.
Definition
Value Tables
y\x | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 3 | 5 | 7 | 9 | 11 |
2 | 4 | 8 | 12 | 16 | 20 | 24 |
3 | 11 | 19 | 27 | 35 | 43 | 51 |
4 | 26 | 42 | 58 | 74 | 90 | 106 |
5 | 57 | 89 | 121 | 153 | 185 | 217 |
6 | 120 | 184 | 248 | 312 | 376 | 440 |
In general, F1(x, y) is equal to F1(0, y) + 2y x.
y\x | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 8 | 27 | 74 | 185 | 440 |
2 | 19 | F1(8, 10) = 10228 | F1(27, 29) ≈ 1.55 Template:E | F1(74, 76) ≈ 5.74 Template:E | F1(185, 187) ≈ 3.67 Template:E | F1(440, 442) ≈ 5.02 Template:E |
References
- Cristian Calude, Solomon Marcus, Ionel Tevy, The first example of a recursive function which is not primitive recursive, Historia Mathematica 6 (1979), no. 4, 380–384 21 year-old Glazier James Grippo from Edam, enjoys hang gliding, industrial property developers in singapore developers in singapore and camping. Finds the entire world an motivating place we have spent 4 months at Alejandro de Humboldt National Park.
- ↑ Bull. Math. Soc. Roumaine Sci. 30 (1927), 11 - 30; Jbuch 53, 171