Anomalous monism: Difference between revisions
en>GoingBatty m Typo fixing, typos fixed: etc) → etc.) using AWB (8046) |
→Davidson's classic argument for AM: Judgemental statement removed |
||
Line 1: | Line 1: | ||
In [[mathematics]] the '''Petersson inner product''' is an [[inner product]] defined on the space | |||
of entire [[modular form]]s. It was introduced by the German mathematician [[Hans Petersson]]. | |||
==Definition== | |||
Let <math>\mathbb{M}_k</math> be the space of entire modular forms of weight <math>k</math> and | |||
<math>\mathbb{S}_k</math> the space of [[cusp form]]s. | |||
The mapping <math>\langle \cdot , \cdot \rangle : \mathbb{M}_k \times \mathbb{S}_k \rightarrow | |||
\mathbb{C}</math>, | |||
:<math>\langle f , g \rangle := \int_\mathrm{F} f(\tau) \overline{g(\tau)} | |||
(\operatorname{Im}\tau)^k d\nu (\tau)</math> | |||
is called Petersson inner product, where | |||
:<math>\mathrm{F} = \left\{ \tau \in \mathrm{H} : \left| \operatorname{Re}\tau \right| \leq \frac{1}{2}, | |||
\left| \tau \right| \geq 1 \right\}</math> | |||
is a fundamental region of the [[modular group]] <math>\Gamma</math> and for <math>\tau = x + iy</math> | |||
:<math>d\nu(\tau) = y^{-2}dxdy</math> | |||
is the hyperbolic volume form. | |||
==Properties== | |||
The integral is [[absolutely convergent]] and the Petersson inner product is a [[definite bilinear form|positive definite]] [[Hermite form]]. | |||
For the [[Hecke operator]]s <math>T_n</math>, and for forms <math>f,g</math> of level <math>\Gamma_0</math>, we have: | |||
:<math>\langle T_n f , g \rangle = \langle f , T_n g \rangle</math> | |||
This can be used to show that the space of cusp forms of level <math>\Gamma_0</math> has an orthonormal basis consisting of | |||
simultaneous [[eigenfunction]]s for the Hecke operators and the [[Fourier coefficients]] of these | |||
forms are all real. | |||
==References== | |||
* T.M. Apostol, ''Modular Functions and Dirichlet Series in Number Theory'', Springer Verlag Berlin Heidelberg New York 1990, ISBN 3-540-97127-0 | |||
* M. Koecher, A. Krieg, ''Elliptische Funktionen und Modulformen'', Springer Verlag Berlin Heidelberg New York 1998, ISBN 3-540-63744-3 | |||
* S. Lang, ''Introduction to Modular Forms'', Springer Verlag Berlin Heidelberg New York 2001, ISBN 3-540-07833-9 | |||
[[Category:Modular forms]] |
Revision as of 23:11, 5 January 2014
In mathematics the Petersson inner product is an inner product defined on the space of entire modular forms. It was introduced by the German mathematician Hans Petersson.
Definition
Let be the space of entire modular forms of weight and the space of cusp forms.
is called Petersson inner product, where
is a fundamental region of the modular group and for
is the hyperbolic volume form.
Properties
The integral is absolutely convergent and the Petersson inner product is a positive definite Hermite form.
For the Hecke operators , and for forms of level , we have:
This can be used to show that the space of cusp forms of level has an orthonormal basis consisting of simultaneous eigenfunctions for the Hecke operators and the Fourier coefficients of these forms are all real.
References
- T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer Verlag Berlin Heidelberg New York 1990, ISBN 3-540-97127-0
- M. Koecher, A. Krieg, Elliptische Funktionen und Modulformen, Springer Verlag Berlin Heidelberg New York 1998, ISBN 3-540-63744-3
- S. Lang, Introduction to Modular Forms, Springer Verlag Berlin Heidelberg New York 2001, ISBN 3-540-07833-9