Progressively measurable process: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
Fixed by the edit of Dec. 26th 2011
 
en>Myasuda
m added macron
Line 1: Line 1:
Hi there. Allow me begin by introducing the writer, her title is Myrtle Cleary. Since she was eighteen she's been working as a receptionist but her promotion by no means arrives. Her family lives in Minnesota. The thing she adores most is physique building and now she is attempting to make money with it.<br><br>Also visit my homepage; [http://product-dev.younetco.com/xuannth/fox_ios1/index.php?do=/profile-1539/info/ home std test kit]
The '''Kirsch equations''' describe the [[Elasticity (physics)|elastic]] [[stress (physics)|stresses]] around the hole in an infinite plate in one directional tension. They are named after [[Ernst Gustav Kirsch]].
 
== Result ==
 
Loading an infinite plate with circular hole of radius ''a'' with stress ''σ'', the resulting stress field is:
 
<math>
\sigma_{rr} = \frac{\sigma}{2}\left(1 - \frac{a^2}{r^2}\right) + \frac{\sigma}{2}\left(1 + 3\frac{a^4}{r^4} - 4\frac{a^2}{r^2}\right)\cos 2\theta
</math>
 
<math>
\sigma_{\theta\theta} = \frac{\sigma}{2}\left(1 + \frac{a^2}{r^2}\right) - \frac{\sigma}{2}\left(1 + 3\frac{a^4}{r^4}\right)\cos 2\theta
</math>
 
<math>
\sigma_{r\theta} = - \frac{\sigma}{2}\left(1 - 3\frac{a^4}{r^4} + 2\frac{a^2}{r^2}\right)\sin 2\theta
</math>
 
==References==
 
*Kirsch, 1898, ''Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre.'' Zeitschrift des Vereines deutscher Ingenieure, '''42''', 797–807.
[[Category:Solid mechanics]]

Revision as of 15:22, 27 July 2013

The Kirsch equations describe the elastic stresses around the hole in an infinite plate in one directional tension. They are named after Ernst Gustav Kirsch.

Result

Loading an infinite plate with circular hole of radius a with stress σ, the resulting stress field is:

σrr=σ2(1a2r2)+σ2(1+3a4r44a2r2)cos2θ

σθθ=σ2(1+a2r2)σ2(1+3a4r4)cos2θ

σrθ=σ2(13a4r4+2a2r2)sin2θ

References

  • Kirsch, 1898, Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereines deutscher Ingenieure, 42, 797–807.