Conic optimization: Difference between revisions
en>Helpful Pixie Bot m ISBNs (Build KC) |
en>Addbot m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q2654791 |
||
Line 1: | Line 1: | ||
In [[probability theory]] and [[statistics]], [[covariance]] is a measure of how much two variables change together, and the '''covariance function''', or '''kernel''', describes the spatial covariance of a random variable process or field. For a [[random field]] or [[stochastic process]] ''Z''(''x'') on a domain ''D'', a covariance function ''C''(''x'', ''y'') gives the covariance of the values of the random field at the two locations ''x'' and ''y'': | |||
:<math>C(x,y):=\operatorname{cov}(Z(x),Z(y)).\,</math> | |||
The same ''C''(''x'', ''y'') is called the [[autocovariance]] function in two instances: in [[time series]] (to denote exactly the same concept except that ''x'' and ''y'' refer to locations in time rather than in space), and in multivariate random fields (to refer to the covariance of a variable with itself, as opposed to the [[cross covariance]] between two different variables at different locations, ''Cov''(''Z''(''x''<sub>1</sub>), ''Y''(''x''<sub>2</sub>))).<ref>{{cite book|title=Multivariate Geostatistics|first=Hans|last=Wackernagel|year=2003|publisher=Springer}}</ref> | |||
== Admissibility == | |||
For locations ''x''<sub>1</sub>, ''x''<sub>2</sub>, …, ''x''<sub>''N''</sub> ∈ ''D'' the variance of every linear combination | |||
:<math>X=\sum_{i=1}^N w_i Z(x_i)</math> | |||
can be computed as | |||
:<math>\operatorname{var}(X)=\sum_{i=1}^N \sum_{j=1}^N w_i C(x_i,x_j) w_j.</math> | |||
A function is a valid covariance function if and only if<ref name="Cressie">{{cite book|title=Statistics for Spatial Data|first=Noel A.C.|last=Cressie|year=1993|publisher=Wiley-Interscience}}</ref> this variance is non-negative for all possible choices of ''N'' and weights ''w''<sub>1</sub>, …, ''w''<sub>''N''</sub>. A function with this property is called [[Positive-definite kernel|positive definite]]. | |||
== Simplifications with stationarity == | |||
In case of a weakly [[Stationary process|stationary]] [[random field]], where | |||
:<math>C(x_i,x_j)=C(x_i+h,x_j+h)\,</math> | |||
for any lag ''h'', the covariance function can be represented by a one-parameter function | |||
:<math>C_s(h)=C(0,h)=C(x,x+h)\,</math> | |||
which is called a ''covariogram'' and also a ''covariance function''. Implicitly the ''C''(''x''<sub>''i''</sub>, ''x''<sub>''j''</sub>) can be computed from ''C''<sub>''s''</sub>(''h'') by: | |||
:<math>C(x,y)=C_s(y-x).\,</math> | |||
The [[Positive-definite function|positive definiteness]] of this single-argument version of the covariance function can be checked by [[Bochner's theorem]].<ref name="Cressie"/> | |||
== Parametric families of covariance functions == | |||
A simple stationary parametric covariance function is the "exponential covariance function" | |||
:<math> | |||
C(d) = \exp(-d/V) | |||
</math> | |||
where ''V'' is a scaling parameter, and ''d''=''d''(''x'',''y'') is the distance between two points. Sample paths of a [[Gaussian process]] with the exponential covariance function are not smooth. The "squared exponential covariance function" | |||
:<math> | |||
C(d) = \exp(-d^2/V) | |||
</math> | |||
is a stationary covariance function with smooth sample paths. | |||
The [[Matérn covariance function]] and [[rational quadratic covariance function]] are two parametric families of stationary covariance functions. The Matérn family includes the exponential and squared exponential covariance functions as special cases. | |||
== See also == | |||
* [[Variogram]] | |||
* [[Random field]] | |||
* [[Stochastic process]] | |||
* [[Kriging]] | |||
* [[Autocorrelation function]] | |||
* [[Correlation function]] | |||
== References == | |||
<references /> | |||
[[Category:Geostatistics]] | |||
[[Category:Spatial data analysis]] | |||
[[Category:Covariance and correlation]] |
Latest revision as of 19:46, 16 March 2013
In probability theory and statistics, covariance is a measure of how much two variables change together, and the covariance function, or kernel, describes the spatial covariance of a random variable process or field. For a random field or stochastic process Z(x) on a domain D, a covariance function C(x, y) gives the covariance of the values of the random field at the two locations x and y:
The same C(x, y) is called the autocovariance function in two instances: in time series (to denote exactly the same concept except that x and y refer to locations in time rather than in space), and in multivariate random fields (to refer to the covariance of a variable with itself, as opposed to the cross covariance between two different variables at different locations, Cov(Z(x1), Y(x2))).[1]
Admissibility
For locations x1, x2, …, xN ∈ D the variance of every linear combination
can be computed as
A function is a valid covariance function if and only if[2] this variance is non-negative for all possible choices of N and weights w1, …, wN. A function with this property is called positive definite.
Simplifications with stationarity
In case of a weakly stationary random field, where
for any lag h, the covariance function can be represented by a one-parameter function
which is called a covariogram and also a covariance function. Implicitly the C(xi, xj) can be computed from Cs(h) by:
The positive definiteness of this single-argument version of the covariance function can be checked by Bochner's theorem.[2]
Parametric families of covariance functions
A simple stationary parametric covariance function is the "exponential covariance function"
where V is a scaling parameter, and d=d(x,y) is the distance between two points. Sample paths of a Gaussian process with the exponential covariance function are not smooth. The "squared exponential covariance function"
is a stationary covariance function with smooth sample paths.
The Matérn covariance function and rational quadratic covariance function are two parametric families of stationary covariance functions. The Matérn family includes the exponential and squared exponential covariance functions as special cases.
See also
References
- ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - ↑ 2.0 2.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534