Tidewater glacier cycle: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Helpful Pixie Bot
m ISBNs (Build KE)
 
en>Amizra
Line 1: Line 1:
The writer's title is Christy. Mississippi is the only location I've been residing in but I will have to transfer in a yr or two. Distributing manufacturing is how he tends to make a living. I am truly fond of handwriting but I can't make it my occupation really.<br><br>Feel free to visit my homepage :: spirit messages ([http://brazil.amor-amore.com/irboothe reference])
In [[multivariate statistics]] and the [[cluster analysis|clustering]] of data, '''spectral clustering'''<ref> U. von Luxburg, "A tutorial on spectral clustering", Stat. Comp. Vol. 17, Issue 4 , 395-416 (2007), [http://papercore.org/vonLuxburg2007 Papercore summary http://papercore.org/vonLuxburg2007 ]  </ref> techniques make use of the [[Spectrum of a matrix|spectrum]] ([[eigenvalues]]) of the [[similarity matrix]] of the data to perform [[dimensionality reduction]] before clustering in fewer dimensions. The similarity matrix is provided as an input and consists of a quantitative assessment of the relative similarity of each pair of points in the dataset.[[File:K-means v.s. Spectral Clustering.png|thumb|A figure showing the relative strengths of K-means and spectral clustering.<ref>{{Citation
| Author = Martin, Charles
| url = http://charlesmartin14.wordpress.com/2012/10/09/spectral-clustering/
| date = October 9, 2012}}</ref>]]
 
== Algorithms ==
 
Given a set of data points A, the [[similarity matrix]] may be defined as a matrix <math>S</math>, where <math>S_{ij}</math> represents a measure of the similarity between points <math>i, j\in A</math>.
 
One spectral clustering technique is the '''[[Segmentation_based_object_categorization#Normalized_cuts|normalized cuts algorithm]]''' or ''Shi–Malik algorithm'' introduced by Jianbo Shi and Jitendra Malik,<ref>Jianbo Shi and Jitendra Malik, [http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf "Normalized Cuts and Image Segmentation"], IEEE Transactions on PAMI, Vol. 22, No. 8, Aug 2000.</ref> commonly used for [[segmentation (image processing)|image segmentation]]. It partitions points into two sets <math>(B_1,B_2)</math> based on the [[eigenvector]] <math>v</math> corresponding to the second-smallest [[eigenvalue]] of the normalized [[Laplacian matrix]]
 
:<math>L = I - D^{-1/2}SD^{-1/2} \, </math>
 
of <math>S</math>, where <math>D</math> is the diagonal matrix
 
:<math>D_{ii} = \sum_j S_{ij}.</math>
 
This partitioning may be done in various ways, such as by taking the median <math>m</math> of the components in <math>v</math>, and placing all points whose component in <math>v</math> is greater than <math>m</math> in <math>B_1</math>, and the rest in <math>B_2</math>. The algorithm can be used for hierarchical clustering by repeatedly partitioning the subsets in this fashion.
 
A related algorithm is the '''[[Meila–Shi algorithm]]''',<ref>Marina Meilă & Jianbo Shi, "[http://www.citeulike.org/user/mpotamias/article/498897 Learning Segmentation by Random Walks]", Neural Information Processing Systems 13 (NIPS 2000), 2001, pp. 873–879.</ref> which takes the [[eigenvector]]s corresponding to the ''k'' largest [[eigenvalue]]s of the matrix <math>P = D^{-1}S</math> for some ''k'', and then invokes another algorithm (e.g. [[k-means clustering]]) to cluster points by their respective ''k'' components in these eigenvectors.
 
An efficiency improvement of spectral clustering is the '''[[spectral neighborhood (SPAN) algorithm]]''',<ref>Liangcai Shu, Aiyou Chen, Ming Xiong, Weiyi Meng, "[http://www.cs.binghamton.edu/~meng/pub.d/ICDE11_conf_full_065_update.pdf Efficient Spectral Neighborhood Blocking for Entity Resolution]", IEEE International Conference on Data Engineering (ICDE), pp. 1067–1078, Hannover, Germany, April 2011.</ref> which performs spectral clustering without explicitly computing the similarity matrix, and therefore dramatically improves the scalability of the standard spectral clustering algorithm.
 
Spectral clustering is closely related to [[Nonlinear dimensionality reduction]], and dimension reduction techniques such as locally-linear embedding can be used to reduce errors from noise or outliers.<ref>{{Citation
| author = Arias-Castro, E. and Chen, G. and Lerman, G.
| title = Spectral clustering based on local linear approximations.
| journal = Electronic Journal of Statistics | volume = 5 | page = 1537-1587
| year = 2011}}</ref>
 
== Relationship with ''k''-means ==
The kernel ''k''-means problem is an extension of the ''k''-means problem where the input data points are mapped non-linearly into a higher-dimensional feature space via a kernel function <math>k(x_i,x_j) = \phi^T(x_i)\phi(x_j)</math>. The weighted kernel ''k''-means problem further extends this problem by defining a weight <math>w_r</math> for each cluster as the reciprocal of the number of elements in the cluster,
:<math>
\max_{C_i} \sum_{r=1}^k w_r \sum_{x_i,x_j \in C_r} k(x_i,x_j).
</math>
Suppose <math>F</math> is a matrix of the normalizing coefficients for each point for each cluster <math>F_{ij} = w_r</math> if <math>i,j \in C_r</math> and zero otherwise. Suppose <math>K</math> is the kernel matrix for all points. The weighted kernel ''k''-means problem with n points and k clusters is given as,
:<math>
\max_{F} \operatorname{ trace } \left(KF\right)
</math>
such that,
:<math>
F = G_{n\times k}G_{n\times k}^T
</math>
:<math>
G^TG = I
</math>
such that <math>\text{rank}(G) = k</math>. In addition, there are identity constrains on <math>F</math> given by,
:<math>
F\cdot \mathbb{I} = \mathbb{I}
</math>
where <math>\mathbb{I}</math> represents a vector of ones.
:<math>
F^T\mathbb{I} = \mathbb{I}
</math>
This problem can be recast as,
:<math>
\max_G \text{ trace }\left(G^TG\right).
</math>
This problem is equivalent to the spectral clustering problem when the identity constraints on <math>F</math> are relaxed. In particular, the weighted kernel ''k''-means problem can be reformulated as a spectral clustering (graph partitioning) problem and vice-versa. The output of the algorithms are eigenvectors which do not satisfy the identity requirements for indicator variables defined by <math>F</math>. Hence, post-processing of the eigenvectors is required for the equivalence between the problems.<ref name="dhillon2004kernel">{{cite conference
| author = Dhillon, I.S. and Guan, Y. and Kulis, B.
| year = 2004
| title = Kernel ''k''-means: spectral clustering and normalized cuts
| booktitle = Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining
| pages = 551–556
}}</ref>
Transforming the spectral clustering problem into a weighted kernel ''k''-means problem greatly reduces the computational burden.<ref>{{cite journal|last=Dhillon|first=Inderjit|coauthors=Yuqiang Guan, Brian Kulis|title=Weighted Graph Cuts without Eigenvectors:  A Multilevel Approach|journal=IEEE Transactions on Pattern Analysis and Machine Intelligence|date=November 2007|year=2007|volume=29|issue=11|pages=1–14}}</ref>
 
== See also ==
* [[Affinity propagation]]
* [[Kernel principal component analysis]]
* [[Cluster analysis]]
* [[Spectral graph theory]]
 
== References ==
<references />
 
[[Category:Data clustering algorithms]]
[[Category:Algebraic graph theory]]

Revision as of 02:23, 16 January 2013

In multivariate statistics and the clustering of data, spectral clustering[1] techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The similarity matrix is provided as an input and consists of a quantitative assessment of the relative similarity of each pair of points in the dataset.

File:K-means v.s. Spectral Clustering.png
A figure showing the relative strengths of K-means and spectral clustering.[2]

Algorithms

Given a set of data points A, the similarity matrix may be defined as a matrix S, where Sij represents a measure of the similarity between points i,jA.

One spectral clustering technique is the normalized cuts algorithm or Shi–Malik algorithm introduced by Jianbo Shi and Jitendra Malik,[3] commonly used for image segmentation. It partitions points into two sets (B1,B2) based on the eigenvector v corresponding to the second-smallest eigenvalue of the normalized Laplacian matrix

L=ID1/2SD1/2

of S, where D is the diagonal matrix

Dii=jSij.

This partitioning may be done in various ways, such as by taking the median m of the components in v, and placing all points whose component in v is greater than m in B1, and the rest in B2. The algorithm can be used for hierarchical clustering by repeatedly partitioning the subsets in this fashion.

A related algorithm is the Meila–Shi algorithm,[4] which takes the eigenvectors corresponding to the k largest eigenvalues of the matrix P=D1S for some k, and then invokes another algorithm (e.g. k-means clustering) to cluster points by their respective k components in these eigenvectors.

An efficiency improvement of spectral clustering is the spectral neighborhood (SPAN) algorithm,[5] which performs spectral clustering without explicitly computing the similarity matrix, and therefore dramatically improves the scalability of the standard spectral clustering algorithm.

Spectral clustering is closely related to Nonlinear dimensionality reduction, and dimension reduction techniques such as locally-linear embedding can be used to reduce errors from noise or outliers.[6]

Relationship with k-means

The kernel k-means problem is an extension of the k-means problem where the input data points are mapped non-linearly into a higher-dimensional feature space via a kernel function k(xi,xj)=ϕT(xi)ϕ(xj). The weighted kernel k-means problem further extends this problem by defining a weight wr for each cluster as the reciprocal of the number of elements in the cluster,

maxCir=1kwrxi,xjCrk(xi,xj).

Suppose F is a matrix of the normalizing coefficients for each point for each cluster Fij=wr if i,jCr and zero otherwise. Suppose K is the kernel matrix for all points. The weighted kernel k-means problem with n points and k clusters is given as,

maxFtrace(KF)

such that,

F=Gn×kGn×kT
GTG=I

such that rank(G)=k. In addition, there are identity constrains on F given by,

F𝕀=𝕀

where 𝕀 represents a vector of ones.

FT𝕀=𝕀

This problem can be recast as,

maxG trace (GTG).

This problem is equivalent to the spectral clustering problem when the identity constraints on F are relaxed. In particular, the weighted kernel k-means problem can be reformulated as a spectral clustering (graph partitioning) problem and vice-versa. The output of the algorithms are eigenvectors which do not satisfy the identity requirements for indicator variables defined by F. Hence, post-processing of the eigenvectors is required for the equivalence between the problems.[7] Transforming the spectral clustering problem into a weighted kernel k-means problem greatly reduces the computational burden.[8]

See also

References

  1. U. von Luxburg, "A tutorial on spectral clustering", Stat. Comp. Vol. 17, Issue 4 , 395-416 (2007), Papercore summary http://papercore.org/vonLuxburg2007
  2. Many property agents need to declare for the PIC grant in Singapore. However, not all of them know find out how to do the correct process for getting this PIC scheme from the IRAS. There are a number of steps that you need to do before your software can be approved.

    Naturally, you will have to pay a safety deposit and that is usually one month rent for annually of the settlement. That is the place your good religion deposit will likely be taken into account and will kind part or all of your security deposit. Anticipate to have a proportionate amount deducted out of your deposit if something is discovered to be damaged if you move out. It's best to you'll want to test the inventory drawn up by the owner, which can detail all objects in the property and their condition. If you happen to fail to notice any harm not already mentioned within the inventory before transferring in, you danger having to pay for it yourself.

    In case you are in search of an actual estate or Singapore property agent on-line, you simply should belief your intuition. It's because you do not know which agent is nice and which agent will not be. Carry out research on several brokers by looking out the internet. As soon as if you end up positive that a selected agent is dependable and reliable, you can choose to utilize his partnerise in finding you a home in Singapore. Most of the time, a property agent is taken into account to be good if he or she locations the contact data on his website. This may mean that the agent does not mind you calling them and asking them any questions relating to new properties in singapore in Singapore. After chatting with them you too can see them in their office after taking an appointment.

    Have handed an trade examination i.e Widespread Examination for House Brokers (CEHA) or Actual Property Agency (REA) examination, or equal; Exclusive brokers are extra keen to share listing information thus making certain the widest doable coverage inside the real estate community via Multiple Listings and Networking. Accepting a severe provide is simpler since your agent is totally conscious of all advertising activity related with your property. This reduces your having to check with a number of agents for some other offers. Price control is easily achieved. Paint work in good restore-discuss with your Property Marketing consultant if main works are still to be done. Softening in residential property prices proceed, led by 2.8 per cent decline within the index for Remainder of Central Region

    Once you place down the one per cent choice price to carry down a non-public property, it's important to accept its situation as it is whenever you move in – faulty air-con, choked rest room and all. Get round this by asking your agent to incorporate a ultimate inspection clause within the possibility-to-buy letter. HDB flat patrons routinely take pleasure in this security net. "There's a ultimate inspection of the property two days before the completion of all HDB transactions. If the air-con is defective, you can request the seller to repair it," says Kelvin.

    15.6.1 As the agent is an intermediary, generally, as soon as the principal and third party are introduced right into a contractual relationship, the agent drops out of the image, subject to any problems with remuneration or indemnification that he could have against the principal, and extra exceptionally, against the third occasion. Generally, agents are entitled to be indemnified for all liabilities reasonably incurred within the execution of the brokers´ authority.

    To achieve the very best outcomes, you must be always updated on market situations, including past transaction information and reliable projections. You could review and examine comparable homes that are currently available in the market, especially these which have been sold or not bought up to now six months. You'll be able to see a pattern of such report by clicking here It's essential to defend yourself in opposition to unscrupulous patrons. They are often very skilled in using highly unethical and manipulative techniques to try and lure you into a lure. That you must also protect your self, your loved ones, and personal belongings as you'll be serving many strangers in your home. Sign a listing itemizing of all of the objects provided by the proprietor, together with their situation. HSR Prime Recruiter 2010
  3. Jianbo Shi and Jitendra Malik, "Normalized Cuts and Image Segmentation", IEEE Transactions on PAMI, Vol. 22, No. 8, Aug 2000.
  4. Marina Meilă & Jianbo Shi, "Learning Segmentation by Random Walks", Neural Information Processing Systems 13 (NIPS 2000), 2001, pp. 873–879.
  5. Liangcai Shu, Aiyou Chen, Ming Xiong, Weiyi Meng, "Efficient Spectral Neighborhood Blocking for Entity Resolution", IEEE International Conference on Data Engineering (ICDE), pp. 1067–1078, Hannover, Germany, April 2011.
  6. Many property agents need to declare for the PIC grant in Singapore. However, not all of them know find out how to do the correct process for getting this PIC scheme from the IRAS. There are a number of steps that you need to do before your software can be approved.

    Naturally, you will have to pay a safety deposit and that is usually one month rent for annually of the settlement. That is the place your good religion deposit will likely be taken into account and will kind part or all of your security deposit. Anticipate to have a proportionate amount deducted out of your deposit if something is discovered to be damaged if you move out. It's best to you'll want to test the inventory drawn up by the owner, which can detail all objects in the property and their condition. If you happen to fail to notice any harm not already mentioned within the inventory before transferring in, you danger having to pay for it yourself.

    In case you are in search of an actual estate or Singapore property agent on-line, you simply should belief your intuition. It's because you do not know which agent is nice and which agent will not be. Carry out research on several brokers by looking out the internet. As soon as if you end up positive that a selected agent is dependable and reliable, you can choose to utilize his partnerise in finding you a home in Singapore. Most of the time, a property agent is taken into account to be good if he or she locations the contact data on his website. This may mean that the agent does not mind you calling them and asking them any questions relating to new properties in singapore in Singapore. After chatting with them you too can see them in their office after taking an appointment.

    Have handed an trade examination i.e Widespread Examination for House Brokers (CEHA) or Actual Property Agency (REA) examination, or equal; Exclusive brokers are extra keen to share listing information thus making certain the widest doable coverage inside the real estate community via Multiple Listings and Networking. Accepting a severe provide is simpler since your agent is totally conscious of all advertising activity related with your property. This reduces your having to check with a number of agents for some other offers. Price control is easily achieved. Paint work in good restore-discuss with your Property Marketing consultant if main works are still to be done. Softening in residential property prices proceed, led by 2.8 per cent decline within the index for Remainder of Central Region

    Once you place down the one per cent choice price to carry down a non-public property, it's important to accept its situation as it is whenever you move in – faulty air-con, choked rest room and all. Get round this by asking your agent to incorporate a ultimate inspection clause within the possibility-to-buy letter. HDB flat patrons routinely take pleasure in this security net. "There's a ultimate inspection of the property two days before the completion of all HDB transactions. If the air-con is defective, you can request the seller to repair it," says Kelvin.

    15.6.1 As the agent is an intermediary, generally, as soon as the principal and third party are introduced right into a contractual relationship, the agent drops out of the image, subject to any problems with remuneration or indemnification that he could have against the principal, and extra exceptionally, against the third occasion. Generally, agents are entitled to be indemnified for all liabilities reasonably incurred within the execution of the brokers´ authority.

    To achieve the very best outcomes, you must be always updated on market situations, including past transaction information and reliable projections. You could review and examine comparable homes that are currently available in the market, especially these which have been sold or not bought up to now six months. You'll be able to see a pattern of such report by clicking here It's essential to defend yourself in opposition to unscrupulous patrons. They are often very skilled in using highly unethical and manipulative techniques to try and lure you into a lure. That you must also protect your self, your loved ones, and personal belongings as you'll be serving many strangers in your home. Sign a listing itemizing of all of the objects provided by the proprietor, together with their situation. HSR Prime Recruiter 2010
  7. 55 years old Systems Administrator Antony from Clarence Creek, really loves learning, PC Software and aerobics. Likes to travel and was inspired after making a journey to Historic Ensemble of the Potala Palace.

    You can view that web-site... ccleaner free download
  8. One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting

    In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang

    Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules

    Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.

    A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running

    The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more

    There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang