|
|
Line 1: |
Line 1: |
| {{Probability distribution |
| | The writer's name is Andera and she believes it sounds quite great. Her family lives in Alaska but her husband desires them to transfer. My day job is an invoicing online [http://findyourflirt.net/index.php?m=member_profile&p=profile&id=117823 cheap psychic readings] readings; [http://www.weddingwall.com.au/groups/easy-advice-for-successful-personal-development-today/ www.weddingwall.com.au], officer but I've already applied for another one. It's not a typical factor but what she likes performing is to perform domino but she doesn't have the time lately.<br><br>Also visit my web-site ... certified psychics ([http://www.aseandate.com/index.php?m=member_profile&p=profile&id=13352970 click the next document]) |
| name =Inverse Gaussian|
| |
| type =density|
| |
| pdf_image =[[Image:PDF invGauss.svg|325px]]||
| |
| cdf_image =|
| |
| parameters =<math>\lambda > 0 </math> <br/><math> \mu > 0</math>|
| |
| support =<math> x \in (0,\infty)</math>|
| |
| pdf =<math> \left[\frac{\lambda}{2 \pi x^3}\right]^{1/2} \exp{\frac{-\lambda (x-\mu)^2}{2 \mu^2 x}}</math>|
| |
| cdf =<math> \Phi\left(\sqrt{\frac{\lambda}{x}} \left(\frac{x}{\mu}-1 \right)\right) </math> <math>+\exp\left(\frac{2 \lambda}{\mu}\right) \Phi\left(-\sqrt{\frac{\lambda}{x}}\left(\frac{x}{\mu}+1 \right)\right) </math>
| |
| where <math> \Phi \left(\right)</math> is the [[normal distribution|standard normal (standard Gaussian) distribution]] c.d.f. |
| |
| mean =<math> \mu </math>|
| |
| median =|
| |
| mode =<math>\mu\left[\left(1+\frac{9 \mu^2}{4 \lambda^2}\right)^\frac{1}{2}-\frac{3 \mu}{2 \lambda}\right]</math>|
| |
| variance =<math>\frac{\mu^3}{\lambda} </math>|
| |
| skewness =<math>3\left(\frac{\mu}{\lambda}\right)^{1/2} </math>|
| |
| kurtosis =<math>\frac{15 \mu}{\lambda} </math>|
| |
| entropy =|
| |
| mgf =<math>e^{\left(\frac{\lambda}{\mu}\right)\left[1-\sqrt{1-\frac{2\mu^2t}{\lambda}}\right]}</math>|
| |
| char =<math>e^{\left(\frac{\lambda}{\mu}\right)\left[1-\sqrt{1-\frac{2\mu^2\mathrm{i}t}{\lambda}}\right]}</math>|
| |
| }}
| |
| | |
| In [[probability theory]], the '''inverse Gaussian distribution''' (also known as the '''Wald distribution''') is a two-parameter family of [[continuous probability distribution]]s with [[support (mathematics)|support]] on (0,∞).
| |
| | |
| Its [[probability density function]] is given by
| |
| | |
| : <math> f(x;\mu,\lambda)
| |
| = \left[\frac{\lambda}{2 \pi x^3}\right]^{1/2} \exp{\frac{-\lambda (x-\mu)^2}{2 \mu^2 x}}</math>
| |
| | |
| for ''x'' > 0, where <math>\mu > 0</math> is the mean and <math>\lambda > 0</math> is the shape parameter.
| |
| | |
| As λ tends to infinity, the inverse Gaussian distribution becomes more like a [[normal distribution|normal (Gaussian) distribution]]. The inverse Gaussian distribution has several properties analogous to a Gaussian distribution. The name can be misleading: it is an "inverse" only in that, while the Gaussian describes a [[Wiener process|Brownian Motion's]] level at a fixed time, the inverse Gaussian describes the distribution of the time a Brownian Motion with positive drift takes to reach a fixed positive level.
| |
| | |
| Its cumulant generating function (logarithm of the characteristic function) is the inverse of the cumulant generating function of a Gaussian random variable.
| |
| | |
| To indicate that a [[random variable]] ''X'' is inverse Gaussian-distributed with mean μ and shape parameter λ we write
| |
| | |
| :<math>X \sim IG(\mu, \lambda).\,\!</math> | |
| | |
| ==Properties==
| |
| | |
| ===Summation===
| |
| | |
| If ''X''<sub>''i''</sub> has a IG(''μ''<sub>0</sub>''w''<sub>''i''</sub>, ''λ''<sub>0</sub>''w''<sub>''i''</sub><sup>2</sup>) distribution for ''i'' = 1, 2, ..., ''n''
| |
| and all ''X''<sub>''i''</sub> are [[statistical independence|independent]], then
| |
| | |
| :<math> | |
| S=\sum_{i=1}^n X_i
| |
| \sim
| |
| IG \left( \mu_0 \sum w_i, \lambda_0 \left(\sum w_i \right)^2 \right). </math>
| |
| | |
| Note that
| |
| | |
| :<math>
| |
| \frac{\textrm{Var}(X_i)}{\textrm{E}(X_i)}= \frac{\mu_0^2 w_i^2 }{\lambda_0 w_i^2 }=\frac{\mu_0^2}{\lambda_0}
| |
| </math>
| |
| | |
| is constant for all ''i''. This is a [[Necessary and sufficient conditions|necessary condition]] for the summation. Otherwise ''S'' would not be inverse Gaussian.
| |
| | |
| ===Scaling===
| |
| For any ''t'' > 0 it holds that
| |
| :<math>
| |
| X \sim IG(\mu,\lambda) \,\,\,\,\,\, \Rightarrow \,\,\,\,\,\, tX \sim IG(t\mu,t\lambda).
| |
| </math>
| |
| | |
| ===Exponential family===
| |
| | |
| The inverse Gaussian distribution is a two-parameter [[exponential family]] with [[natural parameters]] -λ/(2μ²) and -λ/2, and [[natural statistics]] ''X'' and ''1/X''.
| |
| | |
| ==Relationship with Brownian motion==
| |
| The [[stochastic process]] ''X''<sub>''t''</sub> given by
| |
| | |
| :<math>X_0 = 0\quad</math>
| |
| :<math>X_t = \nu t + \sigma W_t\quad\quad\quad\quad</math>
| |
| | |
| (where ''W''<sub>''t''</sub> is a standard [[Wiener process|Brownian motion]] and <math>\nu > 0</math>)
| |
| is a Brownian motion with drift ''ν''.
| |
| | |
| Then, the [[first passage time]] for a fixed level <math>\alpha > 0</math> by ''X''<sub>''t''</sub> is distributed according to an inverse-gaussian:
| |
| | |
| :<math>T_\alpha = \inf\{ 0 < t \mid X_t=\alpha \} \sim IG(\tfrac\alpha\nu, \tfrac {\alpha^2} {\sigma^2}).\,</math>
| |
| | |
| ===When drift is zero===
| |
| A common special case of the above arises when the Brownian motion has no drift. In that case, parameter
| |
| μ tends to infinity, and the first passage time for fixed level α has probability density function
| |
| | |
| : <math> f \left( x; 0, \left(\frac{\alpha}{\sigma}\right)^2 \right)
| |
| = \frac{\alpha}{\sigma \sqrt{2 \pi x^3}} \exp\left(-\frac{\alpha^2 }{2 x \sigma^2}\right).</math>
| |
| | |
| This is a [[Lévy distribution]] with parameters <math>c=\frac{\alpha^2}{\sigma^2}</math> and <math>\mu=0</math>.
| |
| | |
| ==Maximum likelihood==
| |
| The model where
| |
| | |
| :<math>
| |
| X_i \sim IG(\mu,\lambda w_i), \,\,\,\,\,\, i=1,2,\ldots,n
| |
| </math>
| |
| | |
| with all ''w''<sub>''i''</sub> known, (''μ'', ''λ'') unknown and all ''X''<sub>''i''</sub> [[statistical independence|independent]] has the following likelihood function
| |
| | |
| :<math>
| |
| L(\mu, \lambda)=
| |
| \left( \frac{\lambda}{2\pi} \right)^\frac n 2
| |
| \left( \prod^n_{i=1} \frac{w_i}{X_i^3} \right)^{\frac{1}{2}}
| |
| \exp\left(\frac{\lambda}{\mu}\sum_{i=1}^n w_i -\frac{\lambda}{2\mu^2}\sum_{i=1}^n w_i X_i - \frac\lambda 2 \sum_{i=1}^n w_i \frac1{X_i} \right).
| |
| </math>
| |
| | |
| Solving the likelihood equation yields the following maximum likelihood estimates
| |
| | |
| :<math>
| |
| \hat{\mu}= \frac{\sum_{i=1}^n w_i X_i}{\sum_{i=1}^n w_i}, \,\,\,\,\,\,\,\, \frac{1}{\hat{\lambda}}= \frac{1}{n} \sum_{i=1}^n w_i \left( \frac{1}{X_i}-\frac{1}{\hat{\mu}} \right).
| |
| </math>
| |
| | |
| <math>\hat{\mu}</math> and <math>\hat{\lambda}</math> are independent and
| |
| | |
| :<math>
| |
| \hat{\mu} \sim IG \left(\mu, \lambda \sum_{i=1}^n w_i \right) \,\,\,\,\,\,\,\, \frac{n}{\hat{\lambda}} \sim \frac{1}{\lambda} \chi^2_{n-1}.
| |
| </math>
| |
| | |
| ==Generating random variates from an inverse-Gaussian distribution==
| |
| The following algorithm may be used.<ref>''Generating Random Variates Using Transformations with Multiple Roots'' by John R. Michael, William R. Schucany and Roy W. Haas, ''[[American Statistician]]'', Vol. 30, No. 2 (May, 1976), pp. 88–90</ref>
| |
| | |
| Generate a random variate from a normal distribution with a mean of 0 and 1 standard deviation
| |
| | |
| :<math>
| |
| \displaystyle \nu = N(0,1).
| |
| </math>
| |
| | |
| Square the value
| |
| | |
| :<math>
| |
| \displaystyle y = \nu^2
| |
| </math>
| |
| | |
| and use this relation
| |
| | |
| :<math>
| |
| x = \mu + \frac{\mu^2 y}{2\lambda} - \frac{\mu}{2\lambda}\sqrt{4\mu \lambda y + \mu^2 y^2}.
| |
| </math>
| |
| | |
| Generate another random variate, this time sampled from a uniform distribution between 0 and 1
| |
| | |
| :<math>
| |
| \displaystyle z = U(0,1).
| |
| </math>
| |
| | |
| If
| |
| | |
| :<math>
| |
| z \le \frac{\mu}{\mu+x}
| |
| </math>
| |
| | |
| then return
| |
| | |
| :<math>
| |
| \displaystyle
| |
| x
| |
| </math>
| |
| else return
| |
| :<math>
| |
| \frac{\mu^2}{x}.
| |
| </math>
| |
| | |
| Sample code in [[Java (programming language)|Java]]:
| |
| | |
| <source lang="java">
| |
| public double inverseGaussian(double mu, double lambda) {
| |
| Random rand = new Random();
| |
| double v = rand.nextGaussian(); // sample from a normal distribution with a mean of 0 and 1 standard deviation
| |
| double y = v*v;
| |
| double x = mu + (mu*mu*y)/(2*lambda) - (mu/(2*lambda)) * Math.sqrt(4*mu*lambda*y + mu*mu*y*y);
| |
| double test = rand.nextDouble(); // sample from a uniform distribution between 0 and 1
| |
| if (test <= (mu)/(mu + x))
| |
| return x;
| |
| else
| |
| return (mu*mu)/x;
| |
| }
| |
| </source>
| |
| | |
| [[File:Wald Distribution matplotlib.jpg|thumb|right|Wald Distribution using Python with aid of matplotlib and NumPy]]
| |
| And to plot Wald distribution in [[Python (programming language)|Python]] using [[matplotlib]] and [[Numpy|NumPy]]:
| |
| <source lang="python">
| |
| import matplotlib.pyplot as plt
| |
| import numpy as np
| |
| | |
| h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True)
| |
| | |
| plt.show()
| |
| </source>
| |
| | |
| ==Related distributions==
| |
| * If <math> X \sim \textrm{IG}(\mu,\lambda)\,</math> then <math> k X \sim \textrm{IG}(k \mu,k \lambda)\,</math>
| |
| * If <math> X_i \sim \textrm{IG}(\mu,\lambda)\,</math> then <math> \sum_{i=1}^{n} X_i \sim \textrm{IG}(n \mu,n^2 \lambda)\,</math>
| |
| * If <math> X_i \sim \textrm{IG}(\mu,\lambda)\,</math> for <math>i=1,\ldots,n\,</math> then <math> \bar{X} \sim \textrm{IG}(\mu,n \lambda)\,</math>
| |
| * If <math> X_i \sim \textrm{IG}(\mu_i,2 \mu^2_i)\,</math> then <math> \sum_{i=1}^{n} X_i \sim \textrm{IG}\left(\sum_{i=1}^n \mu_i, 2 {\left( \sum_{i=1}^{n} \mu_i \right)}^2\right)\,</math>
| |
| | |
| The convolution of a Wald distribution and an exponential (the ex-Wald distribution) is used as a model for response times in psychology.<ref name=Schwarz2001>Schwarz W (2001) The ex-Wald distribution as a descriptive model of response times. Behav Res Methods Instrum Comput 33(4):457-469</ref>
| |
| | |
| ==History==
| |
| | |
| This distribution appears to have been first derived by Schrödinger in 1915 as the time to first passage of a Brownian motion.<ref name=Schrodinger1915>Schrodinger E (1915) Zur Theorie der Fall—und Steigversuche an Teilchenn mit Brownscher Bewegung. Physikalische Zeitschrift 16, 289-295</ref> The name inverse Gaussian was proposed by Tweedie in 1945.<ref name=Folks1978>Folks JL & Chhikara RS (1978) The inverse Gaussian and its statistical application - a review. J Roy Stat Soc 40(3) 263-289</ref> Wald re-derived this distribution in 1947 as the limiting form of a sample in a sequential probability ratio test. Tweedie investigated this distribution in 1957 and established some of its statistical properties.
| |
| | |
| ==Software==
| |
| | |
| The R programming language has software for this distribution. [http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/invGauss.html]
| |
| | |
| == See also == | |
| *[[Generalized inverse Gaussian distribution]]
| |
| * [[Tweedie distributions]]—The inverse Gaussian distribution is a member of the family of Tweedie [[exponential dispersion model]]s
| |
| *[[Stopping time]]
| |
| | |
| ==Notes==
| |
| {{Reflist}}
| |
| | |
| ==References==
| |
| * ''The inverse gaussian distribution: theory, methodology, and applications'' by Raj Chhikara and Leroy Folks, 1989 ISBN 0-8247-7997-5
| |
| * ''System Reliability Theory'' by Marvin Rausand and [[Arnljot Høyland]]
| |
| * ''The Inverse Gaussian Distribution'' by Dr. V. Seshadri, Oxford Univ Press, 1993
| |
| | |
| ==External links==
| |
| * [http://mathworld.wolfram.com/InverseGaussianDistribution.html Inverse Gaussian Distribution] in Wolfram website.
| |
| | |
| {{ProbDistributions|continuous-semi-infinite}}
| |
| | |
| {{DEFAULTSORT:Inverse Gaussian Distribution}}
| |
| [[Category:Continuous distributions]]
| |
| [[Category:Exponential family distributions]]
| |
| [[Category:Probability distributions]]
| |