Projection pursuit regression: Difference between revisions
en>Magioladitis m clean up using AWB (8279) |
en>DrBizarro |
||
Line 1: | Line 1: | ||
In mathematics, the '''generalized polygamma function''' or '''balanced negapolygamma function''' is a function introduced by Olivier Espinosa Aldunate and [[Victor Moll|Victor H. Moll]].<ref>[http://www.math.tulane.edu/~vhm/papers_html/genoff.pdf Olivier Espinosa Victor H. Moll. A Generalized polygamma function. Integral Transforms and Special Functions Vol. 15, No. 2, April 2004, pp. 101–115]</ref> | |||
It generalizes the [[polygamma function]] to negative and fractional order, but remains equal to it for integer positive orders. | |||
==Definition== | |||
The generalized polygamma function is defined as follows: | |||
: <math>\psi(z,q)=\frac{\zeta'(z+1,q)+(\psi(-z)+\gamma ) \zeta (z+1,q)}{\Gamma (-z)} \, </math> | |||
or alternatively, | |||
: <math>\psi(z,q)=e^{- \gamma z}\frac{\partial}{\partial z}\left(e^{\gamma z}\frac{\zeta(z+1,q)}{\Gamma(-z)}\right),</math> | |||
where <math>\psi(z)</math> is the [[Polygamma function]] and <math>\zeta(z,q),</math> is the [[Hurwitz zeta function]]. | |||
The function is balanced, in that it satisfies the conditions <math>f(0)=f(1)</math> and <math>\int_0^1 f(x) dx = 0</math>. | |||
==Relations== | |||
Several special functions can be expressed in terms of generalized polygamma function. | |||
* <math>\psi(x)=\psi(0,x)\,</math> | |||
* <math>\psi^{(n)}(x)=\psi(n,x)\,\,\,(n\in\mathbb{N})</math> | |||
* <math>\Gamma(x)=e^{\psi(-1,x)+\frac 12 \ln(2\pi)}\,\,\,</math> | |||
* <math>\zeta(z,q)=\frac{\Gamma (1-z) \left(2^{-z} \left(\psi \left(z-1,\frac{q}{2}+\frac{1}{2}\right)+\psi \left(z-1,\frac{q}{2}\right)\right)-\psi(z-1,q)\right)}{\ln(2)}</math> | |||
* <math>\zeta'(-1,x)=\psi(-2, x) + \frac{x^2}2 - \frac{x}2 + \frac1{12}</math> | |||
* <math>B_n(q) = -\frac{\Gamma (n+1) \left(2^{n-1} \left(\psi\left(-n,\frac{q}{2}+\frac{1}{2}\right)+\psi\left(-n,\frac{q}{2}\right)\right)-\psi(-n,q)\right)}{\ln (2)}</math> | |||
where <math>B_n(q)</math> are [[Bernoulli polynomials]] | |||
* <math>K(z)=A e^{\psi(-2,z)+\frac{z^2-z}{2}}</math> | |||
where ''K''(''z'') is [[K-function]] and A is the [[Glaisher constant]]. | |||
==Special values== | |||
The balanced polygamma function can be expressed in a closed form at certain points: | |||
* <math>\psi^{(-2)}\left(\frac14\right)=\frac18\ln(2\pi)+\frac98\ln A+\frac{G}{4\pi},</math> where <math>A</math> is the [[Glaisher constant]] and <math>G</math> is the [[Catalan constant]]. | |||
* <math>\psi^{(-2)}\left(\frac12\right)=\frac14\ln\pi+\frac32\ln A+\frac5{24}\ln2</math> | |||
* <math>\psi^{(-2)}(1)=\frac12\ln(2\pi)</math> | |||
* <math>\psi^{(-2)}(2)=\ln(2\pi)-1</math> | |||
* <math>\psi^{(-3)}\left(\frac12\right)=\frac1{16}\ln(2\pi)+\frac12\ln A+\frac{7\,\zeta(3)}{32\,\pi^2}</math> | |||
* <math>\psi^{(-3)}(1)=\frac14\ln(2\pi)+\ln A</math> | |||
* <math>\psi^{(-3)}(2)=\ln(2\pi)+2\ln A-\frac34</math> | |||
==References== | |||
<references /> | |||
{{DEFAULTSORT:Generalized Polygamma Function}} | |||
[[Category:Gamma and related functions]] |
Revision as of 16:07, 15 January 2014
In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa Aldunate and Victor H. Moll.[1]
It generalizes the polygamma function to negative and fractional order, but remains equal to it for integer positive orders.
Definition
The generalized polygamma function is defined as follows:
or alternatively,
where is the Polygamma function and is the Hurwitz zeta function.
The function is balanced, in that it satisfies the conditions and .
Relations
Several special functions can be expressed in terms of generalized polygamma function.
where are Bernoulli polynomials
where K(z) is K-function and A is the Glaisher constant.
Special values
The balanced polygamma function can be expressed in a closed form at certain points:
- where is the Glaisher constant and is the Catalan constant.