Parity game: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Yoghurt
m Make it clear that both players share the same token
No edit summary
Line 1: Line 1:
La idea de beruby es que los [http://Www.Comoganhardinheiro101.com/como-ganhar-dinheiro-pela-internet/ utilices y] que generes ingresos con el tiempo (no pueden regalar dinero sin más). Poco a poco tu saldo irá aumentando y podrás generar un saldo atractivo a lo largo de los meses (sobre todo si vas invitando a otros usuarios). Dicho esto, si [http://www.comoganhardinheiro101.com/?p=16 ganhe dinheiro na internet] vives  [http://comoganhardinheironainternet.comoganhardinheiro101.com como ficar rico] en España, y al registrarte aceptas los co-registros que ofertan, empiezas con 2,00 Es decir, un usuario nuevo puede solicitar el cobro a los 5 minutos de ingresar en beruby y recibir en su cuenta PayPal 1,01 nada más por empezar (y prácticamente sin hacer nada).


In [[mathematics]], an '''invariant measure''' is a [[measure (mathematics)|measure]] that is preserved by some [[function (mathematics)|function]]. [[Ergodic theory]] is the study of invariant measures in [[dynamical systems]]. The [[Krylov–Bogolyubov theorem]] proves the existence of invariant measures under certain conditions on the function and space under consideration.
For more information regarding [http://comoganhardinheiropelainternet.comoganhardinheiro101.com/ como ficar rico] look  [http://ganhandodinheironainternet.comoganhardinheiro101.com ganhe dinheiro] at http://comoganhardinheiropelainternet.comoganhardinheiro101.com/
 
==Definition==
Let (''X'', Σ) be a [[measurable space]] and let ''f'' be a [[measurable function]] from ''X'' to itself. A measure ''μ'' on (''X'', Σ) is said to be '''invariant under''' ''f'' if, for every measurable set ''A'' in Σ,
 
:<math>\mu \left( f^{-1} (A) \right) = \mu (A).</math>
 
In terms of the [[pushforward measure|push forward]], this states that ''f''<sub>∗</sub>(''μ'')&nbsp;=&nbsp;''μ''.
 
The collection of measures (usually [[probability measure]]s) on ''X'' that are invariant under ''f'' is sometimes denoted ''M''<sub>''f''</sub>(''X''). The collection of [[ergodic (adjective)|ergodic measures]], ''E''<sub>''f''</sub>(''X''), is a subset of ''M''<sub>''f''</sub>(''X''). Moreover, any [[convex combination]] of two invariant measures is also invariant, so ''M''<sub>''f''</sub>(''X'') is a [[convex set]]; ''E''<sub>''f''</sub>(''X'') consists precisely of the extreme points of ''M''<sub>''f''</sub>(''X'').
 
In the case of a [[Dynamical system (definition)|dynamical system]] (''X'',&nbsp;''T'',&nbsp;''φ''), where (''X'',&nbsp;Σ) is a measurable space as before, ''T'' is a [[monoid]] and ''φ''&nbsp;:&nbsp;''T''&nbsp;&times;&nbsp;''X''&nbsp;→&nbsp;''X'' is the flow map, a measure ''μ'' on (''X'',&nbsp;Σ) is said to be an '''invariant measure''' if it is an invariant measure for each map ''φ''<sub>''t''</sub>&nbsp;:&nbsp;''X''&nbsp;→&nbsp;''X''. Explicitly, ''μ'' is invariant [[if and only if]]
 
:<math>\mu \left( \varphi_{t}^{-1} (A) \right) = \mu (A) \qquad \forall  t \in T, A \in \Sigma.</math>
 
Put another way, ''μ'' is an invariant measure for a sequence of [[random variable]]s (''Z''<sub>''t''</sub>)<sub>''t''≥0</sub> (perhaps a [[Markov chain]] or the solution to a [[stochastic differential equation]]) if, whenever the initial condition ''Z''<sub>0</sub> is distributed according to ''μ'', so is ''Z''<sub>''t''</sub> for any later time ''t''.
 
==Examples==
:[[File:Hyperbolic sector squeeze mapping.svg|250px|right|thumb|[[Squeeze mapping]] leaves [[hyperbolic angle]] invariant as it moves a purple [[hyperbolic sector]] to one of the same area. Blue and green rectangles also keep the same area]]
* Consider the [[real line]] '''R''' with its usual [[Borel sigma algebra|Borel &sigma;-algebra]]; fix ''a'' ∈ '''R''' and consider the translation map ''T''<sub>''a''</sub> : '''R''' → '''R''' given by:
 
::<math>T_{a} (x) = x + a.</math>
 
: Then one-dimensional [[Lebesgue measure]] ''&lambda;'' is an invariant measure for ''T''<sub>''a''</sub>.
 
* More generally, on ''n''-dimensional [[Euclidean space]] '''R'''<sup>''n''</sup> with its usual Borel σ-algebra, ''n''-dimensional Lebesgue measure ''λ''<sup>''n''</sup> is an invariant measure for any [[isometry]] of Euclidean space, i.e. a map ''T'' : '''R'''<sup>''n''</sup> → '''R'''<sup>''n''</sup> that can be written as
 
::<math>T(x) = A x + b</math>
 
: for some ''n'' &times; ''n'' [[orthogonal matrix]] ''A'' &isin; O(''n'') and a vector ''b'' &isin; '''R'''<sup>''n''</sup>.
 
* The invariant measure in the first example is unique up to trivial renormalization with a constant factor. This does not have to be necessarily the case: Consider a set consisting of just two points <math> \boldsymbol{\rm S}=\{A,B\}</math> and the identity map <math>T={\rm Id}</math> which leaves each point fixed. Then any probability measure <math>\mu : \boldsymbol{\rm S} \rightarrow \boldsymbol{\rm R} </math> is invariant. Note that '''S''' trivially has a decomposition into ''T''-invariant components ''{A}'' and ''{B}''.
 
* The measure of [[angle|circular angles]] in [[degree (angle)|degree]]s or [[radian]]s is invariant under [[rotation]]. Similarly, the measure of [[hyperbolic angle]] is invariant under [[squeeze mapping]].
 
* [[Area]] measure in the Euclidean plane is invariant under [[2 × 2 real matrices#Equi-areal mapping|2 × 2 real matrices with determinant 1]], also known as the ''special linear group'' [[SL(2,R)]].
 
* Every [[locally compact group]] has a [[Haar measure]] that is invariant under the group action.
 
==See also==
*[[Quasi-invariant measure]]
 
==References==
*Invariant measures, John Von Neumann, AMS Bookstore, 1999, ISBN 978-0-8218-0912-9
 
{{DEFAULTSORT:Invariant Measure}}
[[Category:Dynamical systems]]
[[Category:Measures (measure theory)]]

Revision as of 02:23, 4 March 2014

La idea de beruby es que los utilices y que generes ingresos con el tiempo (no pueden regalar dinero sin más). Poco a poco tu saldo irá aumentando y podrás generar un saldo atractivo a lo largo de los meses (sobre todo si vas invitando a otros usuarios). Dicho esto, si ganhe dinheiro na internet vives como ficar rico en España, y al registrarte aceptas los co-registros que ofertan, empiezas con 2,00 Es decir, un usuario nuevo puede solicitar el cobro a los 5 minutos de ingresar en beruby y recibir en su cuenta PayPal 1,01 nada más por empezar (y prácticamente sin hacer nada).

For more information regarding como ficar rico look  ganhe dinheiro at http://comoganhardinheiropelainternet.comoganhardinheiro101.com/