Tukey's test of additivity: Difference between revisions
en>CitationCleanerBot m Various citation & identifier cleanup, plus AWB genfixes. Report errors and suggestions at User talk:CitationCleanerBot. |
en>Johannes Forkman (SLU) m →Method |
||
Line 1: | Line 1: | ||
In [[mathematics]], particularly [[linear algebra]], the '''Schur–Horn theorem''', named after [[Issai Schur]] and [[Alfred Horn]], characterizes the diagonal of a [[Hermitian matrix]] with given [[eigenvalues]]. | |||
== Statement == | |||
'''Theorem.''' Let <math>\mathbf{d}=\{d_i\}_{i=1}^N</math> and <math>\mathbf{\lambda}=\{\lambda_i\}_{i=1}^N</math> be real vectors written in non-increasing order. There is a [[Hermitian matrix]] with diagonal values <math>\{d_i\}_{i=1}^N</math> and eigenvalues <math>\{\lambda_i\}_{i=1}^N</math> if and only if | |||
: <math>\sum_{i=1}^n d_i \leq \sum_{i=1}^n \lambda_i \qquad n=1,2,\ldots,N</math> | |||
and | |||
: <math>\sum_{i=1}^N d_i= \sum_{i=1}^N \lambda_i.</math> | |||
== Polyhedral geometry perspective == | |||
The above inequalities can be reformulated geometrically by saying that the vector <math>(d_1, d_2, \ldots, d_n)</math> is in the [[convex hull]] of the <math>n!</math> vectors formed by permuting the coordinates of <math>(\lambda_1, \lambda_2, \ldots, \lambda_n)</math>. | |||
== References == | |||
* [[Alfred Horn]], ''Doubly stochastic matrices and the diagonal of a rotation matrix,'' American Journal of Mathematics 76 (1954), 620–630. | |||
* [[Issai Schur]], ''Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie'', Sitzungsber. Berl. Math. Ges. 22 (1923), 9–20. | |||
<!--- See [[Wikipedia:Footnotes]] on how to create references using <ref></ref> tags which will then appear here automatically --> | |||
{{Reflist}} | |||
== External links == | |||
* [http://mathworld.wolfram.com/HornsTheorem.html MathWorld] | |||
{{DEFAULTSORT:Schur-Horn theorem}} | |||
[[Category:Order theory]] | |||
[[Category:Theorems in linear algebra]] | |||
[[Category:Matrix theory]] | |||
[[Category:Spectral theory]] |
Revision as of 09:56, 8 April 2013
In mathematics, particularly linear algebra, the Schur–Horn theorem, named after Issai Schur and Alfred Horn, characterizes the diagonal of a Hermitian matrix with given eigenvalues.
Statement
Theorem. Let and be real vectors written in non-increasing order. There is a Hermitian matrix with diagonal values and eigenvalues if and only if
and
Polyhedral geometry perspective
The above inequalities can be reformulated geometrically by saying that the vector is in the convex hull of the vectors formed by permuting the coordinates of .
References
- Alfred Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, American Journal of Mathematics 76 (1954), 620–630.
- Issai Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzungsber. Berl. Math. Ges. 22 (1923), 9–20.
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.