Tukey's test of additivity: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>CitationCleanerBot
m Various citation & identifier cleanup, plus AWB genfixes. Report errors and suggestions at User talk:CitationCleanerBot.
 
en>Johannes Forkman (SLU)
Line 1: Line 1:
Miles is what his wife loves to call him and he loves that will. Washington is where he's always been living but her husband wants these move. To collect cards is a few things i do weekly. For years I've been working as the people manager. Go to my website locate out more: http://www.apymeelhierro.org/new/botas-tipo-ugg.html<br><br>My weblog - [http://www.apymeelhierro.org/new/botas-tipo-ugg.html Botas Tipo Ugg]
In [[mathematics]], particularly [[linear algebra]], the '''Schur&ndash;Horn theorem''', named after [[Issai Schur]] and [[Alfred Horn]], characterizes the diagonal of a [[Hermitian matrix]] with given [[eigenvalues]].
 
== Statement ==
 
'''Theorem.''' Let <math>\mathbf{d}=\{d_i\}_{i=1}^N</math> and <math>\mathbf{\lambda}=\{\lambda_i\}_{i=1}^N</math> be real vectors written in non-increasing order. There is a [[Hermitian matrix]] with diagonal values <math>\{d_i\}_{i=1}^N</math> and eigenvalues <math>\{\lambda_i\}_{i=1}^N</math> if and only if
 
: <math>\sum_{i=1}^n d_i \leq \sum_{i=1}^n \lambda_i \qquad n=1,2,\ldots,N</math>
 
and
 
: <math>\sum_{i=1}^N d_i= \sum_{i=1}^N \lambda_i.</math>
 
== Polyhedral geometry perspective ==
 
The above inequalities can be reformulated geometrically by saying that the vector <math>(d_1, d_2, \ldots, d_n)</math> is in the [[convex hull]] of the <math>n!</math> vectors formed by permuting the coordinates of <math>(\lambda_1, \lambda_2, \ldots, \lambda_n)</math>.
 
== References ==
* [[Alfred Horn]], ''Doubly stochastic matrices and the diagonal of a rotation matrix,'' American Journal of Mathematics 76 (1954), 620–630.
* [[Issai Schur]], ''Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie'', Sitzungsber. Berl. Math. Ges. 22 (1923), 9–20.
 
<!--- See [[Wikipedia:Footnotes]] on how to create references using <ref></ref> tags which will then appear here automatically -->
{{Reflist}}
 
== External links ==
* [http://mathworld.wolfram.com/HornsTheorem.html MathWorld]
 
{{DEFAULTSORT:Schur-Horn theorem}}
[[Category:Order theory]]
[[Category:Theorems in linear algebra]]
[[Category:Matrix theory]]
[[Category:Spectral theory]]

Revision as of 09:56, 8 April 2013

In mathematics, particularly linear algebra, the Schur–Horn theorem, named after Issai Schur and Alfred Horn, characterizes the diagonal of a Hermitian matrix with given eigenvalues.

Statement

Theorem. Let d={di}i=1N and λ={λi}i=1N be real vectors written in non-increasing order. There is a Hermitian matrix with diagonal values {di}i=1N and eigenvalues {λi}i=1N if and only if

i=1ndii=1nλin=1,2,,N

and

i=1Ndi=i=1Nλi.

Polyhedral geometry perspective

The above inequalities can be reformulated geometrically by saying that the vector (d1,d2,,dn) is in the convex hull of the n! vectors formed by permuting the coordinates of (λ1,λ2,,λn).

References

  • Alfred Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, American Journal of Mathematics 76 (1954), 620–630.
  • Issai Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzungsber. Berl. Math. Ges. 22 (1923), 9–20.

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links