|
|
Line 1: |
Line 1: |
| The '''Deal–Grove model''' mathematically describes the growth of an [[oxide]] layer on the surface of a material. In particular, it is used to analyze [[thermal oxidation]] of [[silicon]] in [[semiconductor device fabrication]]. The model was first published in 1965 by Bruce Deal and [[Andrew Grove]], of [[Fairchild Semiconductor]].
| | Ed is what individuals contact me and my spouse doesn't like it at all. I am truly fond of handwriting but I can't make it my occupation truly. North Carolina is where we've been living for many years and will never move. Office supervising is where my primary earnings arrives from but I've always needed my personal business.<br><br>Here is my page; free [http://www.010-5260-5333.com/index.php?document_srl=1880&mid=board_ALMP66 real psychic] [http://chorokdeul.co.kr/index.php?document_srl=324263&mid=customer21 tarot readings] ([https://www-ocl.gist.ac.kr/work/xe/?document_srl=605236 www-ocl.gist.ac.kr]) |
| | |
| == Physical assumptions ==
| |
| [[File:Deal-Grove.png|right|The three phenomena of oxidation, as described in the article text]]
| |
| The model assumes that [[redox|oxidation]] [[chemical reaction|reaction]] occurs at the interface between the oxide and the substrate, rather than between the oxide and the ambient [[gas]]. Thus, it considers three phenomena that the oxidizing species undergoes, in this order:
| |
| | |
| # It [[diffusion|diffuses]] from the bulk of the ambient gas to the surface.
| |
| # It diffuses through the existing oxide layer to the oxide-substrate interface.
| |
| # It reacts with the substrate.
| |
| | |
| The model assumes that each of these stages proceeds at a rate proportional to the oxidant's concentration. In the first case, this means [[Henry's law]]; in the second, [[Fick's law of diffusion]]; in the third, a [[first-order reaction]] with respect to the oxidant. It also assumes [[steady state]] conditions, i.e. that transient effects do not appear.
| |
| | |
| == Results ==
| |
| Given these assumptions, the [[flux]] of oxidant through each of the three phases can be expressed in terms of concentrations, material properties, and temperature.
| |
| | |
| :<math>J_{gas} = h_g (C_g- C_s)</math>
| |
| :<math>J_{oxide} = D_{ox} \frac{C_s- C_i}{x}</math>
| |
| :<math>J_{reacting} = k_i C_i</math>
| |
| | |
| By setting the three fluxes equal to each other, each may be found. In turn, the growth rate may be found readily from the oxidant reaction flux.
| |
| | |
| :<math>J_{gas} = J_{oxide} = J_{reacting} = \frac {C_g}{\frac{1}{k_i}+\frac{x}{D_{ox}}+\frac{1}{h_g}}</math>
| |
| | |
| In practice, the ambient gas (stage 1) does not limit the reaction rate, so this part of the equation is often dropped. This simplification yields a simple quadratic equation for the oxide thickness. For oxide growing on an initially bare substrate, the thickness ''X<sub>o</sub>'' at time ''t'' is given by the following equation:
| |
| :<math>t = \frac{X_o^2}{B} + \frac{X_o}{B/A}</math>
| |
| where the constants A and B encapsulate the properties of the reaction and the oxide layer, respectively. These constants are given as: | |
| :<math>A=2 D_{ox} (\frac{1}{k_i} + \frac{1}{h_g})</math>
| |
| :<math>B= \frac {2D_{ox} C_s}{N_i} </math>
| |
| :<math>\tau = \frac{X_o^2 + A X_o}{B} </math>
| |
| where <math> C_s = H P_g </math>, with <math> H </math> being the gas solubility parameter of the [[Henry's law]] and <math> P_g </math> is the partial pressure of the diffusing gas. <Math> N_i </math> denotes the oxidant molecules/unit volume needed to produce a unit volume of the oxide. | |
| | |
| If a [[wafer (semiconductor)|wafer]] that already contains oxide is placed in an oxidizing ambient, this equation must be modified by adding a corrective term τ, the time that would have been required to grow the pre-existing oxide under current conditions. This term may be found using the equation for ''t'' above.
| |
| | |
| Solving the quadratic equation for ''X<sub>o</sub>'' yields:
| |
| :<math>X_o(t) = \frac{-A+\sqrt{{A^2}+4(B)(t+\tau)}}{2}</math> | |
| | |
| Taking the short and long time limits of the above equation reveals two main modes of operation:
| |
| :<math>t+\tau \ll \frac{A^2}{4B} \Rightarrow X_o(t) = \frac{B}{A}(t+\tau)</math>
| |
| :<math>t+\tau \gg \frac{A^2}{4B} \Rightarrow X_o(t) = \sqrt{B(t+\tau)}</math>
| |
| | |
| Because they appear in these equations, the quantities ''B'' and ''B/A'' are often called the ''quadratic'' and ''linear reaction rate constants''. They depend exponentially on temperature, like this:
| |
| :<math>B = B_0 e^{-E_A/kT}; \quad B/A = (B/A)_0 e^{-E_A/kT} </math>
| |
| | |
| where <math>E_A</math> is the [[activation energy]] and <math>k</math> is the [[Boltzmann Constant]] in eV. <math>E_A</math> differs from one equation to the other. The following table lists the values of the four parameters for single-[[crystal]] silicon under conditions typically used in industry (low [[Doping (semiconductor)|doping]], [[atmosphere (unit)|atmospheric]] [[pressure]]). The linear rate constant depends on the orientation of the crystal (usually indicated by the [[Miller indices]] of the crystal plane facing the surface). The table gives values for <100> and <111> silicon.
| |
| | |
| {| border="1"
| |
| |-
| |
| ! Parameter || Quantity || Wet (<math>H_2O</math>) || Dry (<math>O_2</math>)
| |
| |-
| |
| | rowspan=2 | Linear rate constant || <math>(B/A)_0\ \left(\frac{\mu m}{hr}\right)</math>
| |
| | <100>: 9.7 {{E|7}} <br /> <111>: 6.23 {{E|8}}
| |
| | <100>: 3.71 {{E|6}} <br /> <111>: 6.23 {{E|6}}
| |
| |-
| |
| | <math>E_A</math> ([[electronvolt|eV]])
| |
| | 2.05 || 2.00
| |
| |-
| |
| | rowspan=2 | Parabolic rate constant || <math>B_0\ \left(\frac{(\mu m)^2}{hr}\right)</math>
| |
| | 386 || 772
| |
| |-
| |
| | <math>E_A</math> (eV)
| |
| | 0.78 || 1.23
| |
| |}
| |
| | |
| == Validity for silicon == | |
| The Deal–Grove model works very well for single-crystal silicon under most conditions. However, experimental data shows that very thin oxides (less than about 25 nanometres) grow much more quickly in <math>O_2</math> than the model predicts. This phenomenon is not well understood theoretically.
| |
| | |
| If the oxide grown in a particular oxidation step will significantly exceed 25 nm, a simple adjustment accounts for the aberrant growth rate. The model yields accurate results for thick oxides if, instead of assuming zero initial thickness (or any initial thickness less than 25 nm), we assume that 25 nm of oxide exists before oxidation begins. However, for oxides near to or thinner than this threshold, more sophisticated models must be used.
| |
| | |
| Deal-Grove also fails for polycrystalline silicon ("poly-silicon"). First, the random orientation of the crystal grains makes it difficult to choose a value for the linear rate constant. Second, oxidant molecules diffuse rapidly along grain boundaries, so that poly-silicon oxidizes more rapidly than single-crystal silicon.
| |
| | |
| [[Dopant]] atoms strain the silicon lattice, and make it easier for silicon atoms to bond with incoming oxygen. This effect may be neglected in many cases, but heavily-doped silicon oxidizes significantly faster. The pressure of the ambient gas also affects oxidation rate.
| |
| | |
| == References ==
| |
| * {{cite book |last=Jaeger |first=Richard C. |title=Introduction to Microelectronic Fabrication |edition=2nd |year=2002 |publisher=Prentice Hall |location=Upper Saddle River |isbn=0-201-44494-1 |chapter=Thermal Oxidation of Silicon}}
| |
| * {{cite journal |last=Deal |first=B. E. |coauthors=A. S. Grove |date=December 1965 |title=General Relationship for the Thermal Oxidation of Silicon |journal=Journal of Applied Physics |volume=36 |issue=12 |pages=3770–3778 |doi=10.1063/1.1713945}}
| |
| | |
| ==External links==
| |
| | |
| Online Calculator including pressure effects and doping effects: http://www.lelandstanfordjunior.com/thermaloxide.html
| |
| | |
| {{DEFAULTSORT:Deal-Grove model}}
| |
| [[Category:Semiconductor device fabrication]]
| |
| [[Category:Chemical engineering]]
| |
Ed is what individuals contact me and my spouse doesn't like it at all. I am truly fond of handwriting but I can't make it my occupation truly. North Carolina is where we've been living for many years and will never move. Office supervising is where my primary earnings arrives from but I've always needed my personal business.
Here is my page; free real psychic tarot readings (www-ocl.gist.ac.kr)