Quasi-category: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>AnomieBOT
m Dating maintenance tags: {{Mergefrom}}
en>TakuyaMurata
lk
Line 1: Line 1:
{{refimprove|date=July 2011}}
In get to make positive that the knife you acquire is of a dependable quality and the very best pocket knife possible , it’s very best to stick to the effectively identified recognized pocket knife brands Low cost knives are typically produced with cheap supplies. The knives may appear sharp and polished at initial, but soon after a few utilizes you will begin to observe the blade dulling and other deficiencies may possibly rapidly surface. By sticking with the properly recognized makes such as Case , Buck Knives , Spiderco , Gerber , and other folks, you can be positive that you will be acquiring a large top quality knife. <br>Effectively, I guess I am somewhat old style when it will come to knives To me, carrying a pocket knife is proper up there with shaking a mans hand. It is also like a proper of passage from boyhood to manhood. Currently being allowed to have your knife is a sign of a boy turning into something much more than just a boy. The only time I do not have a knife with me is when I know I am heading somewhere they may well want to confiscate it like at a live performance for occasion. When this happens, it goes in the glove box of my truck right following to my [http://Csw1.vaniercollege.qc.ca/users/SwapMe/wiki/index.php/Good_Throwing_Knives_For_Beginners Leatherman multi-instrument].<br>Very, a amount of folks have this variety of knife as a signifies of self-defence and for their dimensions, could be taken discreetly without anyone knowing that you have it in your [http://Www.Terradaamare.it/terra/members/zellasalisbur/activity/93796/ possession]. You by no means know when you may require a knife for what ever cause and pocket knives , due to the fact of their usefulness, will most likely very best go well with your specifications. Dollar pocket knives are rated by a lot of customers as the best offered and are gorgeous and long-long lasting. They are compact and of a quite substantial quality and are very easily obtainable on the internet. Start to see the wide choice prior to producing a acquire and make [http://Neetsha.info/wiki/index.php/Throwing_Knives_For_Beginners confident] you have the knife you most want.<br>I grew up in the Upper Snake River Valley in Idaho. It is approximately a hundred miles south of West Yellowstone, Montana. My uncles have been sheep ranchers, grazing 3 massive herds in the mountains of japanese Idahowestern Wyoming. As a younger boy, I discovered the price of getting a pocket knife It was and is a really important resource. We utilised our knives for reducing a whole lot of different items of outside equipment. We repaired bridles, saddles, and even cut wooden shavings to begin a hearth. A high quality knife was something to cherish and treatment for. A dull knife just wasn't employed. <br>Lock blade pocket knives are practically nothing a lot more than a small but of easy present day technology currently being utilized to the traditional pocket knife. If you have at any time experienced the misfortunate of obtaining a blade shut on your fingers you will identify the benefits of getting a blade that locks in area. The composition of these knives is the exact same. Most of them still run with a spring system but when the blade is [http://wiki.shol.ru/index.php/Good_Cheap_Throwing_Knives totally] opened it locks into area. There are diverse varieties of locking mechanism, most of which are quite effective at keeping the blade off of your fingers. <br>Sets and kits from Warthog are made in canvas puches or in wood situations. You can choose wooden cases with jacaranda, rosewood or Rhodesian teak, among other folks. They are a lot more expensive, but can be a perfect present for a knife lover. All sharpening kits have a double grit oilstone that is secured on a wooden foundation.  If you liked this information and you would such as to receive even more facts concerning [http://www.thebestpocketknifereviews.com/best-throwing-knives-top-recommendations/ Best Throwing Knives For Beginners] kindly go to our own internet site. There is an adjustable horizontal and vertical rod that information the blade in favorable path, one clamp to pick a wanted angle and other clamp for a chisel. You also get one particular bottle of honing oil to go with the Warthog knife sharpener package.
In [[mathematics]], an '''algebraic number field''' (or simply '''number field''') ''F'' is a finite (and hence [[algebraic extension|algebraic]]) [[field extension]] of the [[field (mathematics)|field]] of [[rational number]]s '''Q'''. Thus ''F'' is a field that contains '''Q''' and has finite [[Hamel dimension|dimension]] when considered as a [[vector space]] over '''Q'''.
 
The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of [[algebraic number theory]].
 
== Definition ==
 
=== Prerequisites ===
 
{{Main|Field (mathematics)|l1=Field|Vector space}}
The notion of algebraic number field relies on the concept of a [[field (mathematics)|field]]. Fields consists of a [[set (mathematics)|set]] of elements together with two operations, namely [[addition]], and [[multiplication]], and some distributivity assumptions. A prominent example of a field is the field of [[rational number]]s, commonly denoted '''Q''', together with its usual operations of addition etc.
 
Another notion needed to define algebraic number fields is [[vector space]]s. To the extent needed here, vector spaces can be thought of as consisting of sequences (or [[tuple]]s)
:(''x''<sub>1</sub>, ''x''<sub>2</sub>, ...)
whose entries are elements of a fixed field, such as the field '''Q'''. Any two such sequences can be added by adding the entries one per one. In addition, any sequence can be multiplied by a single element ''c'' of the fixed field. These two operations known as [[vector addition]] and [[scalar multiplication]] satisfy a number of properties that serve to define vector spaces abstractly. Vector spaces are allowed to be "infinite-dimensional", that is to say that the sequences constituting the vector spaces are of infinite length. If, however, the vector space consists of ''finite'' sequences
:(''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub>),
the vector space is said to be of finite [[Hamel dimension|dimension]], ''n''.
 
===<span id="degreeofanumberfield"></span> Definition ===
 
An '''algebraic number field''' (or simply '''number field''') is a finite [[degree of a field extension|degree]] [[field extension]] of the field of rational numbers. Here its dimension as a vector space over '''Q''' is simply called its '''degree'''.
 
== Examples ==
 
* The smallest and most basic number field is the field '''Q''' of rational numbers. Many properties of general number fields, such as [[unique factorization]], are modelled after the properties of '''Q'''.
 
* The [[Gaussian rational]]s, denoted '''Q'''(''i'') (read as "'''Q''' [[Adjunction (field theory)|adjoined]] ''i''"), form the first nontrivial example of a number field. Its elements are expressions of the form
 
::''a''+''bi''
 
: where both ''a'' and ''b'' are rational numbers and ''i'' is the [[imaginary unit]]. Such expressions may be added, subtracted, and multiplied according to the usual rules of arithmetic and then simplified using the identity
 
::''i''<sup>2</sup> = −1.
 
: Explicitly,
 
:: (''a'' + ''bi'') + (''c'' + ''di'') = (''a'' + ''c'') + (''b'' + ''d'')''i'',
:: (''a'' + ''bi'') (''c'' + ''di'') = (''ac'' − ''bd'') + (''ad'' + ''bc'')''i''.
 
: Non-zero Gaussian rational numbers are [[invertible]], which can be seen from the identity
 
::<math>(a+bi)\left(\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i\right)=\frac{(a+bi)(a-bi)}{a^2+b^2}=1.</math>
 
: It follows that the Gaussian rationals form a number field which is two-dimensional as a vector space over '''Q'''.
 
* More generally, for any [[square-free]] integer ''d'', the [[quadratic field]]
 
:: '''Q'''(√{{overline|''d''}})
 
: is a number field obtained by adjoining the square root of ''d'' to the field of rational numbers. Arithmetic operations in this field are defined in analogy with the case of gaussian rational numbers, ''d'' = − 1.
 
* [[Cyclotomic field]]
 
:: '''Q'''(ζ<sub>''n''</sub>), ζ<sub>''n''</sub> = exp (2π''i'' / ''n'')
 
: is a number field obtained from '''Q''' by adjoining a primitive ''n''th root of unity ''ζ''<sub>''n''</sub>. This field contains all complex ''n''th roots of unity and its dimension over '''Q''' is equal to ''φ''(''n''), where ''φ'' is the [[Euler totient function]].
 
* The [[real number]]s, '''R''', and the [[complex number]]s, '''C''', are fields which have infinite dimension as '''Q'''-vector spaces, hence, they are ''not'' number fields. This follows from the [[uncountable|uncountability]] of '''R''' and '''C''' as sets, whereas every number field is necessarily [[countable]].
 
* The set '''Q'''<sup>2</sup> of [[ordered pair]]s of rational numbers, with the entrywise addition and multiplication is a two-dimensional commutative algebra over '''Q'''. However, it is not a field, since it has [[zero divisor]]s:
 
:(1, 0) · (0, 1) = (1 · 0, 0 · 1) = (0, 0).
 
==Algebraicity and ring of integers==
Generally, in [[abstract algebra]], a field extension ''F'' / ''E'' is [[algebraic field extension|algebraic]] if every element ''f'' of the bigger field ''F'' is the zero of a [[polynomial]] with coefficients ''e''<sub>0</sub>, ..., ''e''<sub>''m''</sub> in ''E'':
:''p''(''f'') = ''e''<sub>''m''</sub>''f''<sup>''m''</sup> + ''e''<sub>''m''&minus;1</sub>''f''<sup>''m''&minus;1</sup>  + ... + ''e''<sub>1</sub>''f'' + ''e''<sub>0</sup> = 0.
It is a fact that every finite field extension is algebraic (proof: for ''x'' in ''F'' simply consider ''x'', ''x^2'', ''x^3'' ...we get a linear dependence, i.e. a polynomial ''x'' is a root of!). In particular this applies to algebraic number fields, so any element ''f'' of an algebraic number field ''F'' can be written as a zero of a polynomial with rational coefficients. Therefore, elements of ''F'' are also referred to as ''[[algebraic numbers]]''. Given a polynomial ''p'' such that ''p''(''f'') = 0, it can be arranged such that the leading coefficient ''e''<sub>''m''</sub> is one, by dividing all coefficients by it, if necessary. A polynomial with this property is known as a [[monic polynomial]]. In general it will have rational coefficients. If, however, its coefficients are actually all integers, ''f'' is called an ''[[algebraic integer]]''. Any (usual) integer ''z'' ∈ '''Z''' is an algebraic integer, as it is the zero of the linear monic polynomial:
:''p''(''t'') = ''t'' &minus; ''z''.
It can be shown that any algebraic integer that is also a rational number must actually be an integer, whence the name "algebraic integer". Again using abstract algebra, specifically the notion of a [[finitely generated module]], it can be shown that the sum and the product of any two algebraic integers is still an algebraic integer, it follows that the algebraic integers in ''F'' form a [[ring (mathematics)|ring]] denoted ''O''<sub>''F''</sub> called the '''[[ring of integers]]''' of ''F''. It is a [[subring]] of (that is, a ring contained in) ''F''. A field contains no [[zero divisors]] and this property is inherited by any subring. Therefore, the ring of integers of ''F'' is an [[integral domain]]. The field ''F'' is the [[field of fractions]] of the integral domain ''O''<sub>''F''</sub>.  This way one can get back and forth between the algebraic number field ''F'' and its ring of integers ''O''<sub>''F''</sub>. Rings of algebraic integers have three distinctive properties: firstly, ''O''<sub>''F''</sub> is an integral domain that is [[integrally closed]] in its field of fractions ''F''. Secondly, ''O''<sub>''F''</sub> is a [[Noetherian ring]]. Finally, every nonzero [[prime ideal]] of ''O''<sub>''F''</sub> is [[maximal ideal|maximal]] or, equivalently, the [[Krull dimension]] of this ring is one. An abstract commutative ring with these three properties is called a ''[[Dedekind ring]]'' (or ''Dedekind domain''), in honor of [[Richard Dedekind]], who undertook a deep study of rings of algebraic integers.
 
===Unique factorization and class number===
For general [[Dedekind ring]]s, in particular rings of integers, there is a unique factorization of [[ideal (ring theory)|ideals]] into a product of [[prime ideal]]s. However, unlike '''Z''' as the ring of integers of '''Q''', the ring of integers of a proper extension of '''Q''' need not admit [[unique factorization domain|unique factorization]] of numbers into a product of prime numbers or, more precisely, [[prime element]]s. This happens already for [[quadratic integer]]s, for example in ''O''<sub>'''Q'''(√{{overline|&minus;5}})</sub> = '''Z'''[√{{overline|&minus;5}}], the uniqueness of the factorization fails:
: 6 = 2 &middot; 3 = (1 + &radic;{{overline|&minus;5}}) &middot; (1 &minus; &radic;{{overline|&minus;5}}).
Using the norm it can be shown that these two factorization are actually inequivalent in the sense that the factors do not just differ by a [[unit (ring theory)|unit]] in ''O''<sub>'''Q'''(√{{overline|&minus;5}})</sub>. [[Euclidean domain]]s are unique factorization domains; for example '''Z'''[''i''], the ring of [[Gaussian integer]]s, and '''Z'''[ω], the ring of [[Eisenstein integer]]s, where ω is a third root of unity (unequal to 1), have this property.<ref>{{Citation | last1=Ireland | first1=Kenneth | author1-link=Kenneth Ireland | last2=Rosen | first2=Michael | title=A Classical Introduction to Modern Number Theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-97329-6 | year=1998}}, Ch. 1.4</ref>
 
===&zeta;-functions, ''L''-functions and class number formula===
The failure of unique factorization is measured by the [[Class number (number theory)|class number]], commonly denoted ''h'', the cardinality of the so-called [[ideal class group]]. This group is always finite. The ring of integers ''O''<sub>''F''</sub> possesses unique factorization if and only if it is a principal ring or, equivalently, if ''F'' has [[List of number fields with class number one|class number 1]]. Given a number field, the class number is often difficult to compute. The [[class number problem]], going back to [[Gauss]], is concerned with the existence of imaginary quadratic number fields (i.e., '''Q'''(√{{overline|&minus;''d''}}), ''d'' ≥ 1) with prescribed class number. The [[class number formula]] relates ''h'' to other fundamental invariants of ''F''. It involves the [[Dedekind zeta function]] ζ<sub>''F''</sub>(s), a function in a complex variable ''s'', defined by
:<math>\zeta_F(s) := \prod_{\mathfrak{p}} \frac{1}{1-N(\mathfrak{p})^{-s}}</math>.
(The product is over all prime ideals of ''O''<sub>''F''</sub>, <math>N(\mathfrak p)</math> denotes the norm of the prime ideal or, equivalently, the (finite) number of elements in the [[residue field]] <math>O_F / \mathfrak p</math>. The infinite product converges only for [[Real part|Re]](''s'') > 1, in general [[analytic continuation]] and the [[functional equation]] for the zeta-function are needed to define the function for all ''s'').
The Dedekind zeta-function generalizes the [[Riemann zeta-function]] in that ζ<sub>'''Q'''</sub>(''s'') = ζ(''s'').
 
The class number formula states that ζ<sub>''F''</sub>(''s'') has a [[simple pole]] at ''s'' = 1 and at this point (its meromorphic continuation to the whole complex plane) the [[residue (complex analysis)|residue]] is given by
:<math> \frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h\cdot \operatorname{Reg}}{w \cdot \sqrt{|D|}}.</math>
 
Here ''r''<sub>1</sub> and ''r''<sub>2</sub> classically denote the number of [[real and complex embeddings|real embeddings]] and pairs of [[real and complex embeddings|complex embeddings]] of ''F'', respectively. Moreover, Reg is the [[regulator (mathematics)|regulator]] of ''F'', ''w'' the number of [[root of unity|roots of unity]] in ''F'' and ''D'' is the discriminant of ''F''.
 
[[Dirichlet L-function]]s ''L''(χ, ''s'') are a more refined variant of ζ(''s''). Both types of functions encode the arithmetic behavior of '''Q''' and ''F'', respectively. For example, [[Dirichlet's theorem on arithmetic progressions|Dirichlet's theorem]] asserts that in any [[arithmetic progression]]
:''a'', ''a'' + ''m'', ''a'' + 2''m'', ...
with [[coprime]] ''a'' and ''m'', there are infinitely many prime numbers. This theorem is implied by the fact that the Dirichlet ''L''-function is nonzero at ''s'' = 1. Using much more advanced techniques including [[algebraic K-theory]] and [[Tamagawa measure]]s, modern number theory deals with a description, if largely conjectural (see [[Tamagawa number conjecture]]), of values of more general [[L-function]]s.<ref>{{Citation | last1=Bloch | first1=Spencer | last2=Kato | first2=Kazuya | author2-link=Kazuya Kato | title=The Grothendieck Festschrift, Vol. I | publisher=Birkhäuser Boston | location=Boston, MA | series=Progr. Math. | mr=1086888 | year=1990 | volume=86 | chapter=''L''-functions and Tamagawa numbers of motives | pages=333–400}}</ref>
 
==Bases for number fields==
 
===Integral basis===
An ''[[integral basis]]'' for a number field ''F'' of degree ''n'' is a set
:''B'' = {''b''<sub>1</sub>, &hellip;, ''b<sub>n''</sub>}
of ''n'' algebraic integers in ''F'' such that every element of the ring of integers ''O<sub>F''</sub> of ''F'' can be written uniquely as a '''Z'''-linear combination of elements of ''B''; that is, for any ''x'' in ''O<sub>F</sub>'' we have
:''x'' = ''m''<sub>1</sub>''b''<sub>1</sub> + &hellip; + ''m<sub>n</sub>b<sub>n''</sub>,
where the ''m<sub>i</sub>'' are (ordinary) integers. It is then also the case that any element of ''F'' can be written uniquely as
:''m''<sub>1</sub>''b''<sub>1</sub> + &hellip; + ''m<sub>n</sub>b<sub>n</sub>'',
where now the ''m<sub>i</sub>'' are rational numbers. The algebraic integers of ''F'' are then precisely those elements of ''F'' where the ''m<sub>i</sub>'' are all integers.
 
Working [[local ring|locally]] and using tools such as the [[Frobenius map]], it is always possible to explicitly compute such a basis, and it is now standard for [[computer algebra system]]s to have built-in programs to do this.
 
=== Power basis ===
 
Let ''F'' be a number field of degree ''n''. Among all possible bases of ''F'' (seen as a '''Q'''-vector space), there are particular ones known as [[power basis|power bases]], that are bases of the form
:''B<sub>x</sub>''&nbsp;=&nbsp;{1, ''x'', ''x''<sup>2</sup>, ..., ''x''<sup>''n''&minus;1</sup>}
for some element ''x'' ∈ ''F''. By the [[primitive element theorem]], there exists such an ''x'', called a [[primitive element (field theory)|primitive element]]. If ''x'' can be chosen in ''O<sub>F</sub>'' and such that ''B<sub>x</sub>'' is a basis of ''O<sub>F</sub>'' as a free '''Z'''-module, then ''B<sub>x</sub>'' is called a [[power integral basis]], and the field ''F'' is called a [[monogenic field]]. An example of a number field that is not monogenic was first given by Dedekind. His example is the field obtained by adjoining a root of the polynomial {{nowrap|''x''<sup>3</sup> &minus; ''x''<sup>2</sup> &minus; 2''x'' &minus; 8}}.<ref>{{harvnb|Narkiewicz|2004|loc=§2.2.6}}</ref>
 
==Regular representation, trace and determinant ==
Using the multiplication in ''F'', the elements of the field ''F'' may be represented by ''n''-by-''n'' [[matrix (math)|matrices]]
:''A''&nbsp;=&nbsp;''A''(''x'')=(''a''<sub>''ij''</sub>)<sub>1 &le; ''i'', ''j'' &le; ''n''</sub>,
by requiring
:<math>x e_i = \sum_{j=1}^n a_{ij} e_j, \quad a_{ij}\in\mathbf{Q}.</math>
Here ''e''<sub>1</sub>, ..., ''e''<sub>''n''</sub> is a fixed basis for ''F'', viewed as a '''Q'''-vector space. The rational numbers ''a''<sub>''ij''</sub> are uniquely determined by ''x'' and the choice of a basis since any element of ''F'' can be uniquely represented as a [[linear combination]] of the basis elements. This way of associating a matrix to any element of the field ''F'' is called the ''[[regular representation]]''. The square matrix ''A'' represents the effect of multiplication by ''x'' in the given basis. It follows that if the element ''y'' of ''F'' is represented by a matrix ''B'', then the product ''xy'' is represented by the [[matrix product]] ''AB''. [[Invariant (mathematics)|Invariant]]s of matrices, such as the [[trace (linear algebra)|trace]], [[determinant]], and [[characteristic polynomial]], depend solely on the field element ''x'' and not on the basis. In particular, the trace of the matrix ''A''(''x'') is called the ''[[field trace|trace]]'' of the field element ''x'' and denoted Tr(''x''), and the determinant is called the ''[[field norm|norm]]'' of ''x'' and denoted N(''x'').
 
By definition, standard properties of traces and determinants of matrices carry over to Tr and N: Tr(''x'') is a [[linear function]] of ''x'', as expressed by {{nowrap|Tr(''x'' + ''y'') {{=}} Tr(''x'') + Tr(''y'')}}, {{nowrap|Tr(''λx'') {{=}} ''λ'' Tr(''x'')}}, and the norm is a multiplicative [[homogeneous function]] of degree ''n'': {{nowrap|N(''xy'') {{=}} N(''x'') N(''y'')}}, {{nowrap|N(''λx'') {{=}} ''λ''<sup>''n''</sup> N(''x'')}}. Here ''λ'' is a rational number, and ''x'', ''y'' are any two elements of ''F''.
 
The ''[[trace form]]'' derives is a [[bilinear form]] defined by means of the trace, as Tr(''x'' ''y''). The ''integral trace form'', an integer-valued [[symmetric matrix]] is defined as ''t''<sub>ij</sub> = Tr(''b''<sub>i</sub>''b''<sub>j</sub>), where ''b''<sub>1</sub>, ..., ''b''<sub>n</sub> is an integral basis for ''F''. The [[discriminant of an algebraic number field|''discriminant'']] of ''F'' is defined as det(''t''). It is an integer, and is an invariant property of the field ''F'', not depending on the choice of integral basis.
 
The matrix associated to an element ''x'' of ''F'' can also be used to give other, equivalent descriptions of algebraic integers. An element ''x'' of ''F'' is an algebraic integer if and only if the characteristic polynomial ''p''<sub>''A''</sub> of the matrix ''A'' associated to ''x'' is a monic polynomial with integer coefficients.  Suppose that the matrix ''A'' that represents an element ''x'' has integer entries in some basis ''e''. By the [[Cayley–Hamilton theorem]], ''p''<sub>''A''</sub>(''A'')&nbsp;=&nbsp;0, and it follows that ''p''<sub>''A''</sub>(''x'')&nbsp;=&nbsp;0, so that ''x'' is an algebraic integer. Conversely, if ''x'' is an element of ''F'' which is a root of a monic polynomial with integer coefficients then the same property holds for the corresponding matrix ''A''. In this case it can be proven that ''A'' is an [[integer matrix]] in a suitable basis of ''F''. Note that the property of being an algebraic integer is ''defined'' in a way that is independent of a choice of a basis in ''F''.
 
===Example===
 
Consider ''F'' = '''Q'''(''x''), where ''x'' satisfies ''x''<sup>3</sup>&nbsp;&minus;&nbsp;11''x''<sup>2</sup>&nbsp;+&nbsp;''x''&nbsp;+&nbsp;1 = 0. Then an integral basis is [1, ''x'', 1/2(''x''<sup>2</sup>&nbsp;+&nbsp;1)], and the corresponding integral trace form is
 
:<math>\begin{bmatrix}
3 & 11 & 61 \\
11 & 119 & 653 \\
61 & 653 & 3589
\end{bmatrix}.</math>
 
The "3" in the upper left hand corner of this matrix is the trace of the matrix of the map defined by the first basis element (1) in the regular representation of F on F. This basis element induces the identity map on the 3-dimensional vector space, F. The trace of the matrix of the identity map on a 3-dimensional vector space is 3.
 
The determinant of this is {{nowrap|1304 {{=}} 2<sup>3</sup> 163}}, the field discriminant; in comparison the [[discriminant|root discriminant]], or discriminant of the polynomial, is {{nowrap|5216 {{=}} 2<sup>5</sup> 163}}.
 
==Places==
 
Mathematicians of the nineteenth century assumed that algebraic numbers were a type of complex number.<ref>{{citation
| last = Kleiner | first = Israel
| doi = 10.2307/2589500
| issue = 7
| journal = The American Mathematical Monthly
| mr = 1720431
| pages = 677–684
| quote = To Dedekind, then, fields were subsets of the complex numbers.
| title = Field theory: from equations to axiomatization. I
| volume = 106
| year = 1999}}</ref><ref>{{citation
| last = Mac Lane | first = Saunders | authorlink = Saunders Mac Lane
| doi = 10.2307/2321751
| issue = 7
| journal = The American Mathematical Monthly
| mr = 628015
| pages = 462–472
| quote = Empiricism sprang from the 19th-century view of mathematics as almost coterminal with theoretical physics.
| title = Mathematical models: a sketch for the philosophy of mathematics
| volume = 88
| year = 1981}}</ref> This situation changed with the discovery of [[p-adic number]]s by [[Kurt Hensel|Hensel]] in 1897; and now it is standard to consider all of the various possible embeddings of a number field ''F'' into its various topological [[Completion (ring theory)|completion]]s at once.
 
A ''[[place (mathematics)|place]]'' of a number field ''F'' is an equivalence class of [[absolute value (algebra)|absolute values]] on ''F''. Essentially, an absolute value is a notion to measure the size of elements ''f'' of ''F''. Two such absolute values are considered equivalent if they give rise to the same notion of smallness (or proximity). In general, they fall into three regimes. Firstly (and mostly irrelevant), the trivial absolute value | |<sub>0</sub>, which takes the value 1 on all non-zero ''f'' in ''F''. The second and third classes are Archimedean places and non-Archimedean (or ultrametric) places. The completion of ''F'' with respect to a place is given in both cases by taking [[Cauchy sequence]]s in ''F'' and dividing out [[null sequence]]s, that is, sequences (''x''<sub>''n''</sub>)<sub>''n'' ∈ '''N'''</sub> such that |''x''<sub>''n''</sub>| tends to zero when ''n'' tends to infinity. This can be shown to be a field again, the so-called completion of ''F'' at the given place.
 
For ''F'' = '''Q''', the following non-trivial norms occur ([[Ostrowski's theorem]]): the (usual) [[absolute value]], which gives rise to the complete [[topological field]] of the real numbers '''R'''. On the other hand, for any prime number ''p'', the [[p-adic number|''p''-adic]] absolute values is defined by
:|''q''|<sub>''p''</sub> = ''p''<sup>&minus;''n''</sup>, where ''q'' = ''p''<sup>''n''</sup> ''a''/''b'' and ''a'' and ''b'' are integers not divisible by ''p''.
In contrast to the usual absolute value, the ''p''-adic norm gets ''smaller'' when ''q'' is multiplied by ''p'', leading to quite different behavior of '''Q'''<sub>''p''</sub> vis-à-vis '''R'''.
 
=== Archimedean places ===
 
<ref>Cohn</ref><ref>Conrad</ref>
 
For some of the details take a look at,<ref>Cohn</ref>  Chapter 11 §C p.&nbsp;108. Note in particular the standard notation ''r''<sub>1</sub> and ''r''<sub>2</sub> for the number of real and complex embeddings, respectively (see below).
 
Calculating the archimedean places of ''F'' is done as follows: let ''x'' be a primitive element of ''F'', with minimal polynomial (over '''Q''') ''f''. Over '''R''', ''f'' will generally no longer be irreducible, but its irreducible (real) factors are either of degree one or two. Since there are no repeated roots, there are no repeated factors. The roots ''r'' of factors of degree one are necessarily real, and replacing ''x'' by ''r'' gives an embedding of ''F'' into '''R'''; the number of such embeddings is equal to the number of real roots of ''f''. Restricting the standard absolute value on '''R''' to ''F'' gives an archimedean absolute value on ''F''; such an absolute value is also referred to as a ''real place'' of ''F''.  On the other hand, the roots of factors of degree two are pairs of [[complex conjugate|conjugate]] complex numbers, which allows for two conjugate embeddings into '''C'''. Either one of this pair of embeddings can be used to define an absolute value on ''F'', which is the same for both embeddings since they are conjugate. This absolute value is called a ''complex place'' of ''F''.
 
If all roots of ''f'' above are real (respectively, complex) or, equivalently, any possible embedding ''F'' ⊂ '''C''' is actually forced to be inside '''R''' (resp. '''C'''), ''F'' is called [[Totally real number field|totally real]] (resp. [[Totally complex number field|totally complex]]).
 
=== Nonarchimedean or ultrametric places ===
To find the nonarchimedean places, let again ''f'' and ''x'' be as above. In '''Q'''<sub>''p''</sub>, ''f'' splits in factors of various degrees, none of which are repeated, and the degrees of which add up to ''n'', the degree of ''f''. For each of these ''p''-adically irreducible factors ''t'', we may suppose that ''x'' satisfies ''t'' and obtain an embedding of ''F'' into an algebraic extension of finite degree over '''Q'''<sub>p</sub>. Such a [[local field]] behaves in many ways like a number field, and the ''p''-adic numbers may similarly play the role of the rationals; in particular, we can define the norm and trace in exactly the same way, now giving functions mapping to '''Q'''<sub>''p''</sub>. By using this ''p''-adic norm map '''N'''<sub>''t''</sub> for the place ''t'', we may define an absolute value corresponding to a given ''p''-adically irreducible factor ''t'' of degree ''m'' by |θ|<sub>''t''</sub> = |'''N'''<sub>''t''</sub>(θ)|<sub>''p''</sub><sup>1/''m''</sup>.  Such an absolute value is called an [[ultrametric]], non-Archimedean or ''p''-adic place of ''F''.
 
For any ultrametric place ''v'' we have that |''x''|<sub>''v''</sub> ≤ 1 for any ''x'' in ''O''<sub>''F''</sub>, since the minimal polynomial for ''x'' has integer factors, and hence its ''p''-adic factorization has factors in '''Z'''<sub>''p''</sub>.  Consequently, the norm term (constant term) for each factor is a ''p''-adic integer, and one of these is the integer used for defining the absolute value for ''v''.
 
=== Prime ideals in ''O''<sub>''F''</sub> ===
For an ultrametric place ''v'', the subset of ''O''<sub>''F''</sub> defined by |''x''|<sub>''v''</sub> < 1 is an [[ideal (ring theory)|ideal]] ''P'' of ''O''<sub>''F''</sub>. This relies on the ultrametricity of ''v'': given ''x'' and ''y'' in ''P'', then
:|''x'' + ''y''|<sub>''v''</sub> &le; max (|''x''|<sub>''v''</sub>, |y|<sub>''v''</sub>) < 1.
Actually, ''P'' is even a [[prime ideal]].
 
Conversely, given a prime ideal ''P'' of ''O''<sub>''F''</sub>, a [[discrete valuation]] can be defined by setting v<sub>''P''</sub>(''x'') = ''n'' where ''n'' is the biggest integer such that ''x'' ∈ ''P''<sup>''n''</sup>, the ''n''-fold power of the ideal. This valuation can be turned into an ultrametic place. Under this correspondence, (equivalence classes) of ultrametric places of ''F'' correspond to prime ideals of ''O''<sub>''F''</sub>. For '''F''' = '''Q''', this gives back Ostrowski's theorem: any prime ideal in '''Z''' (which is necessarily by a single prime number) corresponds to an non-archimedean place and vice versa. However, for more general number fields, the situation becomes more involved, as will be explained below.
 
Yet another, equivalent way of describing ultrametric places is by means of [[localization of a ring|localizations]] of ''O''<sub>''F''</sub>. Given an ultrametric place ''v'' on a number field ''F'', the corresponding localization is the subring ''T'' of ''F'' of all elements ''x'' such that |&thinsp;''x''&thinsp;|<sub>''v''</sub> ≤ 1. By the ultrametric property ''T'' is a ring. Moreover, it contains ''O''<sub>''F''</sub>. For every element ''x'' of ''F'', at least one of ''x'' or ''x''<sup>&minus;1</sup> is contained in ''T''.  Actually, since ''F''<sup>&times;</sup>/''T''<sup>&times;</sup> can be shown to be isomorphic to the integers, ''T'' is a [[discrete valuation ring]], in particular a [[local ring]]. Actually, ''T'' is just the localization of ''O''<sub>''F''</sub> at the prime ideal ''P''. Conversely, ''P'' is the maximal ideal of ''T''.
 
Altogether, there is a three-way equivalence between ultrametric absolute values, prime ideals, and localizations on a number field.
 
== Ramification ==
[[Image:Schematic depiction of ramification.svg|right|thumb|300px|Schematic depiction of ramification: the fibers of almost all points in ''Y'' below consist of three points, except for two points in ''Y'' marked with dots, where the fibers consist of one and two points (marked in black), respectively. The map ''f'' is said to be ramified in these points of ''Y''.]]
[[Ramification]], generally speaking, describes a geometric phenomenon that can occur with finite-to-one maps (that is, maps ''f'': ''X'' → ''Y'' such that the [[preimage]]s of all points ''y'' in ''Y'' consist only of finitely many points): the cardinality of the [[fiber (mathematics)|fibers]] ''f''<sup>&minus;1</sup>(''y'') will generally have the same number of points, but it occurs that, in special points ''y'', this number drops. For example, the map
:'''C''' &rarr; '''C''', ''z'' ↦ ''z''<sup>''n''</sup>
has ''n'' points in each fiber over ''t'', namely the ''n'' (complex) roots of ''t'', except in t = ''0'', where the fiber consists of only one element, ''z'' = 0. One says that the map is "ramified" in zero. This is an example of a [[branched covering]] of [[Riemann surface]]s. This intuition also serves to define [[splitting of prime ideals in Galois extensions|ramification in algebraic number theory]]. Given a (necessarily finite) extension of number fields ''F'' / ''E'', a prime ideal ''p'' of ''O''<sub>''E''</sub> generates the ideal ''pO''<sub>''F''</sub> of ''O''<sub>''F''</sub>. This ideal may or may not be a prime ideal, but, according to the Lasker–Noether theorem (see above), always is given by
:''pO''<sub>''F''</sub> = ''q''<sub>1</sub><sup>''e''<sub>1</sub></sup> ''q''<sub>2</sub><sup>''e''<sub>2</sub></sup> ... ''q''<sub>''m''</sub><sup>''e''<sub>''m''</sub></sup>
with uniquely determined prime ideals ''q''<sub>''i''</sub> of ''O''<sub>''F''</sub> and numbers (called ramification indices) ''e''<sub>''i''</sub>. Whenever one ramification index is bigger than one, the prime ''p'' is said to ramify in ''F''.
 
The connection between this definition and the geometric situation is delivered by the map of [[spectrum of a ring|spectra]] of rings Spec ''O''<sub>''F''</sub> → Spec ''O''<sub>''E''</sub>. In fact, [[unramified morphism]]s of [[scheme (mathematics)|scheme]]s in [[algebraic geometry]] are a direct generalization of unramified extensions of number fields.
 
Ramification is a purely local property, i.e., depends only on the completions around the primes ''p'' and ''q''<sub>''i''</sub>. The [[inertia group]] measures the difference between the local Galois groups at some place and the Galois groups of the involved finite residue fields.
 
=== An example ===
 
The following example illustrates the notions introduced above. In order to compute the ramification index of '''Q'''(''x''), where
:''f''(''x'') = ''x''<sup>3</sup> &minus; ''x'' &minus; 1 = 0,
 
at 23, it suffices to consider the field extension '''Q'''<sub>23</sub>(''x'') / '''Q'''<sub>23</sub>. Up to 529 = 23<sup>2</sup> (i.e., [[Modular arithmetic|modulo]] 529) ''f'' can be factored as
:''f''(''x'') = (''x'' + 181)(''x''<sup>2</sup> &minus; 181''x'' &minus; 38) = ''gh''.
 
Substituting {{nowrap|''x'' {{=}} ''y'' + 10}} in the first factor ''g'' modulo 529 yields ''y'' + 191, so the valuation |&thinsp;''y''&thinsp;|<sub>''g''</sub> for ''y'' given by ''g'' is |&thinsp;&minus;191&thinsp;|<sub>23</sub> = 1. On the other hand the same substitution in ''h'' yields {{nowrap|''y''<sup>2</sup> &minus; 161''y'' &minus; 161 modulo 529.}} Since 161 = 7&thinsp;&times;&thinsp;23,
:|''y''|<sub>''h''</sub> = &radic;{{overline|∣161∣<sub>23</sub>}} = 1 / &radic;{{overline|23}}.
 
Since possible values for the absolute value of the place defined by the factor ''h'' are not confined to integer powers of 23, but instead are integer powers of the square root of 23, the ramification index of the field extension at 23 is two.
 
The valuations of any element of ''F'' can be computed in this way using [[resultant]]s. If, for example ''y'' = ''x''<sup>2</sup> &minus; ''x'' &minus; 1, using the resultant to eliminate ''x'' between this relationship and ''f'' = ''x''<sup>3</sup> &minus; ''x'' &minus; 1 = 0 gives {{nowrap|''y''<sup>3</sup> &minus; 5''y''<sup>2</sup> + 4''y'' &minus; 1 {{=}} 0}}. If instead we eliminate with respect to the factors ''g'' and ''h'' of ''f'', we obtain the corresponding factors for the polynomial for ''y'', and then the 23-adic valuation applied to the constant (norm) term allows us to compute the valuations of ''y'' for ''g'' and ''h'' (which are both 1 in this instance.)
 
=== Dedekind discriminant theorem ===
 
Much of the significance of the discriminant lies in the fact that ramified ultrametric places are all places obtained from factorizations in '''Q'''<sub>''p''</sup> where ''p'' divides the discriminant.  This is even true of the polynomial discriminant; however the converse is also true, that if a prime ''p'' divides the discriminant, then there is a ''p''-place which ramifies. For this converse the field discriminant is needed.  This is the '''Dedekind discriminant theorem'''.  In the example above, the discriminant of the number field '''Q'''(''x'') with ''x''<sup>3</sup>&nbsp;&minus;&nbsp;''x''&nbsp;&minus;&nbsp;1 = 0 is &minus;23, and as we have seen the 23-adic place ramifies.  The Dedekind discriminant tells us it is the only ultrametric place which does.  The other ramified place comes from the absolute value on the complex embedding of ''F''.
 
==Galois groups and Galois cohomology==
Generally in abstract algebra, field extensions ''F'' / ''E'' can be studied by examining the [[Galois group]] Gal(''F'' / ''E''), consisting of field automorphisms of ''F'' leaving ''E'' elementwise fixed. As an example, the Galois group Gal ('''Q'''(ζ<sub>''n''</sub>) / '''Q''') of the cyclotomic field extension of degree ''n'' (see above) is given by ('''Z'''/''n'''''Z''')<sup>&times;</sup>, the group of invertible elements in '''Z'''/''n'''''Z'''. This is the first stepstone into [[Iwasawa theory]].
 
In order to include all possible extensions having certain properties, the Galois group concept is commonly applied to the (infinite) field extension {{overline|''F''}} / ''F'' of the [[algebraic closure]], leading to the [[absolute Galois group]] ''G'' := Gal({{overline|''F''}}  / ''F'') or just Gal(''F''), and to the extension ''F'' / '''Q'''. The [[fundamental theorem of Galois theory]] links fields in between ''F'' and its algebraic closure and closed subgroups of Gal (''F''). For example, the [[abelianization]] (the biggest abelian quotient) ''G''<sup>ab</sup> of ''G'' corresponds to a field referred to as the maximal [[abelian extension]] ''F''<sup>ab</sup> (called so since any further extension is not abelian, i.e., does not have an abelian Galois group). By the [[Kronecker–Weber theorem]], the maximal abelian extension of '''Q''' is the extension generated by all [[roots of unity]]. For more general number fields, [[class field theory]], specifically the [[Artin reciprocity law]] gives an answer by describing ''G''<sup>ab</sup> in terms of the [[idele class group]]. Also notable is the [[Hilbert class field]], the maximal abelian unramified field extension of ''F''. It can be shown to be finite over ''F'', its Galois group over ''F'' is isomorphic to the class group of ''F'', in particular its degree equals the class number ''h'' of ''F'' (see above).
 
In certain situations, the Galois group [[group action|acts]] on other mathematical objects, for example a group. Such a group is then also referred to as a Galois module. This enables the use of [[group cohomology]] for the Galois group Gal(''F''), also known as [[Galois cohomology]], which in the first place measures the failure of exactness of taking Gal(''F'')-invariants, but offers deeper insights (and questions) as well. For example, the Galois group ''G'' of a field extension ''L'' / ''F'' acts on ''L''<sup>&times;</sup>, the nonzero elements of ''L''. This Galois module plays a significant role in many arithmetic [[duality (mathematics)|dualities]], such as [[Poitou-Tate duality]]. The [[Brauer group]] of ''F'', originally conceived to classify [[division algebra]]s over ''F'', can be recast as a cohomology group, namely H<sup>2</sup>(Gal (''F''), {{overline|''F''}}<sup>&times;</sup>).
 
==Local-global principle==
Generally speaking, the term "local to global" refers to the idea that a global problem is first done at a local level, which tends to simplify the questions. Then, of course, the information gained in the local analysis has to be put together to get back to some global statement. For example, the notion of [[sheaf (mathematics)|sheaves]] reifies that idea in [[topology]] and [[geometry]].
 
===Local and global fields===
Number fields share a great deal of similarity with another class of fields much used in [[algebraic geometry]] known as [[Function field of an algebraic variety|function fields]] of [[algebraic curve]]s over [[finite field]]s. An example is '''F'''<sub>''p''</sub>(''T''). They are similar in many respects, for example in that number rings are one-dimensional regular rings, as are the [[coordinate ring]]s (the quotient fields of which is the function field in question) of curves. Therefore, both types of field are called [[global field]]s. In accordance with the philosophy laid out above, they can be studied at a local level first, that is to say, by looking at the corresponding [[local field]]s. For number fields ''F'', the local fields are the  completions of ''F'' at all places, including the archimedean ones (see [[local analysis]]). For function fields, the local fields are completions of the local rings at all points of the curve for function fields.
 
Many results valid for function fields also hold, at least if reformulated properly, for number fields. However, the study of number fields often poses difficulties and phenomena not encountered in function fields. For example, in function fields, there is no dichotomy into non-archimedean and archimedean places. Nonetheless, function fields often serves as a source of intuition what should be expected in the number field case.
 
===Hasse principle===
A prototypical question, posed at a global level, is whether some polynomial equation has a solution in ''F''. If this is the case, this solution is also a solution in all completions. The [[local-global principle]] or Hasse principle asserts that for quadratic equations, the converse holds, as well. Thereby, checking whether such an equation has a solution can be done on all the completions of ''F'', which is often easier, since analytic methods (classical analytic tools such as [[intermediate value theorem]] at the archimedean places and [[p-adic analysis]] at the nonarchimedean places) can be used. This implication does not hold, however, for more general types of equations. However, the idea of passing from local data to global ones proves fruitful in class field theory, for example, where [[local class field theory]] is used to obtain global insights mentioned above. This is also related to the fact that the Galois groups of the completions ''F''<sub>v</sub> can be explicitly determined, whereas the Galois groups of global fields, even of '''Q''' are far less understood.
 
===Adeles and ideles===
In order to assemble local data pertaining to all local fields attached to ''F'', the [[adele ring]] is set up. A multiplicative variant is referred to as [[idele]]s.
 
==See also==
*[[Dirichlet's unit theorem]], [[S-unit]]
*[[Kummer extension]]
*[[Minkowski's theorem]], [[Geometry of numbers]]
*[[Chebotarev's density theorem]]
* [[Ray class group]]
* [[Decomposition group]]
* [[Genus field]]
 
==Notes==
<references/>
 
==References==
* {{Citation | last1=Cohn | first1=Harvey | title=A Classical Invitation to Algebraic Numbers and Class Fields | publisher=[[Springer-Verlag]] | location=New York | series=Universitext | year=1988}}
* Conrad, Keith http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/unittheorem.pdf
* {{Citation | last1=Janusz | first1=Gerald J. | title=Algebraic Number Fields | publisher=[[American Mathematical Society]] | location=Providence, R.I. | edition=2nd | isbn=978-0-8218-0429-2 | year=1997 | month=1996}}
* Helmut Hasse, ''Number Theory'', Springer ''Classics in Mathematics'' Series (2002)
* Serge Lang, ''Algebraic Number Theory'', second edition, Springer, 2000
* Richard A. Mollin, ''Algebraic Number Theory'', CRC, 1999
* Ram Murty, ''Problems in Algebraic Number Theory'', Second Edition, Springer, 2005
* {{Citation
| last=Narkiewicz
| first=Władysław
| title=Elementary and analytic theory of algebraic numbers
| edition=3
| year=2004
| publisher=[[Springer-Verlag]]
| location=Berlin
| series=Springer Monographs in Mathematics
| isbn=978-3-540-21902-6
| mr=2078267
}}
* {{Citation | last1=Neukirch | first1=Jürgen | author1-link=Jürgen Neukirch | title=Algebraic number theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-3-540-65399-8 | mr=1697859 | year=1999 | volume=322 | zbl=0956.11021 }}
*{{Citation | last1=Neukirch | first1=Jürgen | author1-link=Jürgen Neukirch | last2=Schmidt | first2=Alexander | last3=Wingberg | first3=Kay | title=Cohomology of Number Fields | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-3-540-66671-4 | mr=1737196 | year=2000 | volume=323 | zbl=1136.11001 }}
* André Weil, ''Basic Number Theory'', third edition, Springer, 1995
 
[[Category:Algebraic number theory]]
[[Category:Field theory]]

Revision as of 15:21, 1 March 2014

In get to make positive that the knife you acquire is of a dependable quality and the very best pocket knife possible , it’s very best to stick to the effectively identified recognized pocket knife brands Low cost knives are typically produced with cheap supplies. The knives may appear sharp and polished at initial, but soon after a few utilizes you will begin to observe the blade dulling and other deficiencies may possibly rapidly surface. By sticking with the properly recognized makes such as Case , Buck Knives , Spiderco , Gerber , and other folks, you can be positive that you will be acquiring a large top quality knife.
Effectively, I guess I am somewhat old style when it will come to knives To me, carrying a pocket knife is proper up there with shaking a mans hand. It is also like a proper of passage from boyhood to manhood. Currently being allowed to have your knife is a sign of a boy turning into something much more than just a boy. The only time I do not have a knife with me is when I know I am heading somewhere they may well want to confiscate it like at a live performance for occasion. When this happens, it goes in the glove box of my truck right following to my Leatherman multi-instrument.
Very, a amount of folks have this variety of knife as a signifies of self-defence and for their dimensions, could be taken discreetly without anyone knowing that you have it in your possession. You by no means know when you may require a knife for what ever cause and pocket knives , due to the fact of their usefulness, will most likely very best go well with your specifications. Dollar pocket knives are rated by a lot of customers as the best offered and are gorgeous and long-long lasting. They are compact and of a quite substantial quality and are very easily obtainable on the internet. Start to see the wide choice prior to producing a acquire and make confident you have the knife you most want.
I grew up in the Upper Snake River Valley in Idaho. It is approximately a hundred miles south of West Yellowstone, Montana. My uncles have been sheep ranchers, grazing 3 massive herds in the mountains of japanese Idahowestern Wyoming. As a younger boy, I discovered the price of getting a pocket knife It was and is a really important resource. We utilised our knives for reducing a whole lot of different items of outside equipment. We repaired bridles, saddles, and even cut wooden shavings to begin a hearth. A high quality knife was something to cherish and treatment for. A dull knife just wasn't employed.
Lock blade pocket knives are practically nothing a lot more than a small but of easy present day technology currently being utilized to the traditional pocket knife. If you have at any time experienced the misfortunate of obtaining a blade shut on your fingers you will identify the benefits of getting a blade that locks in area. The composition of these knives is the exact same. Most of them still run with a spring system but when the blade is totally opened it locks into area. There are diverse varieties of locking mechanism, most of which are quite effective at keeping the blade off of your fingers.
Sets and kits from Warthog are made in canvas puches or in wood situations. You can choose wooden cases with jacaranda, rosewood or Rhodesian teak, among other folks. They are a lot more expensive, but can be a perfect present for a knife lover. All sharpening kits have a double grit oilstone that is secured on a wooden foundation. If you liked this information and you would such as to receive even more facts concerning Best Throwing Knives For Beginners kindly go to our own internet site. There is an adjustable horizontal and vertical rod that information the blade in favorable path, one clamp to pick a wanted angle and other clamp for a chisel. You also get one particular bottle of honing oil to go with the Warthog knife sharpener package.