Orthogonal polynomials: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
typo
en>Pinethicket
m Reverted edits by 137.28.21.82 (talk) to last version by Yobot
 
Line 1: Line 1:
In mathematics, the '''affine ''q''-Krawtchouk polynomials'''  are a family of basic hypergeometric [[orthogonal polynomials]] in the basic [[Askey scheme]], introduced by Carlitz and Hodges. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | doi=10.1007/978-3-642-05014-5 | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.
BI Intelligence<br><br>


==Definition==
If you have any kind of concerns concerning where and how you can use [https://www.youtube.com/watch?v=ms4NOW1epkY app dev center], you can call us at our web site.
 
The  polynomials are given in terms of [[basic hypergeometric function]]s and the [[Pochhammer symbol]] by
:<math>\displaystyle    </math>
 
==Orthogonality==
{{Empty section|date=September 2011}}
 
==Recurrence and difference relations==
{{Empty section|date=September 2011}}
 
==Rodrigues formula==
{{Empty section|date=September 2011}}
 
==Generating function==
{{Empty section|date=September 2011}}
 
==Relation to other polynomials==
{{Empty section|date=September 2011}}
 
==References==
 
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | doi=10.2277/0521833574 | mr=2128719 | year=2004 | volume=96}}
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
*{{dlmf|id=18|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
*{{Citation | last1=Stanton | first1=Dennis | title=Three addition theorems for some q-Krawtchouk polynomials | doi=10.1007/BF01447435 | mr=608153 | year=1981 | journal=Geometriae Dedicata | issn=0046-5755 | volume=10 | issue=1 | pages=403–425}}
 
[[Category:Orthogonal polynomials]]
[[Category:Q-analogs]]
[[Category:Special hypergeometric functions]]

Latest revision as of 21:25, 10 November 2014

BI Intelligence

If you have any kind of concerns concerning where and how you can use app dev center, you can call us at our web site.