|
|
Line 1: |
Line 1: |
| In mathematics, the '''affine ''q''-Krawtchouk polynomials''' are a family of basic hypergeometric [[orthogonal polynomials]] in the basic [[Askey scheme]], introduced by Carlitz and Hodges. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | doi=10.1007/978-3-642-05014-5 | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.
| | BI Intelligence<br><br> |
|
| |
|
| ==Definition==
| | If you have any kind of concerns concerning where and how you can use [https://www.youtube.com/watch?v=ms4NOW1epkY app dev center], you can call us at our web site. |
| | |
| The polynomials are given in terms of [[basic hypergeometric function]]s and the [[Pochhammer symbol]] by
| |
| :<math>\displaystyle </math> | |
| | |
| ==Orthogonality==
| |
| {{Empty section|date=September 2011}}
| |
| | |
| ==Recurrence and difference relations==
| |
| {{Empty section|date=September 2011}}
| |
| | |
| ==Rodrigues formula==
| |
| {{Empty section|date=September 2011}}
| |
| | |
| ==Generating function==
| |
| {{Empty section|date=September 2011}}
| |
| | |
| ==Relation to other polynomials==
| |
| {{Empty section|date=September 2011}}
| |
| | |
| ==References==
| |
| | |
| *{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | doi=10.2277/0521833574 | mr=2128719 | year=2004 | volume=96}}
| |
| *{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
| |
| *{{dlmf|id=18|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
| |
| *{{Citation | last1=Stanton | first1=Dennis | title=Three addition theorems for some q-Krawtchouk polynomials | doi=10.1007/BF01447435 | mr=608153 | year=1981 | journal=Geometriae Dedicata | issn=0046-5755 | volume=10 | issue=1 | pages=403–425}}
| |
| | |
| [[Category:Orthogonal polynomials]]
| |
| [[Category:Q-analogs]]
| |
| [[Category:Special hypergeometric functions]]
| |
BI Intelligence
If you have any kind of concerns concerning where and how you can use app dev center, you can call us at our web site.