List of integrals of trigonometric functions: Difference between revisions
Jump to navigation
Jump to search
en>Wikispaghetti m formula: derivative italic |
Integral over a full circle |
||
Line 1: | Line 1: | ||
The following is a list of [[indefinite integral]]s ([[antiderivative]]s) of expressions involving the [[inverse hyperbolic function]]s. For a complete list of integral formulas, see [[lists of integrals]]. | |||
* In all formulas the constant ''a'' is assumed to be nonzero, and ''C'' denotes the [[constant of integration]]. | |||
* For each inverse hyperbolic integration formula below there is a corresponding formula in the [[list of integrals of inverse trigonometric functions]]. | |||
== Inverse hyperbolic sine integration formulas == | |||
:<math>\int\operatorname{arsinh}(a\,x)\,dx= | |||
x\,\operatorname{arsinh}(a\,x)-\frac{\sqrt{a^2\,x^2+1}}{a}+C</math> | |||
:<math>\int x\,\operatorname{arsinh}(a\,x)dx= | |||
\frac{x^2\,\operatorname{arsinh}(a\,x)}{2}+ | |||
\frac{\operatorname{arsinh}(a\,x)}{4\,a^2}- | |||
\frac{x \sqrt{a^2\,x^2+1}}{4\,a}+C</math> | |||
:<math>\int x^2\,\operatorname{arsinh}(a\,x)dx= | |||
\frac{x^3\,\operatorname{arsinh}(a\,x)}{3}- | |||
\frac{\left(a^2\,x^2-2\right)\sqrt{a^2\,x^2+1}}{9\,a^3}+C</math> | |||
:<math>\int x^m\,\operatorname{arsinh}(a\,x)dx= | |||
\frac{x^{m+1}\,\operatorname{arsinh}(a\,x)}{m+1}\,-\, | |||
\frac{a}{m+1}\int\frac{x^{m+1}}{\sqrt{a^2\,x^2+1}}\,dx\quad(m\ne-1)</math> | |||
:<math>\int\operatorname{arsinh}(a\,x)^2\,dx= | |||
2\,x+x\,\operatorname{arsinh}(a\,x)^2- | |||
\frac{2\,\sqrt{a^2\,x^2+1}\,\operatorname{arsinh}(a\,x)}{a}+C</math> | |||
:<math>\int\operatorname{arsinh}(a\,x)^n\,dx= | |||
x\,\operatorname{arsinh}(a\,x)^n\,-\, | |||
\frac{n\,\sqrt{a^2\,x^2+1}\,\operatorname{arsinh}(a\,x)^{n-1}}{a}\,+\, | |||
n\,(n-1)\int\operatorname{arsinh}(a\,x)^{n-2}\,dx</math> | |||
:<math>\int\operatorname{arsinh}(a\,x)^n\,dx= | |||
-\frac{x\,\operatorname{arsinh}(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\, | |||
\frac{\sqrt{a^2\,x^2+1}\,\operatorname{arsinh}(a\,x)^{n+1}}{a(n+1)}\,+\, | |||
\frac{1}{(n+1)\,(n+2)}\int\operatorname{arsinh}(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)</math> | |||
== Inverse hyperbolic cosine integration formulas == | |||
:<math>\int\operatorname{arcosh}(a\,x)\,dx= | |||
x\,\operatorname{arcosh}(a\,x)- | |||
\frac{\sqrt{a\,x+1}\,\sqrt{a\,x-1}}{a}+C</math> | |||
:<math>\int x\,\operatorname{arcosh}(a\,x)dx= | |||
\frac{x^2\,\operatorname{arcosh}(a\,x)}{2}- | |||
\frac{\operatorname{arcosh}(a\,x)}{4\,a^2}- | |||
\frac{x\,\sqrt{a\,x+1}\,\sqrt{a\,x-1}}{4\,a}+C</math> | |||
:<math>\int x^2\,\operatorname{arcosh}(a\,x)dx= | |||
\frac{x^3\,\operatorname{arcosh}(a\,x)}{3}-\frac{\left(a^2\,x^2+2\right)\sqrt{a\,x+1}\,\sqrt{a\,x-1}}{9\,a^3}+C</math> | |||
:<math>\int x^m\,\operatorname{arcosh}(a\,x)dx= | |||
\frac{x^{m+1}\,\operatorname{arcosh}(a\,x)}{m+1}\,-\, | |||
\frac{a}{m+1}\int\frac{x^{m+1}}{\sqrt{a\,x+1}\,\sqrt{a\,x-1}}\,dx\quad(m\ne-1)</math> | |||
:<math>\int\operatorname{arcosh}(a\,x)^2\,dx= | |||
2\,x+x\,\operatorname{arcosh}(a\,x)^2- | |||
\frac{2\,\sqrt{a\,x+1}\,\sqrt{a\,x-1}\,\operatorname{arcosh}(a\,x)}{a}+C</math> | |||
:<math>\int\operatorname{arcosh}(a\,x)^n\,dx= | |||
x\,\operatorname{arcosh}(a\,x)^n\,-\, | |||
\frac{n\,\sqrt{a\,x+1}\,\sqrt{a\,x-1}\,\operatorname{arcosh}(a\,x)^{n-1}}{a}\,+\, | |||
n\,(n-1)\int\operatorname{arcosh}(a\,x)^{n-2}\,dx</math> | |||
:<math>\int\operatorname{arcosh}(a\,x)^n\,dx= | |||
-\frac{x\,\operatorname{arcosh}(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\, | |||
\frac{\sqrt{a\,x+1}\,\sqrt{a\,x-1}\,\operatorname{arcosh}(a\,x)^{n+1}}{a\,(n+1)}\,+\, | |||
\frac{1}{(n+1)\,(n+2)}\int\operatorname{arcosh}(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)</math> | |||
== Inverse hyperbolic tangent integration formulas == | |||
:<math>\int\operatorname{artanh}(a\,x)\,dx= | |||
x\,\operatorname{artanh}(a\,x)+ | |||
\frac{\ln\left(1-a^2\,x^2\right)}{2\,a}+C</math> | |||
:<math>\int x\,\operatorname{artanh}(a\,x)dx= | |||
\frac{x^2\,\operatorname{artanh}(a\,x)}{2}- | |||
\frac{\operatorname{artanh}(a\,x)}{2\,a^2}+\frac{x}{2\,a}+C</math> | |||
:<math>\int x^2\,\operatorname{artanh}(a\,x)dx= | |||
\frac{x^3\,\operatorname{artanh}(a\,x)}{3}+ | |||
\frac{\ln\left(1-a^2\,x^2\right)}{6\,a^3}+\frac{x^2}{6\,a}+C</math> | |||
:<math>\int x^m\,\operatorname{artanh}(a\,x)dx= | |||
\frac{x^{m+1}\operatorname{artanh}(a\,x)}{m+1}- | |||
\frac{a}{m+1}\int\frac{x^{m+1}}{1-a^2\,x^2}\,dx\quad(m\ne-1)</math> | |||
== Inverse hyperbolic cotangent integration formulas == | |||
:<math>\int\operatorname{arcoth}(a\,x)\,dx= | |||
x\,\operatorname{arcoth}(a\,x)+ | |||
\frac{\ln\left(a^2\,x^2-1\right)}{2\,a}+C</math> | |||
:<math>\int x\,\operatorname{arcoth}(a\,x)dx= | |||
\frac{x^2\,\operatorname{arcoth}(a\,x)}{2}- | |||
\frac{\operatorname{arcoth}(a\,x)}{2\,a^2}+\frac{x}{2\,a}+C</math> | |||
:<math>\int x^2\,\operatorname{arcoth}(a\,x)dx= | |||
\frac{x^3\,\operatorname{arcoth}(a\,x)}{3}+ | |||
\frac{\ln\left(a^2\,x^2-1\right)}{6\,a^3}+\frac{x^2}{6\,a}+C</math> | |||
:<math>\int x^m\,\operatorname{arcoth}(a\,x)dx= | |||
\frac{x^{m+1}\operatorname{arcoth}(a\,x)}{m+1}+ | |||
\frac{a}{m+1}\int\frac{x^{m+1}}{a^2\,x^2-1}\,dx\quad(m\ne-1)</math> | |||
== Inverse hyperbolic secant integration formulas == | |||
:<math>\int\operatorname{arsech}(a\,x)\,dx= | |||
x\,\operatorname{arsech}(a\,x)- | |||
\frac{2}{a}\,\operatorname{arctan}\sqrt{\frac{1-a\,x}{1+a\,x}}+C</math> | |||
:<math>\int x\,\operatorname{arsech}(a\,x)dx= | |||
\frac{x^2\,\operatorname{arsech}(a\,x)}{2}- | |||
\frac{(1+a\,x)}{2\,a^2}\sqrt{\frac{1-a\,x}{1+a\,x}}+C</math> | |||
:<math>\int x^2\,\operatorname{arsech}(a\,x)dx= | |||
\frac{x^3\,\operatorname{arsech}(a\,x)}{3}\,-\, | |||
\frac{1}{3\,a^3}\,\operatorname{arctan}\sqrt{\frac{1-a\,x}{1+a\,x}}\,-\, | |||
\frac{x(1+a\,x)}{6\,a^2}\sqrt{\frac{1-a\,x}{1+a\,x}}\,+\,C</math> | |||
:<math>\int x^m\,\operatorname{arsech}(a\,x)dx= | |||
\frac{x^{m+1}\,\operatorname{arsech}(a\,x)}{m+1}\,+\, | |||
\frac{1}{m+1}\int\frac{x^m}{(1+a\,x)\sqrt{\frac{1-a\,x}{1+a\,x}}}\,dx\quad(m\ne-1)</math> | |||
== Inverse hyperbolic cosecant integration formulas == | |||
:<math>\int\operatorname{arcsch}(a\,x)\,dx= | |||
x\,\operatorname{arcsch}(a\,x)+ | |||
\frac{1}{a}\,\operatorname{arcoth}\sqrt{\frac{1}{a^2\,x^2}+1}+C</math> | |||
:<math>\int x\,\operatorname{arcsch}(a\,x)dx= | |||
\frac{x^2\,\operatorname{arcsch}(a\,x)}{2}+ | |||
\frac{x}{2\,a}\sqrt{\frac{1}{a^2\,x^2}+1}+C</math> | |||
:<math>\int x^2\,\operatorname{arcsch}(a\,x)dx= | |||
\frac{x^3\,\operatorname{arcsch}(a\,x)}{3}\,-\, | |||
\frac{1}{6\,a^3}\,\operatorname{arcoth}\sqrt{\frac{1}{a^2\,x^2}+1}\,+\, | |||
\frac{x^2}{6\,a}\sqrt{\frac{1}{a^2\,x^2}+1}\,+\,C</math> | |||
:<math>\int x^m\,\operatorname{arcsch}(a\,x)dx= | |||
\frac{x^{m+1}\operatorname{arcsch}(a\,x)}{m+1}\,+\, | |||
\frac{1}{a(m+1)}\int\frac{x^{m-1}}{\sqrt{\frac{1}{a^2\,x^2}+1}}\,dx\quad(m\ne-1)</math> | |||
{{Lists of integrals}} | |||
[[Category:Integrals|Area functions]] | |||
[[Category:Mathematics-related lists|Integrals of inverse hyperbolic functions]] |
Revision as of 08:12, 22 January 2014
The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals.
- In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
- For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.