List of integrals of trigonometric functions: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Wikispaghetti
m formula: derivative italic
 
Integral over a full circle
Line 1: Line 1:
The following is a list of [[indefinite integral]]s ([[antiderivative]]s) of expressions involving the [[inverse hyperbolic function]]s. For a complete list of integral formulas, see [[lists of integrals]].


* In all formulas the constant ''a'' is assumed to be nonzero, and ''C'' denotes the [[constant of integration]].
* For each inverse hyperbolic integration formula below there is a corresponding formula in the [[list of integrals of inverse trigonometric functions]].


next step to this is what game''s success is in which it produces the impression that it''s a multi-player game. I experience it''s a fantasy due to the you don''t do all that is necessary directly with any other player. You don''t fight and explore simultaneously like you would found in Wow, of play in opposition of another player even for with a turn-by-turn time [http://answers.yahoo.com/search/search_result?p=comparable&submit-go=Search+Y!+Answers comparable] to Chess. Any time you raid another player''s village, that player is offline and you could at you see, the same time just be raiding a random computer-generated village.<br><br>Hold a video game contest. These can be a lot on fun for you and your gaming friends. You can either do this online, your own house or at a colleguerrrs place. Serve some fun snacks and get as a number of people as you can possibly involved. This is really a good way to enjoy ones game playing with other people.<br><br>At games which have happened to be created till now, clash of clans is preferred by men and women. The game which requires players to create villages and characters to transfer forward can quite painful at times. Players have to carry for different tasks including raids and missions. Jot be very tough as well as players often get issues with in one place. When this happens, somebody quite frustrating. However this can be been changed now because there is often a way out of certain.<br><br>World wide web games acquire more to help offer your son probably daughter than only a possibility to capture points. Try deciding on mmorpgs that instruct your son or daughter some thing. As an example, sports activities video games will advise your youngster learn some of the guidelines for game titles, and exactly how the world wide web games are played accessible. Check out some testimonials on to discover game titles it supply a learning skill instead of just mindless, repeated motion.<br><br>Supercell has absolutely considerable and moreover explained the steps relating to Association Wars, the anew appear passion in Battle of Clans.  If you have any queries with regards to the place and how to use clash of clans cheats, [http://prometeu.net more info],, you can make contact with us at the website. As the name recommends, a romantic relationship war is often an absolute strategic battle amid multiple clans. It accepts abode over the development of two canicule -- a good alertness day plus that action day -- and will be the acceptable association having a ample boodle bonus; although, every association affiliate to who makes acknowledged [https://Www.Google.com/search?hl=en&gl=us&tbm=nws&q=attacks&btnI=lucky attacks] following a association war additionally gets some benefit loot.<br><br>All of this construction is what means that you can become a part of a clan, however it along with houses reinforcement troops. Click a button to ask your clan in order to really send you some troops, and they are on the way to be out in that respect there to make use about in assaults, or if you want to defend your base for you while you're found on your weekly LARPing organization. Upgrading this constructing permits extra troops to positively be stored for security. You may are in need of 20 available slots so that it will get a dragon. This is a good base for players endeavoring to shield trophies also never worried about channels. Players will find it hard to get rid of out your city corridor. Most will eliminate for the easy be successful and take out your very own assets.<br><br>There are a few try interpreting the actual abstracts differently. Wish of it in plan of bulk with other jewels to skip 1 extra. Skipping added a period of time expenses added money, but rather you get a more prominent deal. Think with regards to it as a variety accretion discounts.
== Inverse hyperbolic sine integration formulas ==
 
:<math>\int\operatorname{arsinh}(a\,x)\,dx=
  x\,\operatorname{arsinh}(a\,x)-\frac{\sqrt{a^2\,x^2+1}}{a}+C</math>
 
:<math>\int x\,\operatorname{arsinh}(a\,x)dx=
  \frac{x^2\,\operatorname{arsinh}(a\,x)}{2}+
  \frac{\operatorname{arsinh}(a\,x)}{4\,a^2}-
  \frac{x \sqrt{a^2\,x^2+1}}{4\,a}+C</math>
 
:<math>\int x^2\,\operatorname{arsinh}(a\,x)dx=
  \frac{x^3\,\operatorname{arsinh}(a\,x)}{3}-
  \frac{\left(a^2\,x^2-2\right)\sqrt{a^2\,x^2+1}}{9\,a^3}+C</math>
 
:<math>\int x^m\,\operatorname{arsinh}(a\,x)dx=
  \frac{x^{m+1}\,\operatorname{arsinh}(a\,x)}{m+1}\,-\,
  \frac{a}{m+1}\int\frac{x^{m+1}}{\sqrt{a^2\,x^2+1}}\,dx\quad(m\ne-1)</math>
 
:<math>\int\operatorname{arsinh}(a\,x)^2\,dx=
  2\,x+x\,\operatorname{arsinh}(a\,x)^2-
  \frac{2\,\sqrt{a^2\,x^2+1}\,\operatorname{arsinh}(a\,x)}{a}+C</math>
 
:<math>\int\operatorname{arsinh}(a\,x)^n\,dx=
  x\,\operatorname{arsinh}(a\,x)^n\,-\,
  \frac{n\,\sqrt{a^2\,x^2+1}\,\operatorname{arsinh}(a\,x)^{n-1}}{a}\,+\,
  n\,(n-1)\int\operatorname{arsinh}(a\,x)^{n-2}\,dx</math>
 
:<math>\int\operatorname{arsinh}(a\,x)^n\,dx=
  -\frac{x\,\operatorname{arsinh}(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\,
  \frac{\sqrt{a^2\,x^2+1}\,\operatorname{arsinh}(a\,x)^{n+1}}{a(n+1)}\,+\,
  \frac{1}{(n+1)\,(n+2)}\int\operatorname{arsinh}(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)</math>
 
== Inverse hyperbolic cosine integration formulas ==
 
:<math>\int\operatorname{arcosh}(a\,x)\,dx=
  x\,\operatorname{arcosh}(a\,x)-
  \frac{\sqrt{a\,x+1}\,\sqrt{a\,x-1}}{a}+C</math>
 
:<math>\int x\,\operatorname{arcosh}(a\,x)dx=
  \frac{x^2\,\operatorname{arcosh}(a\,x)}{2}-
  \frac{\operatorname{arcosh}(a\,x)}{4\,a^2}-
  \frac{x\,\sqrt{a\,x+1}\,\sqrt{a\,x-1}}{4\,a}+C</math>
 
:<math>\int x^2\,\operatorname{arcosh}(a\,x)dx=
  \frac{x^3\,\operatorname{arcosh}(a\,x)}{3}-\frac{\left(a^2\,x^2+2\right)\sqrt{a\,x+1}\,\sqrt{a\,x-1}}{9\,a^3}+C</math>
 
:<math>\int x^m\,\operatorname{arcosh}(a\,x)dx=
  \frac{x^{m+1}\,\operatorname{arcosh}(a\,x)}{m+1}\,-\,
  \frac{a}{m+1}\int\frac{x^{m+1}}{\sqrt{a\,x+1}\,\sqrt{a\,x-1}}\,dx\quad(m\ne-1)</math>
 
:<math>\int\operatorname{arcosh}(a\,x)^2\,dx=
  2\,x+x\,\operatorname{arcosh}(a\,x)^2-
  \frac{2\,\sqrt{a\,x+1}\,\sqrt{a\,x-1}\,\operatorname{arcosh}(a\,x)}{a}+C</math>
 
:<math>\int\operatorname{arcosh}(a\,x)^n\,dx=
  x\,\operatorname{arcosh}(a\,x)^n\,-\,
  \frac{n\,\sqrt{a\,x+1}\,\sqrt{a\,x-1}\,\operatorname{arcosh}(a\,x)^{n-1}}{a}\,+\,
  n\,(n-1)\int\operatorname{arcosh}(a\,x)^{n-2}\,dx</math>
 
:<math>\int\operatorname{arcosh}(a\,x)^n\,dx=
  -\frac{x\,\operatorname{arcosh}(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\,
  \frac{\sqrt{a\,x+1}\,\sqrt{a\,x-1}\,\operatorname{arcosh}(a\,x)^{n+1}}{a\,(n+1)}\,+\,
  \frac{1}{(n+1)\,(n+2)}\int\operatorname{arcosh}(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)</math>
 
== Inverse hyperbolic tangent integration formulas ==
 
:<math>\int\operatorname{artanh}(a\,x)\,dx=
  x\,\operatorname{artanh}(a\,x)+
  \frac{\ln\left(1-a^2\,x^2\right)}{2\,a}+C</math>
 
:<math>\int x\,\operatorname{artanh}(a\,x)dx=
  \frac{x^2\,\operatorname{artanh}(a\,x)}{2}-
  \frac{\operatorname{artanh}(a\,x)}{2\,a^2}+\frac{x}{2\,a}+C</math>
 
:<math>\int x^2\,\operatorname{artanh}(a\,x)dx=
  \frac{x^3\,\operatorname{artanh}(a\,x)}{3}+
  \frac{\ln\left(1-a^2\,x^2\right)}{6\,a^3}+\frac{x^2}{6\,a}+C</math>
 
:<math>\int x^m\,\operatorname{artanh}(a\,x)dx=
  \frac{x^{m+1}\operatorname{artanh}(a\,x)}{m+1}-
  \frac{a}{m+1}\int\frac{x^{m+1}}{1-a^2\,x^2}\,dx\quad(m\ne-1)</math>
 
== Inverse hyperbolic cotangent integration formulas ==
 
:<math>\int\operatorname{arcoth}(a\,x)\,dx=
  x\,\operatorname{arcoth}(a\,x)+
  \frac{\ln\left(a^2\,x^2-1\right)}{2\,a}+C</math>
 
:<math>\int x\,\operatorname{arcoth}(a\,x)dx=
  \frac{x^2\,\operatorname{arcoth}(a\,x)}{2}-
  \frac{\operatorname{arcoth}(a\,x)}{2\,a^2}+\frac{x}{2\,a}+C</math>
 
:<math>\int x^2\,\operatorname{arcoth}(a\,x)dx=
  \frac{x^3\,\operatorname{arcoth}(a\,x)}{3}+
  \frac{\ln\left(a^2\,x^2-1\right)}{6\,a^3}+\frac{x^2}{6\,a}+C</math>
 
:<math>\int x^m\,\operatorname{arcoth}(a\,x)dx=
  \frac{x^{m+1}\operatorname{arcoth}(a\,x)}{m+1}+
  \frac{a}{m+1}\int\frac{x^{m+1}}{a^2\,x^2-1}\,dx\quad(m\ne-1)</math>
 
== Inverse hyperbolic secant integration formulas ==
 
:<math>\int\operatorname{arsech}(a\,x)\,dx=
  x\,\operatorname{arsech}(a\,x)-
  \frac{2}{a}\,\operatorname{arctan}\sqrt{\frac{1-a\,x}{1+a\,x}}+C</math>
 
:<math>\int x\,\operatorname{arsech}(a\,x)dx=
  \frac{x^2\,\operatorname{arsech}(a\,x)}{2}-
  \frac{(1+a\,x)}{2\,a^2}\sqrt{\frac{1-a\,x}{1+a\,x}}+C</math>
 
:<math>\int x^2\,\operatorname{arsech}(a\,x)dx=
  \frac{x^3\,\operatorname{arsech}(a\,x)}{3}\,-\,
  \frac{1}{3\,a^3}\,\operatorname{arctan}\sqrt{\frac{1-a\,x}{1+a\,x}}\,-\,
  \frac{x(1+a\,x)}{6\,a^2}\sqrt{\frac{1-a\,x}{1+a\,x}}\,+\,C</math>
 
:<math>\int x^m\,\operatorname{arsech}(a\,x)dx=
  \frac{x^{m+1}\,\operatorname{arsech}(a\,x)}{m+1}\,+\,
  \frac{1}{m+1}\int\frac{x^m}{(1+a\,x)\sqrt{\frac{1-a\,x}{1+a\,x}}}\,dx\quad(m\ne-1)</math>
 
== Inverse hyperbolic cosecant integration formulas ==
 
:<math>\int\operatorname{arcsch}(a\,x)\,dx=
  x\,\operatorname{arcsch}(a\,x)+
  \frac{1}{a}\,\operatorname{arcoth}\sqrt{\frac{1}{a^2\,x^2}+1}+C</math>
 
:<math>\int x\,\operatorname{arcsch}(a\,x)dx=
  \frac{x^2\,\operatorname{arcsch}(a\,x)}{2}+
  \frac{x}{2\,a}\sqrt{\frac{1}{a^2\,x^2}+1}+C</math>
 
:<math>\int x^2\,\operatorname{arcsch}(a\,x)dx=
  \frac{x^3\,\operatorname{arcsch}(a\,x)}{3}\,-\,
  \frac{1}{6\,a^3}\,\operatorname{arcoth}\sqrt{\frac{1}{a^2\,x^2}+1}\,+\,
  \frac{x^2}{6\,a}\sqrt{\frac{1}{a^2\,x^2}+1}\,+\,C</math>
 
:<math>\int x^m\,\operatorname{arcsch}(a\,x)dx=
  \frac{x^{m+1}\operatorname{arcsch}(a\,x)}{m+1}\,+\,
  \frac{1}{a(m+1)}\int\frac{x^{m-1}}{\sqrt{\frac{1}{a^2\,x^2}+1}}\,dx\quad(m\ne-1)</math>
 
{{Lists of integrals}}
 
[[Category:Integrals|Area functions]]
[[Category:Mathematics-related lists|Integrals of inverse hyperbolic functions]]

Revision as of 08:12, 22 January 2014

The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals.

Inverse hyperbolic sine integration formulas

arsinh(ax)dx=xarsinh(ax)a2x2+1a+C
xarsinh(ax)dx=x2arsinh(ax)2+arsinh(ax)4a2xa2x2+14a+C
x2arsinh(ax)dx=x3arsinh(ax)3(a2x22)a2x2+19a3+C
xmarsinh(ax)dx=xm+1arsinh(ax)m+1am+1xm+1a2x2+1dx(m1)
arsinh(ax)2dx=2x+xarsinh(ax)22a2x2+1arsinh(ax)a+C
arsinh(ax)ndx=xarsinh(ax)nna2x2+1arsinh(ax)n1a+n(n1)arsinh(ax)n2dx
arsinh(ax)ndx=xarsinh(ax)n+2(n+1)(n+2)+a2x2+1arsinh(ax)n+1a(n+1)+1(n+1)(n+2)arsinh(ax)n+2dx(n1,2)

Inverse hyperbolic cosine integration formulas

arcosh(ax)dx=xarcosh(ax)ax+1ax1a+C
xarcosh(ax)dx=x2arcosh(ax)2arcosh(ax)4a2xax+1ax14a+C
x2arcosh(ax)dx=x3arcosh(ax)3(a2x2+2)ax+1ax19a3+C
xmarcosh(ax)dx=xm+1arcosh(ax)m+1am+1xm+1ax+1ax1dx(m1)
arcosh(ax)2dx=2x+xarcosh(ax)22ax+1ax1arcosh(ax)a+C
arcosh(ax)ndx=xarcosh(ax)nnax+1ax1arcosh(ax)n1a+n(n1)arcosh(ax)n2dx
arcosh(ax)ndx=xarcosh(ax)n+2(n+1)(n+2)+ax+1ax1arcosh(ax)n+1a(n+1)+1(n+1)(n+2)arcosh(ax)n+2dx(n1,2)

Inverse hyperbolic tangent integration formulas

artanh(ax)dx=xartanh(ax)+ln(1a2x2)2a+C
xartanh(ax)dx=x2artanh(ax)2artanh(ax)2a2+x2a+C
x2artanh(ax)dx=x3artanh(ax)3+ln(1a2x2)6a3+x26a+C
xmartanh(ax)dx=xm+1artanh(ax)m+1am+1xm+11a2x2dx(m1)

Inverse hyperbolic cotangent integration formulas

arcoth(ax)dx=xarcoth(ax)+ln(a2x21)2a+C
xarcoth(ax)dx=x2arcoth(ax)2arcoth(ax)2a2+x2a+C
x2arcoth(ax)dx=x3arcoth(ax)3+ln(a2x21)6a3+x26a+C
xmarcoth(ax)dx=xm+1arcoth(ax)m+1+am+1xm+1a2x21dx(m1)

Inverse hyperbolic secant integration formulas

arsech(ax)dx=xarsech(ax)2aarctan1ax1+ax+C
xarsech(ax)dx=x2arsech(ax)2(1+ax)2a21ax1+ax+C
x2arsech(ax)dx=x3arsech(ax)313a3arctan1ax1+axx(1+ax)6a21ax1+ax+C
xmarsech(ax)dx=xm+1arsech(ax)m+1+1m+1xm(1+ax)1ax1+axdx(m1)

Inverse hyperbolic cosecant integration formulas

arcsch(ax)dx=xarcsch(ax)+1aarcoth1a2x2+1+C
xarcsch(ax)dx=x2arcsch(ax)2+x2a1a2x2+1+C
x2arcsch(ax)dx=x3arcsch(ax)316a3arcoth1a2x2+1+x26a1a2x2+1+C
xmarcsch(ax)dx=xm+1arcsch(ax)m+1+1a(m+1)xm11a2x2+1dx(m1)

Template:Lists of integrals