|
|
Line 1: |
Line 1: |
| {{pp-move-indef}}
| | In [[numerical analysis]], a '''blossom''' is a [[functional (mathematics)|functional]] that can be applied to any [[polynomial]], but is mostly used for [[Bézier curve|Bézier]] and [[spline]] curves and surfaces. |
| [[File:Pythagorean proof (1).svg|300px|right|thumb|An example of "beauty in method"—a simple and elegant proof of the [[Pythagorean theorem]].]] | |
|
| |
|
| '''Mathematical beauty''' describes the notion that some [[mathematician]]s may derive [[aesthetics|aesthetic]] pleasure from their work, and from [[mathematics]] in general. They express this pleasure by describing mathematics (or, at least, some aspect of mathematics) as ''beautiful''. Sometimes mathematicians describe mathematics as an [[art]] form or, at a minimum, as a creative activity. Comparisons are often made with [[music]] and [[poetry]].
| | The blossom of a polynomial ''ƒ'', often denoted <math>\mathcal{B}[f],</math> is completely characterised by the three properties: |
| | | * It is a symmetric function of its arguments: |
| [[Bertrand Russell]] expressed his sense of mathematical beauty in these words:
| | :: <math>\mathcal{B}[f](u_1,\dots,u_d) = \mathcal{B}[f]\big(\pi(u_1,\dots,u_d)\big),\,</math> |
| <blockquote> | | : (where ''π'' is any [[permutation]] of its arguments). |
| Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of [[sculpture]], without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry.<ref>{{cite book|last=Russell|first=Bertrand|authorlink=Bertrand Russell|title=Mysticism and Logic: And Other Essays|publisher=[[Longman]]|year=1919|page=60|chapter=The Study of Mathematics|url=http://books.google.com/?id=zwMQAAAAYAAJ&pg=PA60&dq=Mathematics+rightly+viewed+possesses+not+only+truth+but+supreme+beauty+a+beauty+cold+and+austere+like+that+of+sculpture+without+appeal+to+any+part+of+our+weaker+nature+without+the+gorgeous+trappings+inauthor:Russell|accessdate=2008-08-22}}</ref>
| | * It is affine in each of its arguments: |
| </blockquote>
| | :: <math>\mathcal{B}[f](\alpha u + \beta v,\dots) = \alpha\mathcal{B}[f](u,\dots) + \beta\mathcal{B}[f](v,\dots),\text{ when }\alpha + \beta = 1.\,</math> |
| | | * It satisfies the diagonal property: |
| [[Paul Erdős]] expressed his views on the [[ineffability]] of mathematics when he said, "Why are numbers beautiful? It's like asking why is [[Symphony No. 9 (Beethoven)|Beethoven's Ninth Symphony]] beautiful. If you don't see why, someone can't tell you. I ''know'' numbers are beautiful. If they aren't beautiful, nothing is".<ref>{{cite book|last=Devlin|first=Keith|title=The Math Gene: How Mathematical Thinking Evolved And Why Numbers Are Like Gossip|publisher=[[Basic Books]]|year=2000|page=140|chapter=Do Mathematicians Have Different Brains?|url=http://books.google.com/books?id=AJdmfYEaLG4C|accessdate=2008-08-22|isbn=978-0-465-01619-8}}</ref>
| | :: <math>\mathcal{B}[f](u,\dots,u) = f(u).\,</math> |
| | |
| ==Beauty in method==
| |
| Mathematicians describe an especially pleasing method of [[Mathematical proof|proof]] as ''[[Elegance|elegant]]''. Depending on context, this may mean:
| |
| | |
| * A proof that uses a minimum of additional assumptions or previous results. | |
| * A proof that is unusually succinct.
| |
| * A proof that derives a result in a surprising way (e.g., from an apparently unrelated [[theorem]] or collection of theorems.)
| |
| * A proof that is based on new and original insights.
| |
| * A method of proof that can be easily generalized to solve a family of similar problems.
| |
| | |
| In the search for an elegant proof, mathematicians often look for different independent ways to prove a result—the first proof that is found may not be the best. The theorem for which the greatest number of different proofs have been discovered is possibly the [[Pythagorean theorem]], with hundreds of proofs having been published.<ref>[[Elisha Scott Loomis]] published over 360 proofs in his book Pythagorean Proposition (ISBN 0-873-53036-5).</ref> Another theorem that has been proved in many different ways is the theorem of [[quadratic reciprocity]]—[[Carl Friedrich Gauss]] alone published eight different proofs of this theorem.
| |
| | |
| Conversely, results that are logically correct but involve laborious calculations, over-elaborate methods, very conventional approaches, or that rely on a large number of particularly powerful [[axiom]]s or previous results are not usually considered to be elegant, and may be called ''ugly'' or ''clumsy''.
| |
| | |
| ==Beauty in results==<!-- This section is linked from [[Fermat's last theorem]] -->
| |
| [[File:EulerIdentity2.svg|thumb|right|Starting at ''e''<sup>0</sup> = 1, travelling at the velocity ''i'' relative to one's position for the length of time π, and adding 1, one arrives at 0. (The diagram is an [[Argand diagram]])]]
| |
| Some mathematicians<ref>{{citation|last = Rota|year = 1997|title=The phenomenology of mathematical beauty|page = 173}}</ref> see beauty in mathematical results that establish connections between two areas of mathematics that at first sight appear to be unrelated. These results are often described as ''deep''.
| |
| | |
| While it is difficult to find universal agreement on whether a result is deep, some examples are often cited. One is [[Euler's identity]]:<ref name=Gallagher2014>{{cite news|last=Gallagher|first=James|title=Mathematics: Why the brain sees maths as beauty|url=http://www.bbc.co.uk/news/science-environment-26151062|accessdate=13 February 2014|newspaper=BBC News online|date=13 February 2014}}</ref>
| |
| | |
| :<math>\displaystyle e^{i \pi} + 1 = 0\, .</math> | |
| | |
| This is a special case of [[Euler's formula]], which the physicist [[Richard Feynman]] called "our jewel" and "the most remarkable formula in mathematics".<ref>{{cite book|first=Richard P.|last= Feynman|title=The Feynman Lectures on Physics |volume=I|publisher=Addison-Wesley|year=1977|isbn=0-201-02010-6|page=22-10}}</ref> Modern examples include the [[modularity theorem]], which establishes an important connection between [[elliptic curve]]s and [[modular form]]s (work on which led to the awarding of the [[Wolf Prize]] to [[Andrew Wiles]] and [[Robert Langlands]]), and "[[monstrous moonshine]]", which connects the [[Monster group]] to [[modular function]]s via [[string theory]] for which [[Richard Borcherds]] was awarded the [[Fields Medal]].
| |
| | |
| Other examples of deep results include unexpected insights into mathematical structures. For example, Gauss's [[Theorema Egregium]] is a deep theorem which relates a local phenomenon ([[curvature]]) to a global phenomenon ([[area]]) in a surprising way. In particular, the area of a triangle on a curved surface is proportional to the excess of the triangle and the proportionality is curvature. Another example is the [[fundamental theorem of calculus]] (and its vector versions including [[Green's theorem]] and [[Stokes' theorem]]) which is a wonderfully deep and remarkable insight and is breathtaking in its beauty.
| |
| | |
| The opposite of ''deep'' is ''trivial''. A trivial theorem may be a result that can be derived in an obvious and straightforward way from other known results, or which applies only to a specific set of particular objects such as the [[empty set]]. Sometimes, however, a statement of a theorem can be original enough to be considered deep, even though its proof is fairly obvious.
| |
| | |
| In his ''[[A Mathematician's Apology]]'', [[G. H. Hardy|Hardy]] suggests that a beautiful proof or result possesses "inevitability", "unexpectedness", and "economy".<ref>{{cite book | last=Hardy, G.H. | chapter = 18}}</ref>
| |
| | |
| [[Gian-Carlo Rota|Rota]], however, disagrees with unexpectedness as a condition for beauty and proposes a counterexample:
| |
| {{quote|A great many theorems of mathematics, when first published, appear to be surprising; thus for example some twenty years ago [from 1977] the proof of the existence of [[Exotic sphere|non-equivalent differentiable structures]] on spheres of high dimension was thought to be surprising, but it did not occur to anyone to call such a fact beautiful, then or now.<ref>{{citation|last = Rota|title=The phenomenology of mathematical beautyyear = 1997|page = 172}}</ref>}}
| |
| Perhaps ironically, Monastyrsky writes:
| |
| {{quote|It is very difficult to find an analogous invention in the past to [[Milnor]]'s beautiful construction of the different differential structures on the seven-dimensional sphere....The original proof of Milnor was not very constructive but later E. Briscorn showed that these differential structures can be described in an extremely explicit and beautiful form.<ref>{{citation|last = Monastyrsky|title=Some Trends in Modern Mathematics and the Fields Medal|year = 2001}}</ref>}}
| |
| This disagreement illustrates both the subjective nature of mathematical beauty and its connection with mathematical results: in this case, not only the existence of exotic spheres, but also a particular realization of them.
| |
| | |
| ==Beauty in experience==
| |
| [[File:Compound of five cubes.png|thumb|222px|There is a certain "cold and austere" beauty in this [[compound of five cubes]]]]
| |
| {{tone|section|date=March 2013}}
| |
| Interest in [[pure mathematics]] separate from [[Empirical research|empirical]] study has been part of the experience [[History of mathematics|of various civilizations]], including that of the [[Greek mathematics|Ancient Greeks]], who "did mathematics for the beauty of it."<ref>Lang, p. 3</ref> Mathematical beauty can also be experienced outside the confines of pure mathematics. For example, the aesthetic pleasure that [[mathematical physicist]]s tend to experience in Einstein's theory of [[general relativity]] has been attributed (by [[Paul Dirac]], among others) to its "great mathematical beauty."<ref>Chandrasekhar, p. 148</ref>
| |
| | |
| Some degree of delight in the manipulation of [[number]]s and [[symbol]]s is probably required to engage in any mathematics. Given the utility of mathematics in [[science]] and [[engineering]], it is likely that any technological society will actively cultivate these [[aesthetics]], certainly in its [[philosophy of science]] if nowhere else.
| |
| | |
| The most intense experience of mathematical beauty for most mathematicians comes from actively engaging in mathematics. It is very difficult to enjoy or appreciate mathematics in a purely passive way—in mathematics there is no real analogy of the role of the spectator, audience, or viewer.<ref>{{cite book|last=Phillips|first=George|title=Mathematics Is Not a Spectator Sport|publisher=[[Springer Science+Business Media]]|year=2005|chapter=Preface|isbn=0-387-25528-1|url=http://books.google.com/?id=psFwdN6V6icC&pg=PR7&lpg=PR7&dq=there+is+nothing+in+the+world+of+mathematics+that+corresponds+to+an+audience+in+a+concert+hall,+where+the+passive+listen+to+the+active.+Happily,+mathematicians+are+all+doers,+not+spectators.|accessdate=2008-08-22|quote="...there is nothing in the world of mathematics that corresponds to an audience in a concert hall, where the passive listen to the active. Happily, mathematicians are all ''doers'', not spectators.}}</ref> [[Bertrand Russell]] referred to the ''austere beauty'' of mathematics.
| |
| | |
| ==Beauty and philosophy==
| |
| Some mathematicians are of the opinion that the doing of mathematics is closer to discovery than invention, for example:
| |
| {{quote|There is no scientific discoverer, no poet, no painter, no musician, who will not tell you that he found ready made his discovery or poem or picture – that it came to him from outside, and that he did not consciously create it from within.
| |
| |[[William Kingdon Clifford]], from a lecture to the Royal Institution titled "Some of the conditions of mental development"}}
| |
| These mathematicians believe that the detailed and precise results of mathematics may be reasonably taken to be true without any dependence on the universe in which we live. For example, they would argue that the theory of the [[natural numbers]] is fundamentally valid, in a way that does not require any specific context. Some mathematicians have extrapolated this viewpoint that mathematical beauty is truth further, in some cases becoming [[mysticism]].
| |
| | |
| [[Pythagoras#Mathematics|Pythagorean mathematicians]] believed in the literal reality of numbers. The discovery of the existence of [[irrational number]]s was a shock to them, since they considered the existence of numbers not expressible as the ratio of two natural numbers to be a flaw in nature (the Pythagorean world view did not contemplate the [[Limit of a sequence|limits of infinite sequences]] of ratios of natural numbers—the modern notion of a [[real number]]). From a modern perspective, their mystical approach to numbers may be viewed as [[numerology]].
| |
| | |
| In [[Plato]]'s philosophy there were two worlds, the physical one in which we live and another abstract world which contained unchanging truth, including mathematics. He believed that the physical world was a mere reflection of the more perfect abstract world.
| |
| | |
| [[Hungary|Hungarian]] mathematician [[Paul Erdős]]<ref>{{cite book | author=Schechter, Bruce | title=My brain is open: The mathematical journeys of Paul Erdős | publisher=[[Simon & Schuster]] | location=New York | year=2000 | pages=70–71 | isbn = 0-684-85980-7}}</ref> spoke of an imaginary book, in which God has written down all the most beautiful mathematical proofs. When Erdős wanted to express particular appreciation of a proof, he would exclaim "This one's from The Book!" This viewpoint expresses the idea that mathematics, as the intrinsically true foundation on which the laws of our [[universe]] are built, is a natural candidate for what has been personified as [[God]] by different religious believers.
| |
| | |
| Twentieth-century French philosopher [[Alain Badiou]] claims that [[ontology]] is mathematics. Badiou also believes in deep connections between mathematics, poetry and philosophy.
| |
| | |
| In some cases, natural philosophers and other scientists who have made extensive use of mathematics have made leaps of inference between beauty and physical truth in ways that turned out to be erroneous. For example, at one stage in his life, [[Johannes Kepler]] believed that the proportions of the orbits of the then-known planets in the [[Solar System]] have been arranged by [[God]] to correspond to a concentric arrangement of the five [[Platonic solid]]s, each orbit lying on the [[Circumscribed sphere|circumsphere]] of one [[polyhedron]] and the [[Inscribed sphere|insphere]] of another. As there are exactly five Platonic solids, Kepler's hypothesis could only accommodate six planetary orbits and was disproved by the subsequent discovery of [[Uranus]].
| |
| | |
| ==Beauty and mathematical information theory==
| |
| In the 1970s, [[Abraham Moles]] and [[Frieder Nake]] analyzed links between beauty, [[information processing]], and [[information theory]].<ref>A. Moles: ''Théorie de l'information et perception esthétique'', Paris, Denoël, 1973 ([[Information Theory]] and aesthetical perception)</ref><ref>F Nake (1974). Ästhetik als Informationsverarbeitung. ([[Aesthetics]] as information processing). Grundlagen und Anwendungen der Informatik im Bereich ästhetischer Produktion und Kritik. Springer, 1974, ISBN 3-211-81216-4, ISBN 978-3-211-81216-7</ref> In the 1990s, [[Jürgen Schmidhuber]] formulated a mathematical theory of observer-dependent subjective beauty based on [[algorithmic information theory]]: the most beautiful objects among subjectively comparable objects have short [[algorithmic]] descriptions (i.e., [[Kolmogorov complexity]]) relative to what the observer already knows.<ref>J. Schmidhuber. [[Low-complexity art]]. Leonardo, Journal of the International Society for the Arts, Sciences, and Technology, 30(2):97–103, 1997. http://www.jstor.org/pss/1576418</ref><ref>J. Schmidhuber. Papers on the theory of beauty and [[low-complexity art]] since 1994: http://www.idsia.ch/~juergen/beauty.html</ref><ref>J. Schmidhuber. Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity & Creativity. Proc. 10th Intl. Conf. on Discovery Science (DS 2007) p. 26-38, LNAI 4755, Springer, 2007. Also in Proc. 18th Intl. Conf. on Algorithmic Learning Theory (ALT 2007) p. 32, LNAI 4754, Springer, 2007. Joint invited lecture for DS 2007 and ALT 2007, Sendai, Japan, 2007. http://arxiv.org/abs/0709.0674</ref> Schmidhuber explicitly distinguishes between beautiful and interesting. The latter corresponds to the [[first derivative]] of subjectively perceived beauty:
| |
| the observer continually tries to improve the [[predictability]] and [[Data compression|compressibility]] of the observations by discovering regularities such as repetitions and [[symmetries]] and [[fractal]] [[self-similarity]]. Whenever the observer's learning process (possibly a predictive artificial [[neural network]]) leads to improved data compression such that the observation sequence can be described by fewer [[bit]]s than before, the temporary interestingness of the data corresponds to the compression progress, and is proportional to the observer's internal curiosity reward<ref>.J. Schmidhuber. Curious model-building control systems. International Joint Conference on Neural Networks, Singapore, vol 2, 1458–1463. IEEE press, 1991</ref><ref>Schmidhuber's theory of beauty and curiosity in a German TV show: http://www.br-online.de/bayerisches-fernsehen/faszination-wissen/schoenheit--aesthetik-wahrnehmung-ID1212005092828.xml</ref>{{Dead link|date=February 2011}}
| |
| | |
| ==Mathematics and the arts==
| |
| {{Main|Mathematics and art|Mathematics and music}}
| |
|
| |
| ===Music===
| |
| Examples of the use of mathematics in music include the [[stochastic music]] of [[Iannis Xenakis]], [[counterpoint]] of [[Johann Sebastian Bach]], [[polyrhythm]]ic structures (as in [[Igor Stravinsky]]'s ''[[The Rite of Spring]]''), the [[Metric modulation]] of [[Elliott Carter]], [[permutation]] theory in [[serialism]] beginning with [[Arnold Schoenberg]], and application of Shepard tones in [[Karlheinz Stockhausen]]s ''[[Hymnen]]''.
| |
| | |
| ===Visual arts===
| |
| Examples of the use of mathematics in the visual arts include applications of [[chaos theory]] and [[fractal]] [[geometry]] to [[digital art|computer-generated art]], [[symmetry]] studies of [[Leonardo da Vinci]], [[projective geometry|projective geometries]] in development of the [[Perspective (graphical)|perspective]] theory of [[Renaissance]] art, [[grid (page layout)|grids]] in [[Op art]], optical geometry in the [[camera obscura]] of [[Giambattista della Porta]], and multiple perspective in analytic [[cubism]] and [[futurism]].
| |
| | |
| The Dutch graphic designer [[M.C. Escher]] created mathematically inspired [[woodcut]]s, [[lithograph]]s, and [[mezzotint]]s. These feature impossible constructions, explorations of [[infinity]], [[architecture]], visual [[paradox]]es and tessellations. British constructionist artist [[John Ernest]] created reliefs and paintings inspired by group theory.<ref>John Ernest's use of mathematics and especially group theory in his art works is analysed in ''John Ernest, A Mathematical Artist'' by Paul Ernest in Philosophy of Mathematics Education Journal, No. 24 Dec. 2009 (Special Issue on Mathematics and Art): http://people.exeter.ac.uk/PErnest/pome24/index.htm</ref> A number of other British artists of the constructionist and systems schools also draw on mathematics models and structures as a source of inspiration, including [[Anthony Hill]] and [[Peter Lowe]]. Computer-generated art is based on mathematical [[algorithm]]s.
| |
| | |
| ===Choreography===
| |
| [[Shuffling]] has been applied to [[choreography]] as in the ''Temple of Rudra'' [[opera]].{{citation needed|date=January 2014}}
| |
| | |
| ==See also==
| |
| <div style="-moz-column-count:2; column-count:2;">
| |
| * [[Descriptive science]]
| |
| * [[Fluency heuristic]]
| |
| * [[Golden ratio]]
| |
| * [[Mathematics and architecture]]
| |
| * [[Normative science]]
| |
| * [[Philosophy of mathematics]]
| |
| * [[Processing fluency theory of aesthetic pleasure]]
| |
| * [[Pythagoreanism]]
| |
| </div>
| |
| | |
| ==Notes==
| |
| {{reflist|2}}
| |
|
| |
|
| ==References== | | ==References== |
| {{refbegin}}
| | *{{cite paper | author=Ramshaw, Lyle | title = Blossoming: A Connect-the-Dots Approach to Splines | publisher=Digital Systems Research Center | date=1987 | url=ftp://ftp.digital.com/pub/compaq/SRC/research-reports/abstracts/src-rr-019.html | accessdate=2006-06-28}} |
| * [[Martin Aigner|Aigner, Martin]], and [[Günter M. Ziegler|Ziegler, Gunter M.]] (2003), ''[[Proofs from THE BOOK]],'' 3rd edition, Springer-Verlag.
| |
| * [[Subrahmanyan Chandrasekhar|Chandrasekhar, Subrahmanyan]] (1987), ''Truth and Beauty: Aesthetics and Motivations in Science,'' University of Chicago Press, Chicago, IL.
| |
| * [[Jacques Hadamard|Hadamard, Jacques]] (1949), ''The Psychology of Invention in the Mathematical Field,'' 1st edition, Princeton University Press, Princeton, NJ. 2nd edition, 1949. Reprinted, Dover Publications, New York, NY, 1954.
| |
| * [[G.H. Hardy|Hardy, G.H.]] (1940), ''A Mathematician's Apology'', 1st published, 1940. Reprinted, [[C.P. Snow]] (foreword), 1967. Reprinted, Cambridge University Press, Cambridge, UK, 1992.
| |
| * [[Paul Hoffman (science writer)|Hoffman, Paul]] (1992), ''[[The Man Who Loved Only Numbers]]'', Hyperion.
| |
| * Huntley, H.E. (1970), ''The Divine Proportion: A Study in Mathematical Beauty'', Dover Publications, New York, NY.
| |
| * [[Elisha Scott Loomis|Loomis, Elisha Scott]] (1968), ''The Pythagorean Proposition'', The National Council of Teachers of Mathematics. Contains 365 proofs of the Pythagorean Theorem.
| |
| * [[Serge Lang|Lang, Serge]] (1985). [http://books.google.com/books?id=U_HITkWziLwC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false ''The Beauty of Doing Mathematics: Three Public Dialogues'']. New York: Springer-Verlag. ISBN 0-387-96149-6.
| |
| * Peitgen, H.-O., and Richter, P.H. (1986), ''The Beauty of Fractals'', Springer-Verlag.
| |
| * [[Rolf Reber|Reber, R.]], Brun, M., & Mitterndorfer, K. (2008). The use of heuristics in intuitive mathematical judgment. ''Psychonomic Bulletin & Review'', ''15'', 1174-1178.
| |
| * Strohmeier, John, and Westbrook, Peter (1999), ''Divine Harmony, The Life and Teachings of Pythagoras'', Berkeley Hills Books, Berkeley, CA.
| |
| * {{Cite journal | |
| | last = Rota
| |
| | first = Gian-Carlo
| |
| | author-link = Gian-Carlo Rota | |
| | title = The phenomenology of mathematical beauty | |
| | year = 1997
| |
| | journal = Synthese
| |
| | volume = 111
| |
| | issue = 2
| |
| | pages = 171–182
| |
| | doi = 10.1023/A:1004930722234
| |
| | ref = harv
| |
| | postscript = <!--None-->
| |
| }}
| |
| *{{Cite journal
| |
| | last1 = Monastyrsky | |
| | first1 = Michael | |
| | title = Some Trends in Modern Mathematics and the Fields Medal
| |
| | journal = Can. Math. Soc. Notes
| |
| | year = 2001
| |
| | volume = 33
| |
| | issue = 2 and 3
| |
| | url = http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf | |
| | ref = harv | |
| | postscript = <!--None-->
| |
| }}
| |
| {{refend}}
| |
|
| |
|
| ==External links== | | *{{cite paper | author=Casteljau, Paul de Faget de | authorlink = Paul de Casteljau | title = POLynomials, POLar Forms, and InterPOLation | date = 1992 | editor= Schumaker et al. | book = Mathematical methods in computer aided geometric design II | publisher = Academic Press Professional, Inc.}} |
| *[http://raharoni.net.technion.ac.il/mathematics-poetry-and-beauty/ Mathematics, Poetry and Beauty]
| |
| *[http://www.cut-the-knot.org/manifesto/beauty.shtml Is Mathematics Beautiful?]
| |
| *[http://users.forthnet.gr/ath/kimon/ The Beauty of Mathematics]
| |
| *[http://www.justinmullins.com/ Justin Mullins]
| |
| *[http://www.the-athenaeum.org/poetry/detail.php?id=80 Edna St. Vincent Millay (poet): ''Euclid alone has looked on beauty bare'']
| |
| *[[Terence Tao]], [http://www.math.ucla.edu/~tao/preprints/Expository/goodmath.dvi ''What is good mathematics?'']
| |
| *[http://mathbeauty.wordpress.com/ Mathbeauty Blog]
| |
| *[http://www.nybooks.com/articles/archives/2013/dec/05/mathematical-romance/ ''A Mathematical Romance''] [[Jim Holt (philosopher)|Jim Holt]] December 5, 2013 issue of [[The New York Review of Books]] review of ''Love and Math: The Heart of Hidden Reality'' by [[Edward Frenkel]]
| |
|
| |
|
| {{aesthetics}} | | *{{cite book | author=Farin, Gerald | title = Curves and Surfaces for CAGD: A Practical Guide | year = 2001 | publisher = Morgan Kaufmann | edition = fifth | isbn = 1-55860-737-4 }} |
|
| |
|
| [[Category:Aesthetic beauty]] | | [[Category:Numerical analysis]] |
| [[Category:Elementary mathematics]]
| |
| [[Category:Philosophy of mathematics]]
| |
| [[Category:Mathematical terminology]]
| |