Blood flow

From formulasearchengine
Revision as of 04:29, 3 February 2014 by en>Hmains (copyedit, MOS value rules and AWB general fixes using AWB)
Jump to navigation Jump to search

In statistics, the score, score function, efficient score[1] or informant[2] indicates how sensitively a likelihood function L(θ;X) depends on its parameter θ. Explicitly, the score for θ is the gradient of the log-likelihood with respect to θ.

The score plays an important role in several aspects of inference. For example:

The score function also plays an important role in computational statistics, as it can play a part in the computation of maximum likelihood estimates.

Definition

The score or efficient score [1] is the gradient (the vector of partial derivatives), with respect to some parameter θ, of the logarithm (commonly the natural logarithm) of the likelihood function (the log-likelihood). If the observation is X and its likelihood is L(θ;X), then the score V can be found through the chain rule:

VV(θ,X)=θlogL(θ;X)=1L(θ;X)L(θ;X)θ.

Thus the score V indicates the sensitivity of L(θ;X) (its derivative normalized by its value). Note that V is a function of θ and the observation X, so that, in general, it is not a statistic. However in certain applications, such as the score test, the score is evaluated at a specific value of θ (such as a null-hypothesis value, or at the maximum likelihood estimate of θ), in which case the result is a statistic.

Properties

Mean

Under some regularity conditions, the expected value of V with respect to the observation x, given θ, written 𝔼(Vθ), is zero. To see this rewrite the likelihood function L as a probability density function L(θ;x)=f(x;θ). Then:

𝔼(Vθ)=+f(x;θ)θlogL(θ;X)dx=+θlogL(θ;X)f(x;θ)dx
=+1f(x;θ)f(x;θ)θf(x;θ)dx=+f(x;θ)θdx

If certain differentiability conditions are met (see Leibniz integral rule), the integral may be rewritten as

θ+f(x;θ)dx=θ1=0.

It is worth restating the above result in words: the expected value of the score is zero. Thus, if one were to repeatedly sample from some distribution, and repeatedly calculate the score, then the mean value of the scores would tend to zero as the number of repeat samples approached infinity.

Variance

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. The variance of the score is known as the Fisher information and is written (θ). Because the expectation of the score is zero, this may be written as

(θ)=𝔼{[θlogL(θ;X)]2|θ}.

Note that the Fisher information, as defined above, is not a function of any particular observation, as the random variable X has been averaged out. This concept of information is useful when comparing two methods of observation of some random process.

Examples

Bernoulli process

Consider a Bernoulli process, with A successes and B failures; the probability of success is θ.

Then the likelihood L is

L(θ;A,B)=(A+B)!A!B!θA(1θ)B,

so the score V is

V=1LLθ=AθB1θ.

We can now verify that the expectation of the score is zero. Noting that the expectation of A is nθ and the expectation of B is n(1 − θ) [recall that A and B are random variables], we can see that the expectation of V is

E(V)=nθθn(1θ)1θ=nn=0.

We can also check the variance of V. We know that A + B = n (so Bn − A) and the variance of A is nθ(1 − θ) so the variance of V is

var(V)=var(AθnA1θ)=var(A(1θ+11θ))=(1θ+11θ)2var(A)=nθ(1θ).

Binary outcome model

For models with binary outcomes (Y = 1 or 0), the model can be scored with the logarithm of predictions

S=Ylog(p)+(Y1)(log(1p))

where p is the probability in the model to be estimated and S is the score.[7]

Applications

Scoring algorithm

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. The scoring algorithm is an iterative method for numerically determining the maximum likelihood estimator.

Score test

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. Template:Expand section

See also

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

References

  • Cox, D.R., Hinkley, D.V. (1974) Theoretical Statistics, Chapman & Hall. ISBN 0-412-12420-3
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  1. 1.0 1.1 Cox & Hinkley (1974), p 107
  2. 53 yrs old Fitter (Common ) Batterton from Carp, likes to spend some time kid advocate, property developers in singapore and handball. Completed a cruise liner experience that was comprised of passing by Gusuku Sites and Related Properties of the Kingdom of Ryukyu.

    Here is my web page www.mtfgaming.com
  3. Cox & Hinkley (1974), p 113
  4. 4.0 4.1 Cox & Hinkley (1974), p 295
  5. Cox & Hinkley (1974), p 222–3
  6. Cox & Hinkley (1974), p 254
  7. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ and Kattan MW (2010) Assessing the performance of prediction models. A framework for traditional and novel measures. Epidemiology 21 (1) 128–138 DOI: 10.1097/EDE.0b013e3181c30fb2