DTIME

From formulasearchengine
Revision as of 07:43, 26 February 2013 by en>Addbot (Bot: Migrating 7 interwiki links, now provided by Wikidata on d:q1155831 (Report Errors))
Jump to navigation Jump to search

In computational complexity theory, the complexity class PH is the union of all complexity classes in the polynomial hierarchy:

PH=kΔkP

PH was first defined by Larry Stockmeyer. It is a special case of hierarchy of bounded alternating Turing machine. It is contained in P#P = PPP (by Toda's theorem; the class of problems that are decidable by a polynomial time Turing machine with access to a #P or equivalently PP oracle), and also in PSPACE.

PH has a simple logical characterization: it is the set of languages expressible by second-order logic.

PH contains almost all well-known complexity classes inside PSPACE; in particular, it contains P, NP, and co-NP. It even contains probabilistic classes such as BPP and RP. However, there is some evidence that BQP, the class of problems solvable in polynomial time by a quantum computer, is not contained in PH (Aaronson 2010).

P = NP if and only if P = PH. This may simplify a potential proof of PNP, since it's only necessary to separate P from the more general class PH.

References

Hi generally. Let me start by introducing the author, his name is Benjamin Cassity and he totally digs that address. To climb is a thing that we're totally dependent on. California is where her house is but now she is considering additional. After being beyond his part of years he became a postal service worker. See what's new on my website here: http://devolro.com/diablo-gallery



Look at my web blog :: cars

Template:Comp-sci-theory-stub