DTIME
In computational complexity theory, the complexity class PH is the union of all complexity classes in the polynomial hierarchy:
PH was first defined by Larry Stockmeyer. It is a special case of hierarchy of bounded alternating Turing machine. It is contained in P#P = PPP (by Toda's theorem; the class of problems that are decidable by a polynomial time Turing machine with access to a #P or equivalently PP oracle), and also in PSPACE.
PH has a simple logical characterization: it is the set of languages expressible by second-order logic.
PH contains almost all well-known complexity classes inside PSPACE; in particular, it contains P, NP, and co-NP. It even contains probabilistic classes such as BPP and RP. However, there is some evidence that BQP, the class of problems solvable in polynomial time by a quantum computer, is not contained in PH (Aaronson 2010).
P = NP if and only if P = PH. This may simplify a potential proof of P ≠ NP, since it's only necessary to separate P from the more general class PH.
References
- Larry J. Stockmeyer, "The polynomial hierarchy", Theoretical Computer Science, Vol. 3 (1976), pp. 1–22.
- Scott Aaronson, BQP and the Polynomial Hierarchy, ACM STOC (2010), Template:Arxiv, Template:ECCC.
- Template:CZoo
Hi generally. Let me start by introducing the author, his name is Benjamin Cassity and he totally digs that address. To climb is a thing that we're totally dependent on. California is where her house is but now she is considering additional. After being beyond his part of years he became a postal service worker. See what's new on my website here: http://devolro.com/diablo-gallery
Look at my web blog :: cars