Kervaire invariant
In mathematics, a pre-measure is a function that is, in some sense, a precursor to a bona fide measure on a given space. Indeed, the fundamental theorem in the subject basically says that every pre-measure can be extended to a measure.
Definition
Let R be a ring of subsets (closed under relative complement) of a fixed set X and let μ0: R → [0, +∞] be a set function. μ0 is called a pre-measure if
and, for every countable sequence {An}n∈N ⊆ R of pairwise disjoint sets whose union lies in R,
The second property is called σ-additivity.
Thus, what is missing for a pre-measure to be a measure is that it is not necessarily defined on a sigma-algebra (or a sigma-ring).
Extension theorem
It turns out that pre-measures can be extended quite naturally to outer measures, which are defined for all subsets of the space X. More precisely, if μ0 is a pre-measure defined on a ring of subsets R of the space X, then the set function μ∗ defined by
is an outer measure on X, and the measure μ induced by μ∗ on the σ-algebra Σ of Carathéodory-measurable sets satisfies for (in particular, Σ includes R).
(Note that there is some variation in the terminology used in the literature. For example, Rogers (1998) uses "measure" where this article uses the term "outer measure". Outer measures are not, in general, measures, since they may fail to be σ-additive.)
See also
References
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 Template:MathSciNet - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 Template:MathSciNet (See section 1.2.) - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534