Multiplier (economics)

From formulasearchengine
Revision as of 21:31, 29 January 2014 by en>ClueBot NG (Reverting possible vandalism by 94.174.23.91 to version by MartinMichlmayr. False positive? Report it. Thanks, ClueBot NG. (1675557) (Bot))
Jump to navigation Jump to search

In mathematics, a cardinal function (or cardinal invariant) is a function that returns cardinal numbers.

Cardinal functions in set theory

  • The most frequently used cardinal function is a function which assigns to a set "A" its cardinality, denoted by | A |.
  • Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers.
  • Cardinal characteristics of a (proper) ideal I of subsets of X are:
add(I)=min{|𝒜|:𝒜I𝒜I}.
The "additivity" of I is the smallest number of sets from I whose union is not in I any more. As any ideal is closed under finite unions, this number is always at least 0; if I is a σ-ideal, then add(I)≥1.
cov(I)=min{|𝒜|:𝒜I𝒜=X}.
The "covering number" of I is the smallest number of sets from I whose union is all of X. As X itself is not in I, we must have add(I) ≤ cov(I).
non(I)=min{|A|:AXAI},
The "uniformity number" of I (sometimes also written unif(I)) is the size of the smallest set not in I. Assuming I contains all singletons, add(I) ≤ non(I).
cof(I)=min{||:I(AI)(B)(AB)}.
The "cofinality" of I is the cofinality of the partial order (I, ⊆). It is easy to see that we must have non(I) ≤ cof(I) and cov(I) ≤ cof(I).
In the case that I is an ideal closely related to the structure of the reals, such as the ideal of Lebesgue null sets or the ideal of meagre sets, these cardinal invariants are referred to as cardinal characteristics of the continuum.
b()=min{|Y|:Y(x)(yY)(y⋢x)},
d()=min{|Y|:Y(x)(yY)(xy)}

Cardinal functions in topology

Cardinal functions are widely used in topology as a tool for describing various topological properties.[2][3] Below are some examples. (Note: some authors, arguing that "there are no finite cardinal numbers in general topology",[4] prefer to define the cardinal functions listed below so that they never taken on finite cardinal numbers as values; this requires modifying some of the definitions given below, e.g. by adding "+0" to the right-hand side of the definitions, etc.)

Basic inequalities

c(X) ≤ d(X) ≤ w(X) ≤ o(X) ≤ 2|X|
χ(X) ≤ w(X)

Cardinal functions in Boolean algebras

Cardinal functions are often used in the study of Boolean algebras.[5][6] We can mention, for example, the following functions:

length(𝔹)=sup{|A|:A𝔹 is a chainTemplate:Dn }
depth(𝔹)=sup{|A|:A𝔹 is a well-ordered subset }.
Inc(𝔹)=sup{|A|:A𝔹 such that (a,bA)(ab¬(abba))}.
π(𝔹)=min{|A|:A𝔹{0} such that (bB{0})(aA)(ab)}.

Cardinal functions in algebra

Examples of cardinal functions in algebra are:

External links

  • A Glossary of Definitions from General Topology [1]

See also

Cichoń's diagram

References

  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  2. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  3. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  4. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  5. Monk, J. Donald: Cardinal functions on Boolean algebras. "Lectures in Mathematics ETH Zürich". Birkhäuser Verlag, Basel, 1990. ISBN 3-7643-2495-3.
  6. Monk, J. Donald: Cardinal invariants on Boolean algebras. "Progress in Mathematics", 142. Birkhäuser Verlag, Basel, ISBN 3-7643-5402-X.