Standard solar model

From formulasearchengine
Jump to navigation Jump to search

Template:Copyedit Galois/Counter Mode (GCM) is a mode of operation for symmetric key cryptographic block ciphers that has been widely adopted because of its efficiency and performance. GCM throughput rates for state of the art, high speed communication channels can be achieved with reasonable hardware resources.[1] It is an authenticated encryption algorithm designed to provide both data authenticity (integrity) and confidentiality. GCM is defined for block ciphers with a block size of 128 bits. Galois Message Authentication Code (GMAC) is an authentication-only variant of the GCM which can be used as an incremental message authentication code. Both GCM and GMAC can accept initialization vectors of arbitrary length.

Different block cipher modes of operation can have significantly different performance and efficiency characteristics, even when used with the same block cipher. GCM can take full advantage of parallel processing, and an implementation can make efficient use of an instruction pipeline or a hardware pipeline. In contrast, the Cipher block chaining (CBC) mode of operation incurs significant pipeline stalls that hamper its efficiency and performance.

Encryption and authentication

GCM encryption operation

As the name suggests, GCM mode combines the well-known counter mode of encryption with the new Galois mode of authentication. The key feature is that the Galois field multiplication used for authentication can be easily computed in parallel thus permitting higher throughput than the authentication algorithms that use chaining modes, like CBC. The GF(2

128) field used is defined by the polynomial

The authentication tag is constructed by feeding blocks of data into the GHASH function, and encrypting the result. This GHASH function is defined by

where H is a string of 128 zeros encrypted using the block cipher, A is data which is only authenticated (not encrypted), C is the ciphertext, m is the number of 128 bit blocks in A, n is the number of 128 bit blocks in C (the final blocks of A and C need not be exactly 128 bits), and the variable Xi for i = 0, ..., m + n + 1 is defined as[2]

where v is the bit length of the final block of A, u is the bit length of the final block of C, and denotes concatenation of bit strings. Note that this is an iterative algorithm: each Xi depends on Xi-1, and only the final Xi is retained as output.

GCM mode was designed by John Viega and David A. McGrew as an improvement to Carter–Wegman Counter CWC mode.

On November 26, 2007 NIST announced the release of NIST Special Publication 800-38D Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC making GCM and GMAC official standards.

Use

GCM mode is used in the IEEE 802.1AE (MACsec) Ethernet security, IEEE 802.11ad (also known as WiGig), ANSI (INCITS) Fibre Channel Security Protocols (FC-SP), IEEE P1619.1 tape storage, IETF IPsec standards,[3][4] SSH [5] and TLS 1.2.[6][7] AES-GCM is included into the NSA Suite B Cryptography.

Performance

GCM is ideal for protecting packetized data, because it has minimum latency and minimum operation overhead.

GCM requires one block cipher operation and one 128-bit multiplication in the Galois field per each block (128 bit) of encrypted and authenticated data. The block cipher operations are easily pipelined or parallelized; the multiplication operations are easily pipelined, and can be parallelized with some modest effort (either by parallelizing the actual operation, or by adapting Horner's method as described in the original NIST submission, or both).

Intel has added the PCLMULQDQ instruction, highlighting its use for GCM [1]. This instruction enables fast multiplication over GF(2n), and can be used with any field representation.

Impressive performance results have been published for GCM on a number of platforms. Käsper and Schwabe described a "Faster and Timing-Attack Resistant AES-GCM" [8] that achieves 10.68 cycles per byte AES-GCM authenticated encryption on 64-bit Intel processors. Dai et al. report 3.5 cycles per byte for the same algorithm when using Intel's AES-NI and PCLMULQDQ instructions.[9] Shay Gueron and Vlad Krasnov achieved 2.47 cycles per byte on the 3rd generation Intel processors. Appropriate patch was prepared for the OpenSSL and NSS.[10]

When both authentication and encryption need to be performed on a message, a software implementation can achieve speed gains by overlapping the execution of those operations. Performance is increased by exploiting instruction level parallelism by interleaving operations. This process is called function stitching,[11] and while in principle it can be applied to any combination of cryptographic algorithms, GCM is especially suitable. Manley and Gregg [12] show the ease of optimizing when using function-stitching with GCM, and present a program generator that takes an annotated C version a cryptographic algorithm and generates code that runs well on the target processor.

Patents

According to the authors' statement, GCM is unencumbered by patents.

Security

GCM has been proven secure in the concrete security model.[13] It is secure when it is used with a block cipher mode of operation that is indistinguishable from a random permutation; however security depends on choosing a unique initialization vector for every encryption performed with the same key (see stream cipher attack). For any given key and initialization vector combination, GCM is limited to encrypting 239 − 256 bits of plain text. NIST Special Publication 800-38D includes guidelines for initialization vector selection.

The authentication strength depends on the length of the authentication tag, as with all symmetric message authentication codes. However, the use of shorter authentication tags with GCM is discouraged. The bit-length of the tag, denoted t, is a security parameter. In general, t may be any one of the following five values: 128, 120, 112, 104, or 96. For certain applications, t may be 64 or 32, but the use of these two tag lengths constrains the length of the input data and the lifetime of the key. Appendix C in NIST SP 800-38D provides guidance for these constraints (for example, if t = 32 and the maximal packet size is 210 bytes, then the authentication decryption function should be invoked no more than 211 times; if t = 64 and the maximal packet size is 215 bytes, then the authentication decryption function should be invoked no more than 232 times).

As with any message authentication code, if the adversary chooses a t-bit tag at random, it is expected to be correct for given data with probability 2t. With GCM, however, an adversary can choose tags that increase this probability, proportional to the total length of the ciphertext and additional authenticated data (AAD). Consequently, GCM is not well-suited for use with very short tag lengths or very long messages.

Ferguson and Saarinen independently described how an attacker can perform optimal attacks against GCM authentication, which meet the lower bound on its security. Ferguson showed that, if n denotes the total number of blocks in the encoding (the input to the GHASH function), then there is a method of constructing a targeted ciphertext forgery that is expected to succeed with a probability of approximately n2t. If the tag length t is shorter than 128, then each successful forgery in this attack increases the probability that subsequent targeted forgeries will succeed, and leaks information about the hash subkey, H. Eventually, H may be compromised entirely and the authentication assurance is completely lost.[14]

Independent of this attack, an adversary may attempt to systematically guess many different tags for a given input to authenticated decryption, and thereby increase the probability that one (or more) of them, eventually, will be accepted as valid. For this reason, the system or protocol that implements GCM should monitor and, if necessary, limit the number of unsuccessful verification attempts for each key.

Saarinen described GCM weak keys.[15] This work gives some valuable insights into how polynomial hash based authentication works. More precisely, this work describes a particular way of forging a GCM message, given a valid GCM message, which works with probability of about (n/2)Showcasing you the finest up and coming new condo launches in Singapore where you can search and discover the perfect house. Now we have new condo that may even satisfy the discerning few, it doesn't matter what's your necessities or your lifestyle needs. You'll certain to search out the dream apartment right here.

MAS agrees that it is crucial for banks to make use of valuations that are reflective of actual property values. We anticipate banks to adopt sound valuation processes. These embody participating unbiased valuers from corporations that aren't involved within the property transaction as gross sales agents or consultants, allocating valuation assignments randomly or on a rotational basis, obtaining a number of valuations for each property, and checking that the valuations are affordable.

A developer who undertakes a challenge of more than 4 units should comply with stringent government circumstances before he can begin to sell models in his venture. On high of that, all monies for a project together with loans and funds by buyers should be deposited right into a project account at a bank or monetary institution. The developer can solely withdraw cash from the venture account to pay for prices associated to the project. What's the Undertaking Account? What does it do? LA FIESTA can be a competition themed condominium growth comprising of 808 units of 1 to five-bed room items including three- and four-bed room twin key models. There might be 13 blocks of 15 storey with 2 basement car parks. Continuereading "Jewel @ Buangkok Upcoming launch, three minutes from Buangkok MRT."

Embrac e the timeless attract of metropolis-fringe residing. Sip champagne with the wealthy and well-known at Central Business District and Marina Bay Sands simply 10 minutes away via connecting expressways. Start your retail therapy at the upcoming Paya Lebar business hub and switch up the warmth at Orchard Highway. Wine and dine at Parisian cafes or stroll alongside the streets of New York any time of the day with Changi International Airport SIMPLY A SHORT DRIVE AHEAD. High Rental Demand with good returns within the Space Glorious high potential Returns for Resale and Rental Info on properties and the Authority's plans are extremely wanted by the public and professionals. Final yr, URA reported more than 20,000 searches on its online database.

While every effort has been made to make sure that all information displayed herein are accurate and complete, the data are indicative relatively than definitive. Thus its accuracy, whether express or implicit, isn't assured and to the fullest extent permitted by relevant laws. The Writer/Developer/Huttons Real Property Group does not accept accountability for any errors, inaccuracies, omissions or for any loss which could end result directly or indirectly from reliance on the content material herein. The Writer also reserves the best to correct or update the content material at any time without prior notification. Users are advised to contact the advertiser for any clarifications or latest updates.

Nestled In A Serene & Exclusive Balmoral/Goodwood Hill Enclave Inside 1KM To Both ACS Barker & SCGS Lush Greenery View Of Goodwood Hill Freehold @ Prime District 10 Short Drive ToHighway & CBD Easy Access To CTE & PIE Expressways The Flats Are All North-South Going through Minutes Stroll To Kovan MRT Uncommon Freehold Apartment! >a hundred and forty,000sqft Web site By Respected Developer, Wingtai Heartland Mall & Many Famous Eateries Iconic Architecture & Lush Panorama With Over a hundred thirty Trees & Vertical Plantings Panoramic Views Over Landed Houses Full condominium services like swimming pool, tennis courtroom, bbq pits, health club, playground and so forth. to cater to the recreation wants of all residents. For more particulars of the services please click on here solution to transport natural gas to market.

Freedman would probably level out that my marinara sauce is not notably healthy (wine and bacon, after all, are simply foodie types of salt, sugar and fats) and, serving for serving, must be dearer than $2-per-jar Ragu. He may argue that top property developers in singapore a couple of years, Ragu or General Foods or Kraft will supply a pasta sauce that is nutritionally identical to mine, and that I might be a snob not to buy it. And he is perhaps right. But for now, neither of us can escape the reality that food, like the whole lot else we buy, is designed to be cheap to make, to last forever and to style better than the following product down the shelf. And in addition like all the pieces else, after you purchase it, you're on your own. World Entrepreneurship and Improvement Index (GEDI). for messages that are n*128 bits long. However, this work does not show a more effective attack than was previously known; the success probability in observation 1 of this paper matches that of lemma 2 from the INDOCRYPT 2004 analysis (setting w=128 and l=n*128). Saarinen also described a GCM variant Sophie Germain Counter Mode (SGCM), continuing the GCM tradition of including a mathematician in the name of the mode.

See also

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

References

External links

Template:Cryptography navbox

  1. Lemsitzer, Wolkerstorfer, Felber, Braendli, Multi-gigabit GCM-AES Architecture Optimized for FPGAs. CHES '07: Proceedings of the 9th international workshop on Cryptographic Hardware and Embedded Systems, 2007.
  2. Template:Cite web Note that there is a typo in the formulas in the article.
  3. RFC 4106 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)
  4. RFC 4543 The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH
  5. RFC 5647 AES Galois Counter Mode for the Secure Shell Transport Layer Protocol
  6. RFC 5288 AES Galois Counter Mode (GCM) Cipher Suites for TLS
  7. RFC 6367 Addition of the Camellia Cipher Suites to Transport Layer Security (TLS)
  8. Cryptographic Hardware and Embedded Systems — CHES 2009, Lecture Notes in Computer Science 5745, Springer-Verlag (2009), pp 1—17.
  9. http://groups.google.com/group/cryptopp-users/msg/a688203c2314ef08
  10. Template:Cite web
  11. Gopal, V., Feghali, W., Guilford, J., Ozturk, E., Wolrich, G., Dixon, M., Locktyukhin, M., Perminov, M.: Fast Cryptographic Computation on Intel Architecture Via Function Stitching. Intel Corp. (2010) http://download.intel.com/design/intarch/PAPERS/323686.pdf.
  12. Raymond Manley, David Gregg, "A Program Generator for Intel AES-NI Instructions", INDOCRYPT 2010
  13. [2] The Security and Performance of the Galois/counter mode (GCM) of Operation, Proceedings of INDOCRYPT 2004, LNCS 3348 (2004)
  14. Niels Ferguson, Authentication Weaknesses in GCM, 2005-05-20
  15. Template:Cite paper